Xi GL, Liu ZQ. Coumarin-fused coumarin: antioxidant story from N,N-dimethylamino and hydroxyl groups.
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015;
63:3516-23. [PMID:
25826201 DOI:
10.1021/acs.jafc.5b00399]
[Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two coumarin skeletons can form chromeno[3,4-c]chromene-6,7-dione by sharing with the C ═ C in lactone. The aim of the present work was to explore the antioxidant effectiveness of the coumarin-fused coumarin via six synthetic compounds containing hydroxyl and N,N-dimethylamino as the functional groups. The abilities to quench 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS(+•)), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical revealed that the rate constant for scavenging radicals was related to the amount of hydroxyl group in the scaffold of coumarin-fused coumarin. But coumarin-fused coumarin was able to inhibit DNA oxidations caused by (•)OH, Cu(2+)/glutathione (GSH), and 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) even in the absence of hydroxyl group. In particular, a hydroxyl and an N,N-dimethylamino group locating at different benzene rings increased the inhibitory effect of coumarin-fused coumarin on AAPH-induced oxidation of DNA about 3 times higher than a single hydroxyl group, whereas N,N-dimethylamino-substituted coumarin-fused coumarin possessed high activity toward (•)OH-induced oxidation of DNA without the hydroxyl group contained. Therefore, the hydroxyl group together with N,N-dimethylamino group may be a novel combination for the design of coumarin-fused heterocyclic antioxidants.
Collapse