1
|
Llana T, Mendez M, Juan MC, Mendez-Lopez M. Navigational object-location memory assessment in real and virtual environments: A systematic review. Behav Brain Res 2024; 480:115388. [PMID: 39644996 DOI: 10.1016/j.bbr.2024.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Navigational object-location memory (OLM) is a form of spatial memory involving actual or virtual body displacement for repositioning previously encoded objects within an environment. Despite its potential for higher ecological validity measures, navigational OLM has been less frequently assessed than static OLM. The present systematic review aims to characterize the methodology and devices used for OLM assessment in navigational real and virtual environments and synthesize recent literature to offer a comprehensive overview of OLM performance in both pathological and non-pathological adult samples. A search through four different databases was conducted, identifying 39 studies. Most studies assessed navigational OLM in healthy adults by 2-dimensional or 3-dimensional computerized tasks, although immersive Virtual Reality (VR) devices were also frequently employed. Small environments and objects with high-semantic value were predominantly used, with assessment mainly conducted immediately after learning through free-recall tasks. The findings revealed that healthy samples outperformed clinical ones in navigational OLM. Men showed superior performance compared to women when cues or landmarks were used, but this advantage disappeared in their absence. Better results were also noted with shorter intervals between learning and recall. Fewer OLM errors occurred in real environments compared to both immersive and non-immersive VR. Influences of environmental features, object semantics, and participant characteristics on OLM performance were also observed. These results highlight the need for standardized methodologies, the inclusion of a broader age range in populations, and careful control over the devices, environments, and objects used in navigational OLM assessments.
Collapse
Affiliation(s)
- Tania Llana
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain; Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022 Valencia, Spain; Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Aragón, Spain; IIS Aragón, San Juan Bosco, 13, 50009 Zaragoza, Aragón, Spain.
| | - Marta Mendez
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain; Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022 Valencia, Spain; Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Aragón, Spain; IIS Aragón, San Juan Bosco, 13, 50009 Zaragoza, Aragón, Spain.
| | - M-Carmen Juan
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain; Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022 Valencia, Spain; Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Aragón, Spain; IIS Aragón, San Juan Bosco, 13, 50009 Zaragoza, Aragón, Spain.
| | - Magdalena Mendez-Lopez
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain; Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022 Valencia, Spain; Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Aragón, Spain; IIS Aragón, San Juan Bosco, 13, 50009 Zaragoza, Aragón, Spain.
| |
Collapse
|
2
|
Qi Z, Xiong H, Zhuo J, Cao D, Liu H, Shi W, Lang Y, Liu Y, Zhang G, Jiang T. Intracranial EEGs evidenced visual object processing in the human medial temporal lobe subregions. Neuroscience 2024; 555:205-212. [PMID: 39053670 DOI: 10.1016/j.neuroscience.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The perirhinal cortex (PRC) and parahippocampal cortex (PHC) are core regions along the visual dual-stream. The specific functional roles of the PRC and PHC and their interactions with the downstream hippocampus cortex (HPC) are crucial for understanding visual memory. Our research used human intracranial EEGs to study the neural mechanism of the PRC, PHC, and HPC in visual object encoding. Single-regional function analyses found evidence that the PRC, PHC, and HPC are activated ∼100 ms within the broad-gamma band and that the PRC was more strongly activated than either the PHC or the HPC after an object stimulus. Inter-regional analyses showed strong bidirectional interactions of the PRC with both the PHC and HPC in the low-frequency band, whereas the interactions between the PHC and HPC were not significant. These findings demonstrated the core role of the PRC in encoding visual object information and supported the hypothesis of PRC-HPC-ventral object pathway. The recruitment of the PHC and its interaction with the PRC in visual object encoding also provide new insights beyond the traditional dorsal-stream hypothesis.
