1
|
Singh A, Dayton D, Ladd DM, Reuveni G, Paluch P, Montagne L, Mars J, Yaffe O, Toney M, Manjunatha Reddy GN, Mitzi DB. Local Structure in Crystalline, Glass and Melt States of a Hybrid Metal Halide Perovskite. J Am Chem Soc 2024; 146:25656-25668. [PMID: 39230963 DOI: 10.1021/jacs.4c07411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The pursuit of structure-property relationships in crystalline metal halide perovskites (MHPs) has yielded an unprecedented combination of advantageous characteristics for wide-ranging optoelectronic applications. While crystalline MHP structures are readily accessible through diffraction-based structure refinements, providing a clear view of associated long-range ordering, the local structures in more recently discovered glassy MHP states remain unexplored. Herein, we utilize a combination of Raman spectroscopy, solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy, in situ X-ray diffraction (XRD) and pair distribution function (PDF) analysis to investigate the coordination environment in crystalline, glass and melt states of the 2D MHP [(S)-(-)-1-(1-naphthyl)ethylammonium]2PbBr4. While crystalline SNPB shows polarization-dependent Raman spectra, the glassy and melt states exhibit broad features and lack polarization dependence. Solid-state NMR reveals disordering at the organic-inorganic interface of the glass due to significant spatial disruption in the tethering ammonium groups and the corresponding dihedral bond angles connecting the naphthyl and ammonium groups, while still preserving substantial naphthyl group registry and remnants of the layering from the crystalline state (deduced from XRD analysis). Moreover, PDF analysis demonstrates the persistence of corner-sharing PbBr6 octahedra in the inorganic framework of the melt/glass phases, but with a loss of structural coherence over length scales exceeding approximately one octahedron due to disorder in the inter- and intraoctahedra bond angles/lengths. These findings deepen our understanding of diverse MHP structural motifs and how structural alterations within the MHP glass affect properties, offering potential for advancing next-generation phase change materials and devices.
Collapse
Affiliation(s)
- Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Damara Dayton
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Dylan M Ladd
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Guy Reuveni
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., Lodz 90-363, Poland
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Lionel Montagne
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Julian Mars
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Omer Yaffe
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Toney
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado─Boulder, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
2
|
Hansen PE. The Synergy between Nuclear Magnetic Resonance and Density Functional Theory Calculations. Molecules 2024; 29:336. [PMID: 38257249 PMCID: PMC10821511 DOI: 10.3390/molecules29020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
This paper deals with the synergy between Nuclear Magnetic Resonance (NMR) spectroscopic investigations and DFT calculations, mainly of NMR parameters. Both the liquid and the solid states are discussed here. This text is a mix of published results supplemented with new findings. This paper deals with examples in which useful results could not have been obtained without combining NMR measurements and DFT calculations. Examples of such cases are tautomeric systems in which NMR data are calculated for the tautomers; hydrogen-bonded systems in which better XH bond lengths can be determined; cage compounds for which assignment cannot be made based on NMR data alone; revison of already published structures; ionic compounds for which reference data are not available; assignment of solid-state spectra and crystal forms; and the creation of libraries for biological molecules. In addition to these literature cases, a revision of a cage structure and substituent effects on pyrroles is also discussed.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark
| |
Collapse
|
3
|
Datta K, Caiazzo A, Hope MA, Li J, Mishra A, Cordova M, Chen Z, Emsley L, Wienk MM, Janssen RAJ. Light-Induced Halide Segregation in 2D and Quasi-2D Mixed-Halide Perovskites. ACS ENERGY LETTERS 2023; 8:1662-1670. [PMID: 37090170 PMCID: PMC10111410 DOI: 10.1021/acsenergylett.3c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
Photoinduced halide segregation hinders widespread application of three-dimensional (3D) mixed-halide perovskites. Much less is known about this phenomenon in lower-dimensional systems. Here, we study photoinduced halide segregation in lower-dimensional mixed iodide-bromide perovskites (PEA2MA n-1Pb n (Br x I1-x )3n+1, with PEA+: phenethylammonium and MA+: methylammonium) through time-dependent photoluminescence (PL) spectroscopy. We show that layered two-dimensional (2D) structures render additional stability against the demixing of halide phases under illumination. We ascribe this behavior to reduced halide mobility due to the intrinsic heterogeneity of 2D mixed-halide perovskites, which we demonstrate via 207Pb solid-state NMR. However, the dimensionality of the 2D phase is critical in regulating photostability. By tracking the PL of multidimensional perovskite films under illumination, we find that while halide segregation is largely inhibited in 2D perovskites (n = 1), it is not suppressed in quasi-2D phases (n = 2), which display a behavior intermediate between 2D and 3D and a peculiar absence of halide redistribution in the dark that is only induced at higher temperature for the quasi-2D phase.
