1
|
Laplaza R, Wodrich MD, Corminboeuf C. Overcoming the Pitfalls of Computing Reaction Selectivity from Ensembles of Transition States. J Phys Chem Lett 2024; 15:7363-7370. [PMID: 38990895 DOI: 10.1021/acs.jpclett.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The prediction of reaction selectivity is a challenging task for computational chemistry, not only because many molecules adopt multiple conformations but also due to the exponential relationship between effective activation energies and rate constants. To account for molecular flexibility, an increasing number of methods exist that generate conformational ensembles of transition state (TS) structures. Typically, these TS ensembles are Boltzmann weighted and used to compute selectivity assuming Curtin-Hammett conditions. This strategy, however, can lead to erroneous predictions if the appropriate filtering of the conformer ensembles is not conducted. Here, we demonstrate how any possible selectivity can be obtained by processing the same sets of TS ensembles for a model reaction. To address the burdensome filtering task in a consistent and automated way, we introduce marc, a tool for the modular analysis of representative conformers that aids in avoiding human errors while minimizing the number of reoptimization computations needed to obtain correct reaction selectivity.
Collapse
Affiliation(s)
- Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Matthew D Wodrich
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Environmental Modulation of Chiral Prolinamide Catalysts for Stereodivergent Conjugate Addition. J Catal 2022; 406:126-133. [PMID: 35087258 PMCID: PMC8788998 DOI: 10.1016/j.jcat.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Synthetic chiral catalysts generally rely on proximal functional groups or ligands for chiral induction. Enzymes often employ environmental chirality to achieve stereoselectivity. Environmentally controlled catalysis has benefits such as size and shape selectivity but is underexplored by chemists. We here report molecularly imprinted nanoparticles (MINPs) that utilized their environmental chirality to either augment or reverse the intrinsic selectivity of a chiral prolinamide cofactor. The latter ability allowed the catalyst to produce products otherwise disfavored in the conjugate addition of aldehyde to nitroalkene. The catalysis occurred in water at room temperature and afforded γ-nitroaldehydes with excellent yields (up to 94%) and ee (>90% in most cases). Up to 25:1 syn/anti and 1:6 syn/anti ratios were achieved through a combination of catalyst-derived and environmentally enabled selectivity. The high enantioselectivity of the MINP also made it possible for racemic catalysts to perform asymmetric catalysis, with up to 80% ee for the conjugate addition.
Collapse
|
3
|
Zhang M, He XW, Xiong Y, Zuo X, Zhou W, Liu XL. Asymmetric construction of six vicinal stereogenic centers on hexahydroxanthones via organocatalytic one-pot reactions. Chem Commun (Camb) 2021; 57:6764-6767. [PMID: 34132270 DOI: 10.1039/d1cc02570h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inspired by the chemistry and biology of hexahydroxanthones, herein we report an organocatalytic Michael-Michael-Aldol-decarboxylation reaction that provides efficient access to biologically interesting fully substituted hexahydroxanthones bearing six contiguous stereogenic centers from readily accessible materials in acceptable yields (up to 63%) and excellent stereoselectivities (up to 10 : 1 dr and >99% ee). In other words, the reaction efficiently produces three chemical bonds and up to six vicinal stereogenic centers in a one-pot operation. In particular, to our knowledge, this is an asymmetric organocatalytic strategy enabling the first construction of six vicinal stereogenic centers on non-spirocyclic hexahydroxanthone frameworks.