Collapse
Affiliation(s)
- Zihui Qi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Zhuo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Hainan 570228, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongcui Lang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Yaoling Liu
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Guangming Zhang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
3
|
Georgoudas M, Moraitou D, Poptsi E, Tsardoulias E, Kesanli D, Papaliagkas V, Tsolaki M. The Mixed Role of Sleep and Time of Day in Working Memory Performance of Older Adults with Mild Cognitive Impairment. Healthcare (Basel) 2024; 12:1622. [PMID: 39201180 PMCID: PMC11353340 DOI: 10.3390/healthcare12161622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The importance of night sleep for maintaining good physical and cognitive health is well documented as well as its negative changes during aging. Since Mild Cognitive Impairment (MCI) patients bear additional disturbances in their sleep, this study aimed at examining whether there are potential mixed effects of sleep and afternoon time of day (ToD) on the storage, processing, and updating components of working memory (WM) capacity in older adults with MCI. In particular, the study compared patients' performance in the three working memory components, in two-time conditions: "early in the morning and after night sleep", and "in the afternoon and after many hours since night sleep". The Working Memory Capacity & Updating Task from the R4Alz battery was administered twice to 50 older adults diagnosed with MCI. The repeated measures analysis showed statistically significant higher performance in the morning condition for the working memory updating component (p < 0.001). Based on the findings, it seems that the afternoon ToD condition negatively affects tasks with high cognitive demands such as the WM updating task in MCI patients. These findings could determine the optimal timing for cognitive rehabilitation programs for MCI patients and the necessary sleep duration when they are engaged in cognitively demanding daily activities.
Collapse
Affiliation(s)
- Michael Georgoudas
- IPPS “Neuroscience and Neurodegeneration”, Faculty of Medicine, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
| | - Despina Moraitou
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece; (D.M.); (E.P.)
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124 Thessaloniki, Greece;
- Day Center “Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD)”, 54643 Thessaloniki, Greece
| | - Eleni Poptsi
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece; (D.M.); (E.P.)
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124 Thessaloniki, Greece;
- Day Center “Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD)”, 54643 Thessaloniki, Greece
| | - Emmanouil Tsardoulias
- School of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
| | - Despina Kesanli
- School of Psychology, Faculty of Philosophy, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Magda Tsolaki
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124 Thessaloniki, Greece;
- Day Center “Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD)”, 54643 Thessaloniki, Greece
| |
Collapse
|
4
|
Llana T, Garces-Arilla S, Juan MC, Mendez-Lopez M, Mendez M. An immersive virtual reality-based object-location memory task reveals spatial long-term memory alterations in Long-COVID. Behav Brain Res 2024; 471:115127. [PMID: 38936427 DOI: 10.1016/j.bbr.2024.115127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Object-location memory (OLM) is a type of declarative memory for spatial information and consists of the individual's ability to establish accurate associations between objects and their spatial locations. Long-COVID describes the long-term effects of the COVID-19 disease. Long-COVID patients show medial temporal lobe dysfunction and neuropsychological alterations affecting memory. This study aimed to assess OLM in a group of Long-COVID patients, n=66, and a Control group of healthy individuals with similar age and sex composition, n=21, using an immersive virtual reality (iVR)-based OLM task. We also explored associations between the performance in the iVR-based OLM task and general cognitive function (MoCA), and both verbal (VSTM) and visuospatial (SSTM) span. The Long-COVID group showed fewer correct responses, made more task attempts, and invested more time in the iVR-based OLM task than the Control group. Delayed memory was more severely altered than immediate memory in Long-COVID participants. Better MoCA scores of the Long-COVID group were strongly associated with shorter times to complete the immediate recall of the iVR-based OLM task. Besides, the months elapsed since the COVID-19 infection were slightly associated with fewer correct responses in the immediate and 24-hour recalls. These results corroborate previous findings of memory alterations in the Long-COVID syndrome using an iVR-based OLM task, adding new evidence on spatial memory and long-term memory in this population. Implementing spatial iVR tasks to clinical research may improve our understanding of neuropsychological disorders.