Collapse
Affiliation(s)
- Kunal Datta
- Molecular
Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Alessandro Caiazzo
- Molecular
Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Michael A. Hope
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Junyu Li
- Molecular
Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Aditya Mishra
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Manuel Cordova
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Zehua Chen
- Materials
Simulation and Modelling and Center for Computational Energy Research,
Department of Applied Physics, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Martijn M. Wienk
- Molecular
Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - René A. J. Janssen
- Molecular
Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Dutch
Institute for Fundamental Energy Research, 5612 AJ Eindhoven, The Netherlands
| |
Collapse
|
4
|
Landi N, Maurina E, Marongiu D, Simbula A, Borsacchi S, Calucci L, Saba M, Carignani E, Geppi M. Solid-State Nuclear Magnetic Resonance of Triple-Cation Mixed-Halide Perovskites. J Phys Chem Lett 2022; 13:9517-9525. [PMID: 36200785 PMCID: PMC9575147 DOI: 10.1021/acs.jpclett.2c02313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Mixed-cation lead mixed-halide perovskites are the best candidates for perovskite-based photovoltaics, thanks to their higher efficiency and stability compared to the single-cation single-halide parent compounds. TripleMix (Cs0.05MA0.14FA0.81PbI2.55Br0.45 with FA = formamidinium and MA = methylammonium) is one of the most efficient and stable mixed perovskites for single-junction solar cells. The microscopic reasons why triple-cation perovskites perform so well are still under debate. In this work, we investigated the structure and dynamics of TripleMix by exploiting multinuclear solid-state nuclear magnetic resonance (SSNMR), which can provide this information at a level of detail not accessible by other techniques. 133Cs, 13C, 1H, and 207Pb SSNMR spectra confirmed the inclusion of all ions in the perovskite, without phase segregation. Complementary measurements showed a peculiar longitudinal relaxation behavior for the 1H and 207Pb nuclei in TripleMix with respect to single-cation single-halide perovskites, suggesting slower dynamics of both organic cations and halide anions, possibly related to the high photovoltaic performances.
Collapse
Affiliation(s)
- Noemi Landi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
| | - Elena Maurina
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
| | - Daniela Marongiu
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu Km. 0700, 09042Monserrato, Cagliari, Italy
| | - Angelica Simbula
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu Km. 0700, 09042Monserrato, Cagliari, Italy
| | - Silvia Borsacchi
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
- Center
for Instrument Sharing, University of Pisa
(CISUP), 56126Pisa, Italy
| | - Lucia Calucci
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
- Center
for Instrument Sharing, University of Pisa
(CISUP), 56126Pisa, Italy
| | - Michele Saba
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu Km. 0700, 09042Monserrato, Cagliari, Italy
| | - Elisa Carignani
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
| | - Marco Geppi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
- Center
for Instrument Sharing, University of Pisa
(CISUP), 56126Pisa, Italy
| |
Collapse
|
5
|
Hooper RW, Ni C, Tkachuk DG, He Y, Terskikh VV, Veinot JGC, Michaelis VK. Exploring Structural Nuances in Germanium Halide Perovskites Using Solid-State 73Ge and 133Cs NMR Spectroscopy. J Phys Chem Lett 2022; 13:1687-1696. [PMID: 35148108 DOI: 10.1021/acs.jpclett.1c04033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Metal halide perovskites remain top candidates for higher-performance photovoltaic devices, but concerns about leading lead-based materials remain. Ge perovskites remain understudied for use in solar cells compared to their Sn-based counterparts. In this work, we undertake a combined 73Ge and 133Cs solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and density functional theory (DFT) study of the bulk CsGeX3 (X = Cl, Br, or I) series. We show how seemingly small structural variations within germanium halide perovskites have major effects on their 73Ge and 133Cs NMR signatures and reveal a near-cubic phase at room temperature for CsGeCl3 with severe local Ge polyhedral distortion. Quantum chemical computations are effective at predicting the structural impact on NMR parameters for 73Ge and 133Cs. This study demonstrates the value of a combined solid-state NMR and DFT approach for investigating promising materials for energy applications, providing information that is out of reach with conventional characterization methods, and adds the challenging 73Ge nucleus to the NMR toolkit.
