1
|
Zhang YK, Li M, Ruan L, An P. A tetrazole-ene photoactivatable fluorophore with improved brightness and stability in protic solution. Chem Commun (Camb) 2022; 58:10404-10407. [PMID: 36039909 DOI: 10.1039/d2cc03482d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The pyrazoline fluorophore, generated by photoinduced tetrazole-ene cycloaddition, shows faint fluorescence in protic solvents. To suppress this fluorescence-quenching, we rationally designed a series of substituted diaryl tetrazoles at the N-side phenyl ring to produce a tetrazole-ene based photoactivatable fluorophore. Spectroscopic and cellular imaging studies demonstrated that the version of the fluorophore with a bis(trifluoromethyl)benzene substituent exhibited significantly enhanced brightness and photostability.
Collapse
Affiliation(s)
- Yi-Kang Zhang
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| | - Meng Li
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| | - Lan Ruan
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| | - Peng An
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
2
|
Monti M, Giannini L, Tadiello L, Guerra S, Papagni A, Vaghi L. Thermally Activable Bistetrazoles for Elastomers Crosslinking. Polymers (Basel) 2022; 14:polym14142919. [PMID: 35890695 PMCID: PMC9323196 DOI: 10.3390/polym14142919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Sulfur vulcanization is the most used method for curing of natural and synthetic rubbers. The crosslinking degree achieved is usually controlled by adding proper quantities of accelerants, activators, co-activators, retardants, and inhibitors, and influences the hardness, elasticity, hysteresis of elastomers and, consequently, the properties and behavior of the materials that incorporate them. Despite the fine tuning pursued over the years, sulfur crosslinking is still difficult to control both in terms of degree and homogeneity of cross-link. Addition of thermally activable bifunctional reagents able to crosslink the polymer matrix through covalent bonds could be a strategy to modulate and control finely the reticulation grade of elastomers. Tetrazoles can form highly reactive nitrilimines by thermal treatment at appropriate temperature, which can react with the vinyl double bonds present in the rubber. In this work a set of bis-tetrazoles were synthesized and those with the right activation temperatures were used for the curing of styrene-butadiene rubber, acting both as single crosslinkers and together with classic sulfur-based ones. The addition of bistetrazoles simplified and made more efficient the compounding process, allowing to prolong the mixing until optimum dispersion and homogeneity were obtained. Moreover, they led to an improvement in the hysteretic properties of the compound and to the reduction of the non-linearity of the dynamic behavior (Payne effect).
Collapse
Affiliation(s)
- Mauro Monti
- Department of Materials Science, University of Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy; (M.M.); (A.P.)
| | - Luca Giannini
- Pirelli Tyre S.p.A., Viale Sarca 222, 20126 Milano, Italy; (L.G.); (L.T.); (S.G.)
| | - Luciano Tadiello
- Pirelli Tyre S.p.A., Viale Sarca 222, 20126 Milano, Italy; (L.G.); (L.T.); (S.G.)
| | - Silvia Guerra
- Pirelli Tyre S.p.A., Viale Sarca 222, 20126 Milano, Italy; (L.G.); (L.T.); (S.G.)
| | - Antonio Papagni
- Department of Materials Science, University of Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy; (M.M.); (A.P.)
| | - Luca Vaghi
- Department of Materials Science, University of Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy; (M.M.); (A.P.)