Collapse
Affiliation(s)
- Tania Llana
- Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain.
| | - Sara Garces-Arilla
- Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, Aragón 50009, Spain.
| | - M-Carmen Juan
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/Camino de Vera, s/n, Valencia 46022, Spain.
| | - Magdalena Mendez-Lopez
- Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, Aragón 50009, Spain; IIS Aragón, San Juan Bosco, 13, Zaragoza, Aragón 50009, Spain.
| | - Marta Mendez
- Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, Oviedo, Asturias 33011, Spain.
| |
Collapse
|
5
|
Laczó M, Svatkova R, Lerch O, Martinkovic L, Zuntychova T, Nedelska Z, Horakova H, Vyhnalek M, Hort J, Laczó J. Spatial navigation questionnaires as a supportive diagnostic tool in early Alzheimer's disease. iScience 2024; 27:109832. [PMID: 38779476 PMCID: PMC11108981 DOI: 10.1016/j.isci.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Impaired spatial navigation is early marker of Alzheimer's disease (AD). We examined ability of self- and informant-reported navigation questionnaires to discriminate between clinically and biomarker-defined participants, and associations of questionnaires with navigation performance, regional brain atrophy, AD biomarkers, and biomarker status. 262 participants (cognitively normal, with subjective cognitive decline, amnestic mild cognitive impairment [aMCI], and mild dementia) and their informants completed three navigation questionnaires. Navigation performance, magnetic resonance imaging volume/thickness of AD-related brain regions, and AD biomarkers were measured. Informant-reported questionnaires distinguished between cognitively normal and impaired participants, and amyloid-β positive and negative aMCI. Lower scores were associated with worse navigation performance, greater atrophy in AD-related brain regions, and amyloid-β status. Self-reported questionnaire scores did not distinguish between the groups and were weakly associated with navigation performance. Other associations were not significant. Informant-reported navigation questionnaires may be a screening tool for early AD reflecting atrophy of AD-related brain regions and AD pathology.
Collapse
Affiliation(s)
- Martina Laczó
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Radka Svatkova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Ondrej Lerch
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Lukas Martinkovic
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Terezie Zuntychova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Hana Horakova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jan Laczó
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| |
Collapse
|
6
|
Park B, Kim Y, Park J, Choi H, Kim SE, Ryu H, Seo K. Integrating Biomarkers From Virtual Reality and Magnetic Resonance Imaging for the Early Detection of Mild Cognitive Impairment Using a Multimodal Learning Approach: Validation Study. J Med Internet Res 2024; 26:e54538. [PMID: 38631021 PMCID: PMC11063880 DOI: 10.2196/54538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Early detection of mild cognitive impairment (MCI), a transitional stage between normal aging and Alzheimer disease, is crucial for preventing the progression of dementia. Virtual reality (VR) biomarkers have proven to be effective in capturing behaviors associated with subtle deficits in instrumental activities of daily living, such as challenges in using a food-ordering kiosk, for early detection of MCI. On the other hand, magnetic resonance imaging (MRI) biomarkers have demonstrated their efficacy in quantifying observable structural brain changes that can aid in early MCI detection. Nevertheless, the relationship between VR-derived and MRI biomarkers remains an open question. In this context, we explored the integration of VR-derived and MRI biomarkers to enhance early MCI detection through a multimodal learning approach. OBJECTIVE We aimed to evaluate and compare the efficacy of VR-derived and MRI biomarkers in the classification of MCI while also examining the strengths and weaknesses of each approach. Furthermore, we focused on improving early MCI detection by leveraging multimodal learning to integrate VR-derived and MRI biomarkers. METHODS The study encompassed a total of 54 participants, comprising 22 (41%) healthy controls and 32 (59%) patients with MCI. Participants completed a virtual kiosk test to collect 4 VR-derived biomarkers (hand movement speed, scanpath length, time to completion, and the number of errors), and T1-weighted MRI scans were performed to collect 22 MRI biomarkers from both hemispheres. Analyses of covariance were used to compare these biomarkers between healthy controls and patients with MCI, with age considered as a covariate. Subsequently, the biomarkers that exhibited significant differences between the 2 groups were used to train and validate a multimodal learning model aimed at early screening for patients with MCI among healthy controls. RESULTS The support vector machine (SVM) using only VR-derived biomarkers achieved a sensitivity of 87.5% and specificity of 90%, whereas the MRI biomarkers showed a sensitivity of 90.9% and specificity of 71.4%. Moreover, a correlation analysis revealed a significant association between MRI-observed brain atrophy and impaired performance in instrumental activities of daily living in the VR environment. Notably, the integration of both VR-derived and MRI biomarkers into a multimodal SVM model yielded superior results compared to unimodal SVM models, achieving higher accuracy (94.4%), sensitivity (100%), specificity (90.9%), precision (87.5%), and F1-score (93.3%). CONCLUSIONS The results indicate that VR-derived biomarkers, characterized by their high specificity, can be valuable as a robust, early screening tool for MCI in a broader older adult population. On the other hand, MRI biomarkers, known for their high sensitivity, excel at confirming the presence of MCI. Moreover, the multimodal learning approach introduced in our study provides valuable insights into the improvement of early MCI detection by integrating a diverse set of biomarkers.
Collapse
Affiliation(s)
- Bogyeom Park
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Yuwon Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seong-Eun Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Hokyoung Ryu
- Graduate School of Technology and Innovation Management, Hanyang University, Seoul, Republic of Korea
| | - Kyoungwon Seo
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
7
|
Sánchez-Escudero JP, Galvis-Herrera AM, Sánchez-Trujillo D, Torres-López LC, Kennedy CJ, Aguirre-Acevedo DC, Garcia-Barrera MA, Trujillo N. Virtual Reality and Serious Videogame-Based Instruments for Assessing Spatial Navigation in Alzheimer's Disease: A Systematic Review of Psychometric Properties. Neuropsychol Rev 2024:10.1007/s11065-024-09633-7. [PMID: 38403731 DOI: 10.1007/s11065-024-09633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
Over the past decade, research using virtual reality and serious game-based instruments for assessing spatial navigation and spatial memory in at-risk and AD populations has risen. We systematically reviewed the literature since 2012 to identify and evaluate the methodological quality and risk of bias in the analyses of the psychometric properties of VRSG-based instruments. The search was conducted primarily in July-December 2022 and updated in November 2023 in eight major databases. The quality of instrument development and study design were analyzed in all studies. Measurement properties were defined and analyzed according to COSMIN guidelines. A total of 1078 unique records were screened, and following selection criteria, thirty-seven studies were analyzed. From these studies, 30 instruments were identified. Construct and criterion validity were the most reported measurement properties, while structural validity and internal consistency evidence were the least reported. Nineteen studies were deemed very good in construct validity, whereas 11 studies reporting diagnostic accuracy were deemed very good in quality. Limitations regarding theoretical framework and research design requirements were found in most of the studies. VRSG-based instruments are valuable additions to the current diagnostic toolkit for AD. Further research is required to establish the psychometric performance and clinical utility of VRSG-based instruments, particularly the instrument development, content validity, and diagnostic accuracy for preclinical AD screening scenarios. This review provides a straightforward synthesis of the state of the art of VRSG-based instruments and suggests future directions for research.