Collapse
Affiliation(s)
- Riley W Hooper
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chuyi Ni
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dylan G Tkachuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yingjie He
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Victor V Terskikh
- Metrology, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
6
|
Milić JV, Zakeeruddin SM, Grätzel M. Layered Hybrid Formamidinium Lead Iodide Perovskites: Challenges and Opportunities. Acc Chem Res 2021; 54:2729-2740. [PMID: 34085817 DOI: 10.1021/acs.accounts.0c00879] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
ConspectusHybrid halide perovskite materials have become one of the leading candidates for various optoelectronic applications. They are based on organic-inorganic structures defined by the AMX3 composition, were A is the central cation that can be either organic (e.g., methylammonium, formamidinium (FA)) or inorganic (e.g., Cs+), M is a divalent metal ion (e.g., Pb2+ or Sn2+), and X is a halide anion (I-, Br-, or Cl-). In particular, FAPbI3 perovskites have shown remarkable optoelectronic properties and thermal stabilities. However, the photoactive α-FAPbI3 (black) perovskite phase is not thermodynamically stable at ambient temperature and forms the δ-FAPbI3 (yellow) phase that is not suitable for optoelectronic applications. This has stimulated intense research efforts to stabilize and realize the potential of the α-FAPbI3 perovskite phase. In addition, hybrid perovskites were proven to be unstable against the external environmental conditions (air and moisture) and under device operating conditions (voltage and light), which is related to various degradation mechanisms. One of the strategies to overcome these instabilities has been based on low-dimensional hybrid perovskite materials, in particular layered two-dimensional (2D) perovskite phases composed of organic layers separating hybrid perovskite slabs, which were found to be more stable toward ambient conditions and ion migration. These materials are mostly based on SxAn-1PbnX3n+1 composition with various mono- (x = 1) or bifunctional (x = 2) organic spacer cations that template hybrid perovskite slabs and commonly form either Ruddlesden-Popper (RP) or Dion-Jacobson (DJ) phases. These materials behave as natural quantum wells since charge carriers are confined to the inorganic slabs, featuring a gradual decrease in the band gap as the number of inorganic layers (n) increases from n = 1 (2D) to n = ∞ (3D). While various layered 2D perovskites have been developed, their FA-based analogues remain under-represented to date. Over the past few years, several research advances enabled the realization of FA-based layered perovskites, which have also demonstrated a unique templating effect in stabilizing the α-FAPbI3 phase. This, for instance, involved the archetypical n-butylammonium and 2-phenylethylammonium organic spacers as well as guanidinium, 5-ammonium valeric acid, iso-butylammonium, benzylammonium, n-pentylammonium, 2-thiophenemethylammonium, 2-(perfluorophenyl)ethylammonium, 1-adamantylmethanammonium, and 1,4-phenylenedimethanammonium. FAPbBr3-based layered perovskites have also demonstrated potential in various optoelectronic applications, yet the opportunities associated with FAPbI3-based perovskites have attracted particular attention in photovoltaics, stimulating further developments. This Account provides an overview of some of these recent developments, with a particular focus on FAPbI3-based layered perovskites and their utility in photovoltaics, while outlining challenges and opportunities for these hybrid materials in the future.
Collapse
Affiliation(s)
- Jovana V. Milić
- Laboratory of Photonics and Interfaces, EPFL, Station 6, 1015 Lausanne, Switzerland
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Shaik M. Zakeeruddin
- Laboratory of Photonics and Interfaces, EPFL, Station 6, 1015 Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, EPFL, Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|