1
|
Yiu YH, Leibold C. A theory of hippocampal theta correlations accounting for extrinsic and intrinsic sequences. eLife 2023; 12:RP86837. [PMID: 37792453 PMCID: PMC10550285 DOI: 10.7554/elife.86837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Hippocampal place cell sequences have been hypothesized to serve as diverse purposes as the induction of synaptic plasticity, formation and consolidation of long-term memories, or navigation and planning. During spatial behaviors of rodents, sequential firing of place cells at the theta timescale (known as theta sequences) encodes running trajectories, which can be considered as one-dimensional behavioral sequences of traversed locations. In a two-dimensional space, however, each single location can be visited along arbitrary one-dimensional running trajectories. Thus, a place cell will generally take part in multiple different theta sequences, raising questions about how this two-dimensional topology can be reconciled with the idea of hippocampal sequences underlying memory of (one-dimensional) episodes. Here, we propose a computational model of cornu ammonis 3 (CA3) and dentate gyrus (DG), where sensorimotor input drives the direction-dependent (extrinsic) theta sequences within CA3 reflecting the two-dimensional spatial topology, whereas the intrahippocampal CA3-DG projections concurrently produce intrinsic sequences that are independent of the specific running trajectory. Consistent with experimental data, intrinsic theta sequences are less prominent, but can nevertheless be detected during theta activity, thereby serving as running-direction independent landmark cues. We hypothesize that the intrinsic sequences largely reflect replay and preplay activity during non-theta states.
Collapse
Affiliation(s)
- Yuk-Hoi Yiu
- Fakultät für Biologie & Bernstein Center Freiburg Albert-Ludwigs-Universität FreiburgFreiburgGermany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Christian Leibold
- Fakultät für Biologie & Bernstein Center Freiburg Albert-Ludwigs-Universität FreiburgFreiburgGermany
- BrainLinks-BrainTools, Albert-Ludwigs-Universität FreiburgFreiburgGermany
| |
Collapse
|
2
|
Kwon KM, Lee MJ, Chung HS, Pak JH, Jeon CJ. The Organization of Somatostatin-Immunoreactive Cells in the Visual Cortex of the Gerbil. Biomedicines 2022; 10:biomedicines10010092. [PMID: 35052772 PMCID: PMC8773527 DOI: 10.3390/biomedicines10010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Somatostatin (SST) is widely expressed in the brain and plays various, vital roles involved in neuromodulation. The purpose of this study is to characterize the organization of SST neurons in the Mongolian gerbil visual cortex (VC) using immunocytochemistry, quantitative analysis, and confocal microscopy. As a diurnal animal, the Mongolian gerbil provides us with a different perspective to other commonly used nocturnal rodent models. In this study, SST neurons were located in all layers of the VC except in layer I; they were most common in layer V. Most SST neurons were multipolar round/oval or stellate cells. No pyramidal neurons were found. Moreover, 2-color immunofluorescence revealed that only 33.50%, 24.05%, 16.73%, 0%, and 64.57% of SST neurons contained gamma-aminobutyric acid, calbindin-D28K, calretinin, parvalbumin, and calcium/calmodulin-dependent protein kinase II, respectively. In contrast, neuropeptide Y and nitric oxide synthase were abundantly expressed, with 80.07% and 75.41% in SST neurons, respectively. Our immunocytochemical analyses of SST with D1 and D2 dopamine receptors and choline acetyltransferase, α7 and β2 nicotinic acetylcholine receptors suggest that dopaminergic and cholinergic fibers contact some SST neurons. The results showed some distinguishable features of SST neurons and provided some insight into their afferent circuitry in the gerbil VC. These findings may support future studies investigating the role of SST neurons in visual processing.