Collapse
Affiliation(s)
| | | | | | | | - Cole J Kennedy
- Department of Psychology & Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | | | - Mauricio A Garcia-Barrera
- Department of Psychology & Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Natalia Trujillo
- National College of Public Health, University of Antioquia, Antioquia, Colombia
- Atlantic Fellowship in Equity in Brain Health, Global Brain Health Institute, University of California, San Francisco, CA, USA
- Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| |
Collapse
|
8
|
Catania V, Rundo F, Panerai S, Ferri R. Virtual Reality for the Rehabilitation of Acquired Cognitive Disorders: A Narrative Review. Bioengineering (Basel) 2023; 11:35. [PMID: 38247912 PMCID: PMC10813804 DOI: 10.3390/bioengineering11010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
This review article explores the use of Virtual Reality (VR) technology in cognitive rehabilitation for individuals with neurological conditions, such as stroke, traumatic brain injury, and neurodegenerative diseases. The introduction highlights the challenges posed by cognitive impairments and the limitations of traditional rehabilitation methods. VR is presented as a transformative tool that immerses individuals in interactive environments, offering promising opportunities for enhancing cognitive functions and improving quality of life. This article covers the foundational principles of VR, its applications across different clinical conditions and cognitive domains, and evaluates empirical evidence supporting its efficacy. It also discusses the advantages, limitations, challenges, and ethical considerations in the use of VR for cognitive rehabilitation. This review concludes by exploring future developments, including advancements in VR technology, the integration of Augmented Reality (AR) and artificial intelligence (AI), and the importance of standardized assessment tools for the objective evaluation of rehabilitation outcomes.
Collapse
Affiliation(s)
| | | | | | - Raffaele Ferri
- Units of Psychology I.C. and Unit of Bioinformatics and Statistics, Oasi Research Institute-IRCCS, 94018 Troina, Italy; (V.C.); (F.R.); (S.P.)
| |
Collapse
|
9
|
Ramirez Butavand D, Rodriguez MF, Cifuentes MV, Miranda M, Bauza CG, Bekinschtein P, Ballarini F. Acute and chronic physical activity improves spatial memory in an immersive virtual reality task. iScience 2023; 26:106176. [PMID: 36876135 PMCID: PMC9976459 DOI: 10.1016/j.isci.2023.106176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/11/2022] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Physical activity benefits both fitness and cognition. However, its effect on long-term memory is unclear. In this study, we evaluated the effect of acute and chronic exercise on long-term spatial memory for a new virtual reality task. Participants were immersed in the virtual environment and navigated a wide arena that included target objects. We assessed spatial memory in two conditions (encoded targets separated by a short or long distance) and found that 25 min of cycling after encoding - but not before retrieval - was sufficient to improve the long-term memory retention for the short, but not for the long distance. Furthermore, we found that participants who engaged in regular physical activity showed memory for the short-distance condition whereas controls did not. Thus, physical activity could be a simple way to improve spatial memories.
Collapse
Affiliation(s)
- Daniela Ramirez Butavand
- Instituto De Neurociencia Cognitiva y Traslacional (INCyT), CONICET- Fundación INECO, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Neurociencia Traslacional, Instituto de Biología Celular y Neurociencias “Dr. Eduardo De Robertis” (IBCN), CONICET- Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María F. Rodriguez
- CONICET, PLADEMA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - María V. Cifuentes
- CIC, PLADEMA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Magdalena Miranda
- Instituto De Neurociencia Cognitiva y Traslacional (INCyT), CONICET- Fundación INECO, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Argentina
| | - Cristian García Bauza
- CONICET, PLADEMA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto De Neurociencia Cognitiva y Traslacional (INCyT), CONICET- Fundación INECO, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fabricio Ballarini
- Laboratorio de Neurociencia Traslacional, Instituto de Biología Celular y Neurociencias “Dr. Eduardo De Robertis” (IBCN), CONICET- Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencias de la Vida, ITBA, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