- Correspondence:
| |
Collapse
|
3
|
Xiao M, Zhang YK, Li R, Li S, Wang D, An P. Photoactivatable Fluorogenic Azide-Alkyne Click Reaction: A Dual-Activation Fluorescent Probe. Chem Asian J 2022; 17:e202200634. [PMID: 35819362 DOI: 10.1002/asia.202200634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Aryl azide and diaryl tetrazole are both photoactive molecules, which can form nitrene and nitrile imine intermediates respectively by photolysis. Depending on the new finding that the azide can suppress the photolysis of tetrazole in the azide-tetrazole conjugated system, we developed aryl azide-tetrazole probes for the photoactivatable fluorogenic azide alkyne click (PFAAC) reaction, in which the aryl azide-tetrazole probes were not phoroactivatable fluorogenic itself, but the triazole products after click reaction were prefluorophore that can be activated by light. Therefore, in PFAAC chemistry, the fluorescent probes can be activated by two orthogonal events: azide-alkyne click reaction and light, which leads to spatiotemporal resolution and high signal-to-noise ratio. This PFAAC process was proved in vitro by copper catalyzed or strain-promoted azide-alkyne reactions and in live cells by spatiotemporally controlled organelle imaging. By incorporation a linker to the azide-tetrazole conjugate, this PFAAC chemistry could covalently label extra probes to the biomolecules and spatiotemporally detecting this process by photoinduced fluorescence.
Collapse
Affiliation(s)
| | | | | | | | - Di Wang
- Yunnan University, chemistry, CHINA
| | - Peng An
- Yunnan University, school of chemical science and technology, South Outer Ring Road, 650500, Kunming, CHINA
| |
Collapse
|
4
|
Vaghi L, Monti M, Marelli M, Motto E, Papagni A, Cipolla L. Photoinduced Porcine Gelatin Cross-Linking by Homobi- and Homotrifunctional Tetrazoles. Gels 2021; 7:124. [PMID: 34449602 PMCID: PMC8395868 DOI: 10.3390/gels7030124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Gelatin is a costless polypeptide material of natural origin, able to form hydrogels that are potentially useful in biomaterial scaffold design for drug delivery, cell cultures, and tissue engineering. However, gelatin hydrogels are unstable at physiological conditions, losing their features only after a few minutes at 37 °C. Accordingly, treatments to address this issue are of great interest. In the present work, we propose for the first time the use of bi- and trifunctional tetrazoles, most of them unknown to date, for photoinduced gelatin cross-linking towards the production of physiologically stable hydrogels. Indeed, after UV-B irradiation, aryl tetrazoles generate a nitrilimine intermediate that is reactive towards different functionalities, some of them constitutively present in the amino acid side chains of gelatin. The efficacy of the treatment strictly depends on the structure of the cross-linking agent used, and substantial improved stability was observed by switching from bifunctional to trifunctional cross-linkers.
Collapse
Affiliation(s)
- Luca Vaghi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano—Bicocca, via R. Cozzi 55, 20125 Milano, Italy;
| | - Mauro Monti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano—Bicocca, via R. Cozzi 55, 20125 Milano, Italy;
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR-SCITEC, Sede Fantoli, via Fantoli 16/15, 20138 Milano, Italy;
| | - Elisa Motto
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano—Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Antonio Papagni
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano—Bicocca, via R. Cozzi 55, 20125 Milano, Italy;
| | - Laura Cipolla
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano—Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| |
Collapse
|
5
|
Zhang F, Chen Z, Cheung CW, Ma J. Aryl Diazonium
Salt‐Triggered
Cyclization and Cycloaddition Reactions: Past, Present, and Future. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000270] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fa‐Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| | - Zhen Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| | - Jun‐An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| |
Collapse
|
6
|
Livingstone K, Bertrand S, Mowat J, Jamieson C. Metal-free C-C bond formation via coupling of nitrile imines and boronic acids. Chem Sci 2019; 10:10412-10416. [PMID: 32110332 PMCID: PMC6988605 DOI: 10.1039/c9sc03032h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
The challenges of developing sustainable methods of carbon-carbon bond formation remains a topic of considerable importance in synthetic chemistry. Capitalizing on the highly reactive nature of the nitrile imine 1,3-dipole, we have developed a novel metal-free coupling of this species with aryl boronic acids. Photochemical generation of a nitrile imine intermediate and trapping with a palette of boronic acids enabled rapid and facile access to a broad library of more than 25 hydrazone derivatives in up to 92% yield, forming a carbon-carbon bond in a metal free fashion. This represents the first reported example of direct reaction between boronic acids and a 1,3-dipole.