Collapse
Affiliation(s)
- Kyung-Min Kwon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Myung-Jun Lee
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
| | - Han-Saem Chung
- Department of Biology, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Department of Biology, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Correspondence:
| |
Collapse
|
3
|
Alleviation of Neuronal Cell Death and Memory Deficit with Chungkookjang Made with Bacillus amyloliquefaciens and Bacillus subtilis Potentially through Promoting Gut-Brain Axis in Artery-Occluded Gerbils. Foods 2021; 10:foods10112697. [PMID: 34828975 PMCID: PMC8619225 DOI: 10.3390/foods10112697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Short-term fermented soybeans (chungkookjang) with specific Bacillus (B.) spp. have anti-obesity, antidiabetic, and anti-stroke functions. We examined the hypothesis that the long-term consumption of B. amyloliquefaciens SCGB 1 fermented (CKJ1) and B. subtilis SCDB 291 (CKJ291) chungkookjang can alleviate clinical symptoms and hyperglycemia after ischemic stroke by promoting the gut microbiota-brain axis. We examined this hypothesis in Mongolian male gerbils with stroke symptoms induced by carotid artery occlusion. The artery-occluded gerbils were divided into five groups: no supplementation (Control, Normal-control), 4% cooked soybeans (CSB), CKJ1, or CKJ291 in a high-fat diet for 3 weeks. The carotid arteries of gerbils in the Control, CSB, CKJ1, and CKJ291 groups were occluded for 8 min and they then continued on their assigned diets for an additional 3 weeks. Normal-control gerbils had no artery occlusion. The diets in all groups contained an identical macronutrient composition using starch, casein, soybean oil, and dietary fiber. The CSB, CKJ1, and CKJ291 groups exhibited less neuronal cell death than the Control group, while the CKJ1 group produced the most significant reduction among all groups, as much as 85% of the Normal-control group. CKJ1 and CKJ291 increased the blood flow and removal of blood clots, as determined by Doppler, more than the Control. They also showed more improvement in neurological disorders from ischemic stroke. Their improvement showed a similar tendency as neuronal cell death. CKJ1 treatment improved memory impairment, measured with Y maze and passive avoidance tests, similar to the Normal-control. The gerbils in the Control group had post-stroke hyperglycemia due to decreased insulin sensitivity and β-cell function and mass; the CKJ291, CSB, and CKJ1 treatments protected against glucose disturbance after artery occlusion and were similar to the Normal-control. CKJ1 and CKJ291 also reduced serum tumor necrosis factor-α concentrations and hippocampal interleukin-1β expression levels, compared to the Control. CKJ1 and CKJ291 increased the contents of Lactobacillus, Bacillus, and Akkermansia in the cecum feces, similar to the Normal-control. Picrust2 analysis showed that CKJ1 and CKJ291 increased the propionate and butyrate metabolism and the starch and glucose metabolism but reduced the lipopolysaccharide biosynthesis and fatty acid metabolism compared to the Control. In conclusion, daily CKJ1 and CKJ291 intake prevented neuronal cell death and memory dysfunction from the artery occlusion by increasing blood flow and β-cell survival and reducing post-stroke-hyperglycemia through modulating the gut microbiome composition and metabolites to influence the host metabolism, especially inflammation and insulin resistance, protecting against neuronal cell death and brain dysfunction. CKJ1 had better effects than CKJ291.
Collapse
|
4
|
Fetterhoff D, Sobolev A, Leibold C. Graded remapping of hippocampal ensembles under sensory conflicts. Cell Rep 2021; 36:109661. [PMID: 34525357 DOI: 10.1016/j.celrep.2021.109661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/09/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Hippocampal place cells are thought to constitute a cognitive map of space derived from multimodal sensory inputs. Alteration of allocentric (visual) cues in a fixed environment is known to induce modulations of place cell activity to varying degrees from rate changes to global remapping. To determine how hippocampal ensembles combine multimodal sensory cues, we examine hippocampal CA1 remapping in Mongolian gerbils in a 1D virtual reality experiment, during which self-motion cues (locomotor, vestibular, and optic flow information) and allocentric visual cues are altered. We observe that self-motion cues are over-represented, but responsiveness to allocentric visual cues, although task-irrelevant, elicits both rate and global remapping in the hippocampal ensemble. We propose that remapping can be reconciled by considering global, partial, and rate remapping on a continuous scale on which the graded change of activity in the entire CA1 population can be interpreted as the expectancy about the animal's spatial environment.
Collapse
Affiliation(s)
- Dustin Fetterhoff
- Department Biologie II, Ludwig-Maximilians-Universität München, 82152 Munich, Germany.
| | - Andrey Sobolev
- Department Biologie II, Ludwig-Maximilians-Universität München, 82152 Munich, Germany
| | - Christian Leibold
- Department Biologie II, Ludwig-Maximilians-Universität München, 82152 Munich, Germany; Bernstein Center for Computational Neuroscience Munich, 82152 Munich, Germany
| |
Collapse
|
5
|
Climer JR, Dombeck DA. Information Theoretic Approaches to Deciphering the Neural Code with Functional Fluorescence Imaging. eNeuro 2021; 8:ENEURO.0266-21.2021. [PMID: 34433574 PMCID: PMC8474651 DOI: 10.1523/eneuro.0266-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Information theoretic metrics have proven useful in quantifying the relationship between behaviorally relevant parameters and neuronal activity with relatively few assumptions. However, these metrics are typically applied to action potential (AP) recordings and were not designed for the slow timescales and variable amplitudes typical of functional fluorescence recordings (e.g., calcium imaging). The lack of research guidelines on how to apply and interpret these metrics with fluorescence traces means the neuroscience community has yet to realize the power of information theoretic metrics. Here, we used computational methods to create mock AP traces with known amounts of information. From these, we generated fluorescence traces and examined the ability of different information metrics to recover the known information values. We provide guidelines for how to use information metrics when applying them to functional fluorescence and demonstrate their appropriate application to GCaMP6f population recordings from mouse hippocampal neurons imaged during virtual navigation.
Collapse
Affiliation(s)
- Jason R Climer
- Department of Neurobiology, Northwestern University, Evanston, 60208 IL
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, 60208 IL
| |
Collapse
|