Collapse
Affiliation(s)
- Min Zhang
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xue-Wen He
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Ya Xiong
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xiong Zuo
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Wei Zhou
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| |
Collapse
|
4
|
Alamillo-Ferrer C, Nielsen CDT, Salzano A, Companyó X, Di Sanza R, Spivey AC, Rzepa HS, Burés J. Understanding the Diastereopreference of Intermediates in Aminocatalysis: Application to the Chiral Resolution of Lactols. J Org Chem 2021; 86:4326-4335. [PMID: 33567827 DOI: 10.1021/acs.joc.0c02998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Downstream intermediates are crucial for the reactivity and selectivity of aminocatalytic reactions. We present an analysis of the stereopreference in aminocatalytic downstream intermediates, which reveals an inconspicuous mechanism of chiral recognition between the catalyst and the rest of the molecule. We delineate a stereoelectronic model to rationalize the mode of chiral transmission. We also exploit it for the resolution of chiral lactols relevant in organic synthesis as well as in the flavor and fragrance industry.
Collapse
Affiliation(s)
- Carla Alamillo-Ferrer
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 81 Wood Lane, London, W12 0BZ, U.K
| | - Andrea Salzano
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Xavier Companyó
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Riccardo Di Sanza
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Alan C Spivey
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 81 Wood Lane, London, W12 0BZ, U.K
| | - Henry S Rzepa
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 81 Wood Lane, London, W12 0BZ, U.K
| | - Jordi Burés
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
5
|
Cascales V, Carneros H, Castro-Alvarez A, Costa AM, Vilarrasa J. Amino-Catalyzed Reactions of Aldehydes with Chiral Nitroalkenes. Org Lett 2021; 23:651-655. [PMID: 33428407 DOI: 10.1021/acs.orglett.0c03609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chiral nitroalkenes are used for the first time in Michael additions of aldehydes, catalyzed by pyrrolidine derivatives. They yield the same major stereoisomer with either (S)-proline or (R)-proline, but this asymmetric induction does not overcome the effect of sterically more congested catalysts. Nitrocyclobutane intermediates are often formed, which are more stable than those from (E)-1-nitro-2-phenylethene. The cyclobutanes and final products were characterized by 2D NMR and chemical correlations.
Collapse
Affiliation(s)
- Víctor Cascales
- Organic Chemistry, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | - Héctor Carneros
- Organic Chemistry, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | - Alejandro Castro-Alvarez
- Organic Chemistry, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | - Anna M Costa
- Organic Chemistry, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | - Jaume Vilarrasa
- Organic Chemistry, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Tcharkhetian AEG, Bruni AT, Rodrigues CHP. Combining experimental and theoretical approaches to study the structural and spectroscopic properties of Flakka (α-pyrrolidinopentiophenone). RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Möhler JS, Schnitzer T, Wennemers H. Amine Catalysis with Substrates Bearing N-Heterocyclic Moieties Enabled by Control over the Enamine Pyramidalization Direction. Chemistry 2020; 26:15623-15628. [PMID: 32573875 DOI: 10.1002/chem.202002966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Indexed: 02/06/2023]
Abstract
Stereoselective organocatalytic C-C bond formations that tolerate N-heterocycles are valuable since these moieties are common motifs in numerous chiral bioactive compounds. Such transformations are, however, challenging since N-heterocyclic moieties can interfere with the catalytic reaction. Here, we present a peptide that catalyzes conjugate addition reactions between aldehydes and nitroolefins bearing a broad range of different N-heterocyclic moieties with basic and/or H-bonding sites in excellent yields and stereoselectivities. Tuning of the pyramidalization direction of the enamine intermediate enabled the high stereoselectivity.