Zhang X, Yang S, Han S, Sun Y, Han M, Zheng X, Li F, Wei Y, Wang Y, Bi J. Differential methylation of circRNA m6A in an APP/PS1 Alzheimer's disease mouse model. Mol Med Rep 2023; 27:55. [PMID: 36660942 PMCID: PMC9879070 DOI: 10.3892/mmr.2023.12942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/25/2022] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurological disease characterized by memory loss and progressive cognitive impairment. The characteristic AD pathologies include extracellular senile plaques formed by β‑amyloid protein deposition, neurofibrillary tangles formed by hyper‑phosphorylation of τ protein and neuronal loss caused by glial cell proliferation. However, the pathogenesis of AD is still unclear. Dysregulation of RNA methylation is associated with biological processes, including neurodevelopment and neurodegenerative disease. N6‑methyladenosine (m6A) is the main modification in eukaryotic RNA and may be associated with the pathophysiology of AD. Circular RNA (circRNA) is a new type of evolutionarily conserved non‑coding RNA without 5'‑cap and 3'‑polyadenylic acid tail. circRNA undergoes m6A RNA methylation and may be involved in the pathogenesis of AD. In the present study, high‑throughput sequencing was performed to assess the degree of circRNA m6A methylation in APP/PS1 AD and C57BL/6 mice. These results suggested that circRNA m6A methylation in AD mice was markedly altered compared to the control group. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis was used to predict associated pathways; genes with different circRNA m6A methylation in AD mice were associated with 'axon guidance', 'long‑term potentiation', 'glutamatergic synapse', 'cholinergic synapse', 'GABAergic synapse' and 'long‑term depression'. Methylated RNA immunoprecipitation reverse transcription‑quantitative PCR demonstrated that among the eight selected circRNA m6A genes, there were five genes that demonstrated significantly increased methylation and three demonstrated significantly decreased methylation. In summary, the present study indicated that circRNA m6A methylation may be associated with pathogenesis of AD.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Suge Yang
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Song Han
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Sun
- Department of Outpatients, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Min Han
- Department of Geriatric Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaolei Zheng
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Fan Li
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yan Wei
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yun Wang
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China,Correspondence to: Dr Yun Wang, Department of Neurological Medicine, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, Shandong 250033, P.R. China, E-mail:
| | - Jianzhong Bi
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
11
|
Silva A, Martínez MC. Spatial memory deficits in Alzheimer's disease and their connection to cognitive maps' formation by place cells and grid cells. Front Behav Neurosci 2023; 16:1082158. [PMID: 36710956 PMCID: PMC9878455 DOI: 10.3389/fnbeh.2022.1082158] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Whenever we navigate through different contexts, we build a cognitive map: an internal representation of the territory. Spatial navigation is a complex skill that involves multiple types of information processing and integration. Place cells and grid cells, collectively with other hippocampal and medial entorhinal cortex neurons (MEC), form a neural network whose activity is critical for the representation of self-position and orientation along with spatial memory retrieval. Furthermore, this activity generates new representations adapting to changes in the environment. Though there is a normal decline in spatial memory related to aging, this is dramatically increased in pathological conditions such as Alzheimer's disease (AD). AD is a multi-factorial neurodegenerative disorder affecting mainly the hippocampus-entorhinal cortex (HP-EC) circuit. Consequently, the initial stages of the disease have disorientation and wandering behavior as two of its hallmarks. Recent electrophysiological studies have linked spatial memory deficits to difficulties in spatial information encoding. Here we will discuss map impairment and remapping disruption in the HP-EC network, as a possible circuit mechanism involved in the spatial memory and navigation deficits observed in AD, pointing out the benefits of virtual reality as a tool for early diagnosis and rehabilitation.
Collapse
Affiliation(s)
- Azul Silva
- Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay”- CONICET (IFIBIO), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Cecilia Martínez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay”- CONICET (IFIBIO), Universidad de Buenos Aires, Buenos Aires, Argentina,Facultad de Ciencias Exactas y Naturales, Departamento de Biología Molecular y Celular “Dr. Héctor Maldonado”, Universidad de Buenos Aires, Buenos Aires, Argentina,*Correspondence: María Cecilia Martínez,
| |
Collapse
|