Collapse
Affiliation(s)
- Keith Livingstone
- Department of Pure and Applied Chemistry , University of Strathclyde , 295 Cathedral St , Glasgow G1 1XL , UK .
| | - Sophie Bertrand
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road, Stevenage , Hertfordshire SG1 2NY , UK
| | - Jenna Mowat
- Department of Pure and Applied Chemistry , University of Strathclyde , 295 Cathedral St , Glasgow G1 1XL , UK .
| | - Craig Jamieson
- Department of Pure and Applied Chemistry , University of Strathclyde , 295 Cathedral St , Glasgow G1 1XL , UK .
| |
Collapse
|
7
|
Abstract
The bioorthogonal reaction toolbox contains approximately two-dozen unique chemistries that permit selective tagging and probing of biomolecules. Over the past two decades, significant effort has been devoted to optimizing and discovering bioorthogonal reagents that are faster, fluorogenic, and orthogonal to the already existing bioorthogonal repertoire. Conversely, efforts to explore bioorthogonal reagents whose reactivity can be controlled in space and/or time are limited. The "activatable" bioorthogonal reagents that do exist are often unimodal, meaning that their reagent's activation method cannot be easily modified to enable activation with red-shifted wavelengths, enzymes, or metabolic-byproducts and ions like H2O2 or Fe3+. Here, we summarize the available activatable bioorthogonal reagents with a focus on our recent addition: modular caged cyclopropenes. We designed caged cyclopropenes to be unreactive to their bioorthogonal partner until they are activated through the removal of the cage by light, an enzyme, or another reaction partner. To accomplish this, their structure includes a nitrogen atom at the cyclopropene C3 position that is decorated with the desired caging group through a carbamate linkage. This 3-N cyclopropene system can allow control of cyclopropene reactivity using a multitude of already available photo- and enzyme-caging groups. Additionally, this cyclopropene scaffold can enable metabolic-byproduct or ion activation of bioorthogonal reactions.
Collapse
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
8
|
Müller R, Feuerstein TJ, Trouillet V, Bestgen S, Roesky PW, Barner-Kowollik C. Spatially-Resolved Multiple Metallopolymer Surfaces by Photolithography. Chemistry 2018; 24:18933-18943. [PMID: 30357939 DOI: 10.1002/chem.201803966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/19/2022]
Abstract
A tetrazole-based photoligation protocol for the spatially-resolved encoding of various defined metallopolymers onto solid surfaces is introduced. By using this approach, fabrication of bi- and trifunctional metallopolymer surfaces with different metal combinations were achieved. Specifically, α-ω-functional copolymers containing bipyridine as well as triphenylphosphine ligands were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization, and subsequently metal loaded to afford metallopolymers of the widely-used metals gold, palladium, and platinum. Spatially-resolved surface attachment was achieved by means of a nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) based photoligation protocol, exploiting tethered tetrazoles and metallopolymers equipped with a maleimide chain terminus. Metallopolymer coated surfaces with three different metals were prepared and characterized by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and spatially-resolved X-ray photoelectron spectroscopy (XPS) mapping, supporting the preserved chemical composition of the surface-bound metallopolymers. The established photochemical technology platform for arbitrary spatially-resolved metallopolymer surface designs enables the patterning of multiple metallopolymers onto solid substrates. This allows for the assembly of designer metallopolymer substrates.
Collapse
Affiliation(s)
- Rouven Müller
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128, Karlsruhe, Germany
| | - Thomas J Feuerstein
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sebastian Bestgen
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128, Karlsruhe, Germany.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
9
|
Buten C, Lamping S, Körsgen M, Arlinghaus HF, Jamieson C, Ravoo BJ. Surface Functionalization with Carboxylic Acids by Photochemical Microcontact Printing and Tetrazole Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2132-2138. [PMID: 29334733 DOI: 10.1021/acs.langmuir.7b03678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper, we show that carboxylic acid-functionalized molecules can be patterned by photochemical microcontact printing on tetrazole-terminated self-assembled monolayers. Upon irradiation, tetrazoles eliminate nitrogen to form highly reactive nitrile imines, which can be ligated with several different nucleophiles, carboxylic acids being the most reactive. As a proof of concept, we immobilized trifluoroacetic acid to monitor the reaction with X-ray photoelectron spectroscopy. Moreover, we also immobilized peptides and fabricated carbohydrate-lectin as well as biotin-streptavidin microarrays using this method. Surface-patterning was demonstrated by fluorescence microscopy and time-of-flight secondary ion mass spectrometry.
