1
|
Alderman PJ, Saxon D, Torrijos-Saiz LI, Sharief M, Page CE, Baroudi JK, Biagiotti SW, Butyrkin VA, Melamed A, Kuo CT, Vicini S, García-Verdugo JM, Herranz-Pérez V, Corbin JG, Sorrells SF. Delayed maturation and migration of excitatory neurons in the juvenile mouse paralaminar amygdala. Neuron 2024; 112:574-592.e10. [PMID: 38086370 PMCID: PMC10922384 DOI: 10.1016/j.neuron.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/05/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
The human amygdala paralaminar nucleus (PL) contains many immature excitatory neurons that undergo prolonged maturation from birth to adulthood. We describe a previously unidentified homologous PL region in mice that contains immature excitatory neurons and has previously been considered part of the amygdala intercalated cell clusters or ventral endopiriform cortex. Mouse PL neurons are born embryonically, not from postnatal neurogenesis, despite a subset retaining immature molecular and morphological features in adults. During juvenile-adolescent ages (P21-P35), the majority of PL neurons undergo molecular, structural, and physiological maturation, and a subset of excitatory PL neurons migrate into the adjacent endopiriform cortex. Alongside these changes, PL neurons develop responses to aversive and appetitive olfactory stimuli. The presence of this homologous region in both humans and mice points to the significance of this conserved mechanism of neuronal maturation and migration during adolescence, a key time period for amygdala circuit maturation and related behavioral changes.
Collapse
Affiliation(s)
- Pia J Alderman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David Saxon
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Lucía I Torrijos-Saiz
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain
| | - Malaz Sharief
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chloe E Page
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jude K Baroudi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sean W Biagiotti
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vladimir A Butyrkin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Anna Melamed
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jose M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain; Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot 46100, Spain
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain; Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot 46100, Spain
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA
| | - Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
2
|
Diethorn EJ, Gould E. Development of the hippocampal CA2 region and the emergence of social recognition. Dev Neurobiol 2023; 83:143-156. [PMID: 37326250 PMCID: PMC10529477 DOI: 10.1002/dneu.22919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Social memories formed in early life, like those for family and unrelated peers, are known to contribute to healthy social interactions throughout life, although how the developing brain supports social memory remains relatively unexplored. The CA2 subregion of the hippocampus is involved in social memory function, but most literature on this subject is restricted to studies of adult rodents. Here, we review the current literature on the embryonic and postnatal development of hippocampal subregion CA2 in mammals, with a focus on the emergence of its unusual molecular and cellular characteristics, including its notably high expression of plasticity-suppressing molecules. We also consider the connectivity of the CA2 with other brain areas, including intrahippocampal regions, such as the dentate gyrus, CA3, and CA1 regions, and extrahippocampal regions, such as the hypothalamus, ventral tegmental area, basal forebrain, raphe nuclei, and the entorhinal cortex. We review developmental milestones of CA2 molecular, cellular, and circuit-level features that may contribute to emerging social recognition abilities for kin and unrelated conspecifics in early life. Lastly, we consider genetic mouse models related to neurodevelopmental disorders in humans in order to survey evidence about whether atypical formation of the CA2 may contribute to social memory dysfunction.
Collapse
Affiliation(s)
- Emma J Diethorn
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
3
|
Ausderau KK, Colman RJ, Kabakov S, Schultz-Darken N, Emborg ME. Evaluating depression- and anxiety-like behaviors in non-human primates. Front Behav Neurosci 2023; 16:1006065. [PMID: 36744101 PMCID: PMC9892652 DOI: 10.3389/fnbeh.2022.1006065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Depression and anxiety are some of the most prevalent and debilitating mental health conditions in humans. They can present on their own or as co-morbidities with other disorders. Like humans, non-human primates (NHPs) can develop depression- and anxiety-like signs. Here, we first define human depression and anxiety, examine equivalent species-specific behaviors in NHPs, and consider models and current methods to identify and evaluate these behaviors. We also discuss knowledge gaps, as well as the importance of evaluating the co-occurrence of depression- and anxiety-like behaviors in animal models of human disease. Lastly, we consider ethical challenges in depression and anxiety research on NHPs in order to ultimately advance the understanding and the personalized treatment of these disorders.