Collapse
Affiliation(s)
- Jasper S Möhler
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Tobias Schnitzer
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
8
|
Umekubo N, Terunuma T, Kwon E, Hayashi Y. Evidence for an enolate mechanism in the asymmetric Michael reaction of α,β-unsaturated aldehydes and ketones via a hybrid system of two secondary amine catalysts. Chem Sci 2020; 11:11293-11297. [PMID: 34094371 PMCID: PMC8162273 DOI: 10.1039/d0sc03359f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The key nucleophile was found to be neither an enamine nor an enol, but an enolate in the direct Michael reaction of α,β-unsaturated aldehydes and non-activated ketones catalyzed by two amine catalysts namely diphenylprolinol silyl ether and pyrrolidine. This is a rare example of an enolate from a ketone serving as a key intermediate in the asymmetric organocatalytic reaction involving secondary amine catalysts because the ketone enolates are generally generated using a strong base, and the enamine is a common nucleophile in this type of reaction. The key nucleophile was found to be neither an enamine nor an enol, but an enolate in the direct Michael reaction of α,β-unsaturated aldehydes and non-activated ketones catalyzed by two amine catalysts namely diphenylprolinol silyl ether and pyrrolidine.![]()
Collapse
Affiliation(s)
- Nariyoshi Umekubo
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Takahiro Terunuma
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University Sendai 980-8578 Japan
| | - Yujiro Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
9
|
Gualandi A, Cozzi PG, Rodeghiero G, Jansen TP, Perciaccante R. Stereoselective synergystic organo photoredox catalysis with enamines and iminiums. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Graphical Abstract
Application of small chiral organic molecules in catalysis has been dominated by formation of chiral enamines or iminium ions. Nucleophiles – electrophiles reactivity has been exploited in many papers. Now, the possibility to combine organocatalysis with photochemistry open new “exciting” possibilities and opportunities, in reactions that are mediated by radicals.
Collapse
Affiliation(s)
- Andrea Gualandi
- Università degli Studi di Bologna , Dipartimento di Chimica “G. Ciamician” , via Selmi 2 , 40126 Bologna , Italy
| | - Pier Giorgio Cozzi
- Università degli Studi di Bologna , Dipartimento di Chimica “G. Ciamician” , via Selmi 2 , 40126 Bologna , Italy
| | - Giacomo Rodeghiero
- Chemistry R&D , Cyanagen Srl , Via Stradelli Guelfi 40/C , Bologna 40138 , Italy
| | - Thomas Paul Jansen
- Chemistry R&D , Cyanagen Srl , Via Stradelli Guelfi 40/C , Bologna 40138 , Italy
| | - Rossana Perciaccante
- Chemistry R&D , Cyanagen Srl , Via Stradelli Guelfi 40/C , Bologna 40138 , Italy
| |
Collapse
|
10
|
Organocatalysed conjugate addition reactions of aldehydes to nitroolefins with anti selectivity. Nat Catal 2020. [DOI: 10.1038/s41929-019-0406-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
An F, Maji B, Min E, Ofial AR, Mayr H. Basicities and Nucleophilicities of Pyrrolidines and Imidazolidinones Used as Organocatalysts. J Am Chem Soc 2020; 142:1526-1547. [DOI: 10.1021/jacs.9b11877] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Feng An
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Biplab Maji
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Elizabeth Min
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Armin R. Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Herbert Mayr
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
12
|
Schnitzer T, Möhler JS, Wennemers H. Effect of the enamine pyramidalization direction on the reactivity of secondary amine organocatalysts. Chem Sci 2020; 11:1943-1947. [PMID: 34123288 PMCID: PMC8148379 DOI: 10.1039/c9sc05410c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chiral secondary amines are valuable catalysts for reactions that proceed through an enamine intermediate. Here, we explored the importance of the pyramidalization direction of the enamine-N on the reactivity of chiral enamines with a combination of computational, NMR spectroscopic, and kinetic experiments. Studies with peptidic catalysts that bear cyclic amines with different ring sizes revealed that endo-pyramidalized enamines are significantly more reactive compared to exo-pyramidalized analogs. The results show that the pyramidalization direction can have a greater effect than n→π* orbital overlap on the reactivity of chiral enamines. The data enabled the development of a catalyst with higher reactivity compared to the parent catalyst. Endo-pyramidalisation at nitrogen bestows enamines derived from α-substituted amines with higher reactivity compared to exo-pyramidalisation.![]()