Collapse
Affiliation(s)
- Christoph Buten
- Organic-Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Sebastian Lamping
- Organic-Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Martin Körsgen
- Physics Institute, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Physics Institute, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Bart Jan Ravoo
- Organic-Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
10
|
Remy R, Bochet CG. Application of Photoclick Chemistry for the Synthesis of Pyrazoles via 1,3-Dipolar Cycloaddition between Alkynes and Nitrilimines Generated In Situ. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Richard Remy
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 CH-1700 Fribourg Switzerland
| | - Christian G. Bochet
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 CH-1700 Fribourg Switzerland
| |
Collapse
|
11
|
Liu L, Feng S. Ligand-free Cu(ii)-mediated aerobic oxidations of aldehyde hydrazones leading to N,N'-diacylhydrazines and 1,3,4-oxadiazoles. Org Biomol Chem 2017; 15:2585-2592. [PMID: 28266668 DOI: 10.1039/c7ob00042a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A Cu(ii)-mediated synthesis of N,N'-diacylhydrazines and 1,3,4-oxadiazoles from aldehyde hydrazones has been developed. This is the first time that the synthesis of N,N'-diacylhydrazines and 1,3,4-oxadiazoles using N,N-dimethylamides as the acylation reagent and O2 in air as the oxidation reagent is reported. These reactions offered several advantages including simple workups, ligand-free inexpensive metal salts as mediators, high yields, and wide scope of substrates.
Collapse
Affiliation(s)
- Lei Liu
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China.
| | - Suliu Feng
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China.
| |
Collapse
|
12
|
Herner A, Marjanovic J, Lewandowski TM, Marin V, Patterson M, Miesbauer L, Ready D, Williams J, Vasudevan A, Lin Q. 2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification. J Am Chem Soc 2016; 138:14609-14615. [PMID: 27740749 PMCID: PMC5115731 DOI: 10.1021/jacs.6b06645] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photoaffinity labels are powerful tools for dissecting ligand-protein interactions, and they have a broad utility in medicinal chemistry and drug discovery. Traditional photoaffinity labels work through nonspecific C-H/X-H bond insertion reactions with the protein of interest by the highly reactive photogenerated intermediate. Herein, we report a new photoaffinity label, 2-aryl-5-carboxytetrazole (ACT), that interacts with the target protein via a unique mechanism in which the photogenerated carboxynitrile imine reacts with a proximal nucleophile near the target active site. In two distinct case studies, we demonstrate that the attachment of ACT to a ligand does not significantly alter the binding affinity and specificity of the parent drug. Compared with diazirine and benzophenone, two commonly used photoaffinity labels, in two case studies ACT showed higher photo-cross-linking yields toward their protein targets in vitro based on mass spectrometry analysis. In the in situ target identification studies, ACT successfully captured the desired targets with an efficiency comparable to the diazirine. We expect that further development of this class of photoaffinity labels will lead to a broad range of applications across target identification, and validation and elucidation of the binding site in drug discovery.