Collapse
Affiliation(s)
- Karla K. Ausderau
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Kinesiology, University of Wisconsin—Madison, Madison, WI, United States
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Sabrina Kabakov
- Department of Kinesiology, University of Wisconsin—Madison, Madison, WI, United States
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
5
|
Margolis AE, Liu R, Conceição VA, Ramphal B, Pagliaccio D, DeSerisy ML, Koe E, Selmanovic E, Raudales A, Emanet N, Quinn AE, Beebe B, Pearson BL, Herbstman JB, Rauh VA, Fifer WP, Fox NA, Champagne FA. Convergent neural correlates of prenatal exposure to air pollution and behavioral phenotypes of risk for internalizing and externalizing problems: Potential biological and cognitive pathways. Neurosci Biobehav Rev 2022; 137:104645. [PMID: 35367513 DOI: 10.1016/j.neubiorev.2022.104645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Humans are ubiquitously exposed to neurotoxicants in air pollution, causing increased risk for psychiatric outcomes. Effects of prenatal exposure to air pollution on early emerging behavioral phenotypes that increase risk of psychopathology remain understudied. We review animal models that represent analogues of human behavioral phenotypes that are risk markers for internalizing and externalizing problems (behavioral inhibition, behavioral exuberance, irritability), and identify commonalities among the neural mechanisms underlying these behavioral phenotypes and the neural targets of three types of air pollutants (polycyclic aromatic hydrocarbons, traffic-related air pollutants, fine particulate matter < 2.5 µm). We conclude that prenatal exposure to air pollutants increases risk for behavioral inhibition and irritability through distinct mechanisms, including altered dopaminergic signaling and hippocampal morphology, neuroinflammation, and decreased brain-derived neurotrophic factor expression. Future studies should investigate these effects in human longitudinal studies incorporating complex exposure measurement methods, neuroimaging, and behavioral characterization of temperament phenotypes and neurocognitive processing to facilitate efforts aimed at improving long-lasting developmental benefits for children, particularly those living in areas with high levels of exposure.
Collapse
Affiliation(s)
- Amy E Margolis
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Ran Liu
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vasco A Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruce Ramphal
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David Pagliaccio
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mariah L DeSerisy
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Emily Koe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ena Selmanovic
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Amarelis Raudales
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nur Emanet
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Aurabelle E Quinn
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Beatrice Beebe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brandon L Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia A Rauh
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA; Heilbrunn Department of Population & Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - William P Fifer
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Nathan A Fox
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
6
|
Capitanio JP. Knowledge of Biobehavioral Organization Can Facilitate Better Science: A Review of the BioBehavioral Assessment Program at the California National Primate Research Center. Animals (Basel) 2021; 11:2445. [PMID: 34438902 PMCID: PMC8388628 DOI: 10.3390/ani11082445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Animals vary on intrinsic characteristics such as temperament and stress responsiveness, and this information can be useful to experimentalists for identifying more homogeneous subsets of animals that show consistency in risk for a particular research outcome. Such information can also be useful for balancing experimental groups, ensuring animals within an experiment have similar characteristics. In this review, we describe the BioBehavioral Assessment Program at the California National Primate Research Center, which, since its inception in 2001, has been providing quantitative information on intrinsic characteristics to scientists for subject selection and balancing, and to colony management staff for management purposes. We describe the program and review studies relating to asthma, autism, behavioral inhibition, etc., where the BBA Program was used to select animals. We also review our work, showing that factors such as rearing, ketamine exposure, and prenatal experience can affect biobehavioral organization in ways that some investigators might want to control for in their studies. Attention to intrinsic characteristics of subject populations is consistent with the growing interest in precision medicine and can lead to a reduction in animal numbers, savings in time and money for investigators, and reduced distress for the animals.
Collapse
Affiliation(s)
- John P Capitanio
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| |
Collapse
|