Collapse
Affiliation(s)
- Tobias Schnitzer
- Laboratory of Organic Chemistry, ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jasper S Möhler
- Laboratory of Organic Chemistry, ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
13
|
Importance of thorough conformational analysis in modelling transition metal-mediated reactions: Case studies on pincer complexes containing phosphine groups. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Castro-Alvarez A, Carneros H, Calafat J, Costa AM, Marco C, Vilarrasa J. NMR and Computational Studies on the Reactions of Enamines with Nitroalkenes That May Pass through Cyclobutanes. ACS OMEGA 2019; 4:18167-18194. [PMID: 31720519 PMCID: PMC6844152 DOI: 10.1021/acsomega.9b02074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The addition of aldehyde enamines to nitroalkenes affords cyclobutanes in all solvents, with all of the pyrrolidine and proline derivatives tested by us and with all of the substrates we have examined. Depending on the temperature, concentration of water, solvent polarity, and other factors, the opening and hydrolysis of such a four-membered ring may take place rapidly or last for several days, producing the final Michael-like adducts (4-nitrobutanals). Thirteen new cyclobutanes have now been characterized by NMR spectroscopy. As could be expected, s-trans-enamine conformers give rise to all-trans-(4S)-4-nitrocyclobutylpyrrolidines, while s-cis-enamine conformers afford all-trans-(4R)-4-nitrocyclobutylpyrrolidines. These four-membered rings can isomerize to adduct enamines, which should be hydrolyzed via their iminium ions. MP2 and M06-2X calculations predict that one iminium ion is more stable than the other iminium species, so that protonation of the adduct enamines can be quite stereoselective; in the presence of water, the so-called syn adducts (e.g., OCH-*CHR-*CHPh-CH2NO2, with R and Ph syn) eventually become the major products. Why one syn adduct is obtained with aldehydes, whereas cyclic ketones (the predicted ring-fused cyclobutanes of which isomerize to their enamines more easily) produce the other syn adduct, is also explained by means of molecular orbital calculations. Nitro-Michael reactions of aldehyde enamines that "stop" at the nitrocyclobutane stage and final enamine stage do not work catalytically, as known, but those of cyclic ketone enamines that do not work stop at the final enamine stage (if their hydrolysis to the corresponding nitroethylketones is less favorable than expected). These and other facts are accounted for, and the proposals of the groups led by Seebach and Hayashi, Blackmond, and Pihko and Papai are reconciled.
Collapse
|
15
|
Assoah B, Riihonen V, Vale JR, Valkonen A, Candeias NR. Synthesis of 6,12-Disubstituted Methanodibenzo[b,f][1,5]dioxocins: Pyrrolidine Catalyzed Self-Condensation of 2′-Hydroxyacetophenones. Molecules 2019; 24:molecules24132405. [PMID: 31261870 PMCID: PMC6651863 DOI: 10.3390/molecules24132405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
The preparation of unprecedented 6,12-disubstituted methanodibenzo[b,f][1,5]dioxocins from pyrrolidine catalyzed self-condensation of 2′-hydroxyacetophenones is herein described. This method provides easy access to this highly bridged complex core, resulting in construction of two C–O and two C–C bonds, a methylene bridge and two quaternary centers in a single step. The intricate methanodibenzo[b,f][1,5]dioxocin compounds were obtained in up to moderate yields after optimization of the reaction conditions concerning solvent, reaction times and the use of additives. Several halide substituted methanodibenzo[b,f][1,5]dioxocins could be prepared from correspondent 2′-hydroxyacetophenones.