Collapse
Affiliation(s)
- András Herner
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Jasmina Marjanovic
- Discovery Chemistry and Technology, AbbVie Inc. , North Chicago, Illinois 60064-6101, United States
| | - Tracey M Lewandowski
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Violeta Marin
- Discovery Chemistry and Technology, AbbVie Inc. , North Chicago, Illinois 60064-6101, United States
| | - Melanie Patterson
- Discovery Chemistry and Technology, AbbVie Inc. , North Chicago, Illinois 60064-6101, United States
| | - Laura Miesbauer
- Discovery Chemistry and Technology, AbbVie Inc. , North Chicago, Illinois 60064-6101, United States
| | - Damien Ready
- Discovery Chemistry and Technology, AbbVie Inc. , North Chicago, Illinois 60064-6101, United States
| | - Jon Williams
- Discovery Chemistry and Technology, AbbVie Inc. , North Chicago, Illinois 60064-6101, United States
| | - Anil Vasudevan
- Discovery Chemistry and Technology, AbbVie Inc. , North Chicago, Illinois 60064-6101, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| |
Collapse
|
13
|
Herner A, Lin Q. Photo-Triggered Click Chemistry for Biological Applications. Top Curr Chem (Cham) 2016; 374:1. [PMID: 27397964 PMCID: PMC4935935 DOI: 10.1007/s41061-015-0002-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022]
Abstract
In the last decade and a half, numerous bioorthogonal reactions have been developed with a goal to study biological processes in their native environment, i.e., in living cells and animals. Among them, the photo-triggered reactions offer several unique advantages including operational simplicity with the use of light rather than toxic metal catalysts and ligands, and exceptional spatiotemporal control through the application of an appropriate light source with pre-selected wavelength, light intensity and exposure time. While the photoinduced reactions have been studied extensively in materials research, e.g., on macromolecular surface, the adaptation of these reactions for chemical biology applications is still in its infancy. In this chapter, we review the recent efforts in the discovery and optimization the photo-triggered bioorthogonal reactions, with a focus on those that have shown broad utility in biological systems. We discuss in each cases the chemical and mechanistic background, the kinetics of the reactions and the biological applicability together with the limiting factors.
Collapse
Affiliation(s)
- András Herner
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
14
|
Zhao S, Dai J, Hu M, Liu C, Meng R, Liu X, Wang C, Luo T. Photo-induced coupling reactions of tetrazoles with carboxylic acids in aqueous solution: application in protein labelling. Chem Commun (Camb) 2016; 52:4702-5. [DOI: 10.1039/c5cc10445a] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coupling reactions of diaryltetrazoles with carboxylic acids under UV irradiation were investigated. Application of these transformations in chemical biology was demonstrated in photo-labelling the proteinogenic carboxylic acids in purified proteins, cell lysates and living cells.
Collapse
Affiliation(s)
- Shan Zhao
- Peking-Tsinghua Center for Life Sciences
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - Jianye Dai
- Peking-Tsinghua Center for Life Sciences
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - Mo Hu
- Beijing National Laboratory for Molecular Science (BNLMS)
- College of Chemistry and Molecular Engineering
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Chang Liu
- Beijing National Laboratory for Molecular Science (BNLMS)
- College of Chemistry and Molecular Engineering
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Rong Meng
- Beijing National Laboratory for Molecular Science (BNLMS)
- College of Chemistry and Molecular Engineering
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xiaoyun Liu
- Beijing National Laboratory for Molecular Science (BNLMS)
- College of Chemistry and Molecular Engineering
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - Tuoping Luo
- Peking-Tsinghua Center for Life Sciences
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| |
Collapse
|
15
|
Merkel M, Peewasan K, Arndt S, Ploschik D, Wagenknecht HA. Copper-Free Postsynthetic Labeling of Nucleic Acids by Means of Bioorthogonal Reactions. Chembiochem 2015; 16:1541-53. [DOI: 10.1002/cbic.201500199] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/25/2022]
|
16
|
Zhu B, Ge J, Yao SQ. Developing new chemical tools for DNA methyltransferase 1 (DNMT 1): A small-molecule activity-based probe and novel tetrazole-containing inhibitors. Bioorg Med Chem 2015; 23:2917-27. [DOI: 10.1016/j.bmc.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
|
17
|
Nucleophilic trapping nitrilimine generated by photolysis of diaryltetrazole in aqueous phase. Molecules 2013; 19:306-15. [PMID: 24378969 PMCID: PMC6271683 DOI: 10.3390/molecules19010306] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 11/16/2022] Open
Abstract
Nitrilimine generated by photolysis of diaryltetrazole in aqueous phase under mild conditions was trapped by nucleophiles including amines and thioalcohols. The representative products were characterized, while products with all 20 natural amino acids and a peptide were observed by MALDI-TOF mass spectroscopy. Competitive studies showed that this reaction also occurred in the presence of acrylamide. These results provided new information for understanding the potential side reactions when tetrazole-alkene pairs were used as a bioorthogonal reaction in labeling proteins and related studies in buffered systems.
