1
|
Moussa AY, Luo J, Xu B. Insights into Chemical Diversity and Potential Health-Promoting Effects of Ferns. PLANTS (BASEL, SWITZERLAND) 2024; 13:2668. [PMID: 39339643 PMCID: PMC11434777 DOI: 10.3390/plants13182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The scientific community is focusing on how to enhance human health and immunity through functional foods, and dietary supplements are proven to have a positive as well as a protective effect against infectious and chronic diseases. Ferns act as a taxonomical linkage between higher and lower plants and are endowed with a wide chemical diversity not subjected to sufficient scrutinization before. Even though a wealth of traditional medicinal fern uses were recorded in Chinese medicine, robust phytochemical and biological investigations of these plants are lacking. Herein, an extensive search was conducted using the keywords ferns and compounds, ferns and NMR, ferns and toxicity, and the terms ferns and chemistry, lignans, Polypodiaceae, NMR, isolation, bioactive compounds, terpenes, phenolics, phloroglucinols, monoterpenes, alkaloids, phenolics, and fatty acids were utilized with the Boolean operators AND, OR, and NOT. Databases such as PubMed, Web of Science, Science Direct, Scopus, Google Scholar, and Reaxys were utilized to reveal a wealth of information regarding fern chemistry and their health-promoting effects. Terpenes followed by phenolics represented the largest number of isolated active compounds. Regarding the neuroprotective effects, Psilotium, Polypodium, and Dryopteris species possessed as their major phenolics component unique chemical moieties including catechins, procyanidins, and bioflavonoids. In this updated chemical review, the pharmacological and chemical aspects of ferns are compiled manifesting their chemical diversity in the last seven years (2017-2024) together with a special focus on their nutritive and potential health-promoting effects.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| |
Collapse
|
2
|
Little RF, Trottmann F, Hashizume H, Preissler M, Unger S, Sawa R, Kries H, Pidot S, Igarashi M, Hertweck C. Analysis of the Valgamicin Biosynthetic Pathway Reveals a General Mechanism for Cyclopropanol Formation across Diverse Natural Product Scaffolds. ACS Chem Biol 2024; 19:660-668. [PMID: 38358369 DOI: 10.1021/acschembio.3c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Cyclopropanol rings are highly reactive and may function as molecular "warheads" that affect natural product bioactivity. Yet, knowledge on their biosynthesis is limited. Using gene cluster analyses, isotope labeling, and in vitro enzyme assays, we shed first light on the biosynthesis of the cyclopropanol-substituted amino acid cleonine, a residue in the antimicrobial depsipeptide valgamicin C and the cytotoxic glycopeptide cleomycin A2. We decipher the biosynthetic origin of valgamicin C and show that the cleonine cyclopropanol ring is derived from dimethylsulfoniopropionate (DMSP). Furthermore, we demonstrate that part of the biosynthesis is analogous to the formation of malleicyprol polyketides in pathogenic bacteria. By genome mining and metabolic profiling, we identify the potential to produce cyclopropanol rings in other bacterial species. Our results reveal a general mechanism for cyclopropyl alcohol biosynthesis across diverse natural products that may be harnessed for bioengineering and drug discovery.
Collapse
Affiliation(s)
- Rory F Little
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Hideki Hashizume
- Laboratory of Microbiology, Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Miriam Preissler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sandra Unger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ryuichi Sawa
- Laboratory of Molecular Structure Analysis, Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hajo Kries
- Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sacha Pidot
- Department of Microbiology and Immunology, Doherty Institute, 792 Elizabeth Street, Melbourne 3000, Australia
| | - Masayuki Igarashi
- Laboratory of Microbiology, Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Appendino G, Gaeta S. Tigliane Diterpenoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 125:1-189. [PMID: 39546131 DOI: 10.1007/978-3-031-67180-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The distribution, chemistry, and molecular bioactivity of tiglianes are reviewed from the very beginning of the studies on these diterpenoids, summarizing their clinical and toxicological literature mostly in its more recent and controversial aspects, and critically analyzing various proposals for their biosynthesis.
Collapse
Affiliation(s)
- Giovanni Appendino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani, 2, 28100, Novara, Italy.
| | - Simone Gaeta
- Research & Development-Chemistry Research, QBiotics Group Limited, 165, Moggill Road, Taringa, QLD, 4068, Australia
| |
Collapse
|
4
|
Hu L, Gao H, Hu Y, Lv X, Wu Y, Lu G. Computational insights into strain-increase allylborations for alkylidenecyclopropanes. Chem Commun (Camb) 2022; 58:7034-7037. [DOI: 10.1039/d2cc02264h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origins of reactivity of strain-increase allylborations were computationally investigated. The low reactivity of vinylcyclopropyl boronates is due to weak electronic interactions between benzaldehyde and allylboronates. By increasing the acidity...