Collapse
Affiliation(s)
- Benedicta Assoah
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.
| | - Vesa Riihonen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - João R Vale
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Arto Valkonen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.
| |
Collapse
|
16
|
Rigling C, Kisunzu JK, Duschmalé J, Häussinger D, Wiesner M, Ebert MO, Wennemers H. Conformational Properties of a Peptidic Catalyst: Insights from NMR Spectroscopic Studies. J Am Chem Soc 2018; 140:10829-10838. [PMID: 30106584 DOI: 10.1021/jacs.8b05459] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptides have become valuable as catalysts for a variety of different reactions, but little is known about the conformational properties of peptidic catalysts. We investigated the conformation of the peptide H-dPro-Pro-Glu-NH2, a highly reactive and stereoselective catalyst for conjugate addition reactions, and the corresponding enamine intermediate in solution by NMR spectroscopy and computational methods. The combination of nuclear Overhauser effects (NOEs), residual dipolar couplings (RDCs), J-couplings, and temperature coefficients revealed that the tripeptide adopts a single predominant conformation in its ground state. The structure is a type I β-turn, which gains stabilization from three hydrogen bonds that are cooperatively formed between all functional groups (secondary amine, carboxylic acid, amides) within the tripeptide. In contrast, the conformation of the enamine intermediate is significantly more flexible. The conformational ensemble of the enamine is still dominated by the β-turn, but the backbone and the side chain of the glutamic acid residue are more dynamic. The key to the switch between rigidity and flexibility of the peptidic catalyst is the CO2H group in the side chain of the glutamic acid residue, which acts as a lid that can open and close. As a result, the peptidic catalyst is able to adapt to the structural requirements of the intermediates and transition states of the catalytic cycle. These insights might explain the robustness and high reactivity of the peptidic catalyst, which exceeds that of other secondary amine-based organocatalysts. The data suggest that a balance between rigidity and flexibility, which is reminiscent of the dynamic nature of enzymes, is beneficial for peptidic catalysts and other synthetic catalysts.
Collapse
Affiliation(s)
- Carla Rigling
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Jessica K Kisunzu
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Jörg Duschmalé
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland.,Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Daniel Häussinger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Markus Wiesner
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| |
Collapse
|
17
|
Bauer C, Luu T, Eggimann F, Bross P, Gertsch W, Hu C, Ramstein P, Bourgailh J, Glänzel A, Dix I, Guenat C, Soldermann N, Litherland K, Desrayaud S, Hengy JC, Pearson D, Blanz J, Burkhart C. Design of A Metabolically Stable Tritium-Tracer of the PI3Kδ-Inhibitor CDZ173 (Leniolisib) as a Tool to Study Liver Metabolites. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Carsten Bauer
- Isotope Laboratory, PK Sciences; Novartis Institute for Biomedical Research (NIBR); Basel
| | - Tong Luu
- Isotope Laboratory, PK Sciences; Novartis Institute for Biomedical Research (NIBR); Basel
| | | | - Patrick Bross
- Isotope Laboratory, PK Sciences; Novartis Institute for Biomedical Research (NIBR); Basel
| | | | - Cheng Hu
- Global Discovery Chemistry; NIBR; Basel
| | | | | | - Albrecht Glänzel
- Isotope Laboratory, PK Sciences; Novartis Institute for Biomedical Research (NIBR); Basel
| | - Ina Dix
- Global Discovery Chemistry; NIBR; Basel
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Castán A, Badorrey R, Gálvez JA, López-Ram-de-Víu P, Díaz-de-Villegas MD. Michael addition of carbonyl compounds to nitroolefins under the catalysis of new pyrrolidine-based bifunctional organocatalysts. Org Biomol Chem 2018; 16:924-935. [PMID: 29335699 DOI: 10.1039/c7ob02798b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Novel bifunctional pyrrolidine-based organocatalysts for the asymmetric Michael addition of carbonyl compounds to nitroolefins have been synthesised from homoallylamines, which are easily obtained from (R)-glyceraldehyde as a chiral precursor. Under optimal reaction conditions, these bifunctional organocatalysts showed a high catalytic efficiency (almost quantitative yield in most cases) and stereoselectivity in the Michael addition reactions of a variety of aldehydes (up to 98 : 2 dr and 97% ee) and ketones (up to 98 : 2 dr and 99% ee) to nitroolefins.
Collapse
Affiliation(s)
- A Castán
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Orgánica, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
| | | | | | | | | |
Collapse
|