Collapse
|
18
|
|
19
|
de Hoog HPM, Nallani M, Liedberg B. A facile and fast method for the functionalization of polymersomes by photoinduced cycloaddition chemistry. Polym Chem 2012. [DOI: 10.1039/c1py00413a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Lim RKV, Lin Q. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Acc Chem Res 2011; 44:828-39. [PMID: 21609129 DOI: 10.1021/ar200021p] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Visualization in biology has been greatly facilitated by the use of fluorescent proteins as in-cell probes. The genes coding for these wavelength-tunable proteins can be readily fused with the DNA coding for a protein of interest, which enables direct monitoring of natural proteins in real time inside living cells. Despite their success, however, fluorescent proteins have limitations that have only begun to be addressed in the past decade through the development of bioorthogonal chemistry. In this approach, a very small bioorthogonal tag is embedded within the basic building blocks of the cell, and then a variety of external molecules can be selectively conjugated to these pretagged biomolecules. The result is a veritable palette of biophysical probes for the researcher to choose from. In this Account, we review our progress in developing a photoinducible, bioorthogonal tetrazole-alkene cycloaddition reaction ("photoclick chemistry") and applying it to probe protein dynamics and function in live cells. The work described here summarizes the synthesis, structure, and reactivity studies of tetrazoles, including their optimization for applications in biology. Building on key insights from earlier reports, our initial studies of the reaction have revealed full water compatibility, high photoactivation quantum yield, tunable photoactivation wavelength, and broad substrate scope; an added benefit is the formation of fluorescent cycloadducts. Subsequent studies have shown fast reaction kinetics (up to 11.0 M(-1) s(-1)), with the rate depending on the HOMO energy of the nitrile imine dipole as well as the LUMO energy of the alkene dipolarophile. Moreover, through the use of photocrystallography, we have observed that the photogenerated nitrile imine adopts a bent geometry in the solid state. This observation has led to the synthesis of reactive, macrocyclic tetrazoles that contain a short "bridge" between two flanking phenyl rings. This photoclick chemistry has been used to label proteins rapidly (within ∼1 min) both in vitro and in E. coli . To create an effective interface with biology, we have identified both a metabolically incorporable alkene amino acid, homoallylglycine, and a genetically encodable tetrazole amino acid, p-(2-tetrazole)phenylalanine. We demonstrate the utility of these two moieties, respectively, in spatiotemporally controlled imaging of newly synthesized proteins and in site-specific labeling of proteins. Additionally, we demonstrate the use of the photoclick chemistry to perturb the localization of a fluorescent protein in mammalian cells.
Collapse
Affiliation(s)
- Reyna K. V. Lim
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
21
|
Zheng SL, Wang Y, Yu Z, Lin Q, Coppens P. Direct observation of a photoinduced nonstabilized nitrile imine structure in the solid state. J Am Chem Soc 2010; 131:18036-7. [PMID: 19928921 DOI: 10.1021/ja9094523] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the direct observation of a bent geometry for a nonstabilized nitrile imine in a metal-coordination crystal. The photoinduced tetrazole ring rupture to release N(2) appears to depend on the size of voids around the N(3)-N(4) bond in the crystal lattice. We further observed the selective formation of the 1,3-addition product when a reactive nitrile imine was photogenerated in water. Overall, the bent nitrile imine geometry agrees with the 1,3-dipolar structure, a transient reactive species that mediates the photoinduced 1,3-dipolar cycloaddition in the aqueous medium.