Collapse
|
5
|
Trottmann F, Franke J, Richter I, Ishida K, Cyrulies M, Dahse H, Regestein L, Hertweck C. Cyclopropanol Warhead in Malleicyprol Confers Virulence of Human- and Animal-Pathogenic Burkholderia Species. Angew Chem Int Ed Engl 2019; 58:14129-14133. [PMID: 31353766 PMCID: PMC6790655 DOI: 10.1002/anie.201907324] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/20/2019] [Indexed: 12/16/2022]
Abstract
Burkholderia species such as B. mallei and B. pseudomallei are bacterial pathogens causing fatal infections in humans and animals (glanders and melioidosis), yet knowledge on their virulence factors is limited. While pathogenic effects have been linked to a highly conserved gene locus (bur/mal) in the B. mallei group, the metabolite associated to the encoded polyketide synthase, burkholderic acid (syn. malleilactone), could not explain the observed phenotypes. By metabolic profiling and molecular network analyses of the model organism B. thailandensis, the primary products of the cryptic pathway were identified as unusual cyclopropanol-substituted polyketides. First, sulfomalleicyprols were identified as inactive precursors of burkholderic acid. Furthermore, a highly reactive upstream metabolite, malleicyprol, was discovered and obtained in two stabilized forms. Cell-based assays and a nematode infection model showed that the rare natural product confers cytotoxicity and virulence.
Collapse
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Jakob Franke
- Institute of Organic Chemistry, BMWZLeibniz University Hannover30167HannoverGermany
| | - Ingrid Richter
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Michael Cyrulies
- Department Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology (HKI)07745JenaGermany
| | - Hans‐Martin Dahse
- Department Infection BiologyLeibniz Institute for Natural Product Research and Infection Biology (HKI)07745JenaGermany
| | - Lars Regestein
- Department Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology (HKI)07745JenaGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
- Natural Product ChemistryFaculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
6
|
Trottmann F, Franke J, Richter I, Ishida K, Cyrulies M, Dahse H, Regestein L, Hertweck C. Cyclopropanol Warhead in Malleicyprol Confers Virulence of Human‐ and Animal‐Pathogenic
Burkholderia
Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Jakob Franke
- Institute of Organic Chemistry, BMWZ Leibniz University Hannover 30167 Hannover Germany
| | - Ingrid Richter
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Michael Cyrulies
- Department Bio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology (HKI) 07745 Jena Germany
| | - Hans‐Martin Dahse
- Department Infection Biology Leibniz Institute for Natural Product Research and Infection Biology (HKI) 07745 Jena Germany
| | - Lars Regestein
- Department Bio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology (HKI) 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
- Natural Product Chemistry Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
7
|
Ueoka R, Bortfeld-Miller M, Morinaka BI, Vorholt JA, Piel J. Toblerols: Cyclopropanol-Containing Polyketide Modulators of Antibiosis in Methylobacteria. Angew Chem Int Ed Engl 2017; 57:977-981. [PMID: 29112783 DOI: 10.1002/anie.201709056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 11/11/2022]
Abstract
Trans-AT polyketide synthases (PKSs) are a family of biosynthetically versatile modular type I PKSs that generate bioactive polyketides of impressive structural diversity. In this study, we detected, in the genome of several bacteria a cryptic, architecturally unusual trans-AT PKS gene cluster which eluded automated PKS prediction. Genomic mining of one of these strains, the model methylotroph Methylobacterium extorquens AM1, revealed unique epoxide- and cyclopropanol-containing polyketides named toblerols. Relative and absolute stereochemistry were determined by NMR experiments, chemical derivatization, and the comparison of CD data between the derivatized natural product and a synthesized model compound. Biosynthetic data suggest that the cyclopropanol moiety is generated by carbon-carbon shortening of a more extended precursor. Surprisingly, a knock-out strain impaired in polyketide production showed strong inhibitory activity against other methylobacteria in contrast to the wild-type producer. The activity was inhibited by complementation with toblerols, thus suggesting that these compounds modulate an as-yet unknown methylobacterial antibiotic.
Collapse
Affiliation(s)
- Reiko Ueoka
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Miriam Bortfeld-Miller
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Brandon I Morinaka
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.,Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Julia A Vorholt
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| |
Collapse
|
8
|
Ueoka R, Bortfeld-Miller M, Morinaka BI, Vorholt JA, Piel J. Toblerols: Cyclopropanol-Containing Polyketide Modulators of Antibiosis in Methylobacteria. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Reiko Ueoka
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| | - Miriam Bortfeld-Miller
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| | - Brandon I. Morinaka
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
- Department of Pharmacy; National University of Singapore; 18 Science Drive 4 Singapore 117543 Singapore
| | - Julia A. Vorholt
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| | - Jörn Piel
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| |
Collapse
|
9
|
Brandi A, Cicchi S, Cordero FM, Goti A. Progress in the synthesis and transformations of alkylidenecyclopropanes and alkylidenecyclobutanes. Chem Rev 2014; 114:7317-420. [PMID: 24927495 DOI: 10.1021/cr400686j] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alberto Brandi
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze , Via della Lastruccia 13, I-50019-Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|