Collapse
Affiliation(s)
- Shao-Liang Zheng
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
22
|
Song W, Wang Y, Qu J, Madden M, Lin Q. A Photoinducible 1,3-Dipolar Cycloaddition Reaction for Rapid, Selective Modification of Tetrazole-Containing Proteins. Angew Chem Int Ed Engl 2008; 47:2832-5. [DOI: 10.1002/anie.200705805] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Song W, Wang Y, Qu J, Madden M, Lin Q. A Photoinducible 1,3-Dipolar Cycloaddition Reaction for Rapid, Selective Modification of Tetrazole-Containing Proteins. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705805] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Léavai A. Synthesis of 2-pyrazolines by the reactions of α,β-unsaturated aldehydes, ketones, and esters with diazoalkanes, nitrile imines, and hydrazines. J Heterocycl Chem 2002. [DOI: 10.1002/jhet.5570390101] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Stereoselective Intramolecular 1,3-Dipolar Cycloadditions. STEREOSELECTIVE HETEROCYCLIC SYNTHESIS III 2001. [DOI: 10.1007/3-540-44726-1_1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
|
27
|
Strauss A, Otto HH. 1, 3-Cycloadditions to Highly Substituted, Strained Double Bonds: Spiro ?-lactams from ?-methylidene-?-lactams by reactions with diphenylnitrilimine, acetonitrile oxide, nitrones, and diazomethane. Helv Chim Acta 1997. [DOI: 10.1002/hlca.19970800606] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
L'abbé G, Emmers S, Dehaen W, Dyall LK. 5-Chloropyrazole-4-carbaldehydes as synthons for intramolecular 1,3-dipolar cycloadditions. ACTA ACUST UNITED AC 1994. [DOI: 10.1039/p19940002553] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Chetoni F, Da Settimo F, La Motta C, Primofiore G. Synthesis of novel 1-aryl[1]benzoxepino[5,4-c]pyrazole and [1]benzoxepino[5,4-d]pyrimidine derivatives. J Heterocycl Chem 1993. [DOI: 10.1002/jhet.5570300632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
|
31
|
Garanti L, Zecchi G, Bruché L. Synthesis of pyrazolo[1,5-a][4,1]benzoxazepinesviaintramolecular nitrilimine cycloaddition. J Heterocycl Chem 1993. [DOI: 10.1002/jhet.5570300251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Shimizu T, Hayashi Y, Miki M, Teramura K. Preparation of pyrazolo[5,1-c][1,4]benzoxazines by intramolecular [3++ 2] cycloaddition reaction of hydrazonium chlorides with alkenes. J Heterocycl Chem 1990. [DOI: 10.1002/jhet.5570270629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Janietz D, Rudorf WD. [1]Benzopyrano[4,3-c]pyrazoles by intramolecular nitrile imine addition to acetylenes. Tetrahedron 1989. [DOI: 10.1016/s0040-4020(01)80030-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Weinberg P, Grummt UW, Csongar C. Photochemie von Bis-2H-tetrazolen. V. Kurzzeitspektroskopischer Nachweis von Bisnitriliminen. ACTA ACUST UNITED AC 1988. [DOI: 10.1002/prac.19883300607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Janietz D, Khoudary K, Rudorf WD. 3-Substituierte 4H-Pyrazolo[5,1-c][1,4]benzoxazine durch intramolekulare Nitriliminaddition. ACTA ACUST UNITED AC 1987. [DOI: 10.1002/prac.19873290227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Bhattacharyya K, Ramaiah D, Das P, George M. Flash photolysis studies of nitrile imines and related intermediates photogenerated from sydnones and tetrazoles in fluid solutions. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0047-2670(87)87063-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Meier H, Heimgartner H. Intramolekulare 1,3-dipolare Cycloadditionen mit alkenyl-substituierten 3,4-Diarylsydnonen. Helv Chim Acta 1986. [DOI: 10.1002/hlca.19860690421] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|