1
|
Bhatti P, Gupta A, Chaudhari SB, Valmiki RK, Laha JK, Manna S. Skeletal Editing via Transition-Metal-Catalyzed Nitrene Insertion. CHEM REC 2024; 24:e202400184. [PMID: 39607383 DOI: 10.1002/tcr.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Metal-nitrenes are valuable reactive intermediates for synthesis and are widely used to construct biologically relevant scaffolds, complexes and functionalized molecules. The ring expansion of cyclic molecules via single-nitrogen-atom insertion via nitrene or metal-nitrenoid intermediates has emerged as a promising modern strategy for driving advantageous nitrogen-rich compound synthesis. In recent years, the catalytic insertion of a single nitrogen atom into carbocycles, leading to N-heterocycles, has become an important focus of modern synthetic approaches with applications in medicinal chemistry, materials science, and industry. Catalytic single-nitrogen-atom insertions have been increasing in prominence in modern organic synthesis due to their capability to construct high-value added nitrogen-containing heterocycles from simple feedstocks. In this review, we will discuss the rapidly growing field of skeletal editing via single-nitrogen-atom insertion using transition metal catalysis to access nitrogen-containing heterocycles, with a focus on nitrogen insertion across a wide spectrum of carbocycles.
Collapse
Affiliation(s)
- Pratibha Bhatti
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Shubham B Chaudhari
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Rahul K Valmiki
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Srimanta Manna
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| |
Collapse
|
2
|
Silver R, Nirpal AK, Sathyamoorthi S. Taming Tethered Nitreniums for Alkene Functionalization Reactions. J Org Chem 2024; 89:15352-15357. [PMID: 39387609 PMCID: PMC11827887 DOI: 10.1021/acs.joc.4c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We present the first examples of amino-trifluoroacetoxylations of alkenes using N-alkoxy carbamate tethers. Hypervalent iodine oxidants mediate this transformation, providing a "green" alternative to existing intramolecular amino-hydroxylation protocols which use toxic metals such as osmium. In all cases examined, the reaction is regioselective and stereospecific, with the geometry of the starting alkene controlling the diastereomeric outcome. By analogy to prior art and from our own observations, we posit that a transient nitrenium species serves as a key intermediate.
Collapse
Affiliation(s)
| | | | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
3
|
Pan S, Wu P, Bampi D, Ward JS, Rissanen K, Bolm C. Mechanochemical Conditions for Intramolecular N-O Couplings via Rhodium Nitrenoids Generated from N-Acyl Sulfonimidamides. Angew Chem Int Ed Engl 2024:e202413181. [PMID: 39381922 DOI: 10.1002/anie.202413181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Starting from N-acyl sulfonimidamides, mechanochemically generated rhodium nitrenoids undergo intramolecular N-O couplings to provide unprecedented 1,3,2,4-oxathiadiazole 3-oxides in good to excellent yields. The cyclization proceeds efficiently with a catalyst loading of only 0.5 mol % in the presence of phenyliodine(III) diacetate (PIDA) as oxidant. Neither an inert atmosphere nor additional heating is required in this solvent-free procedure. Under heat or blue light, the newly formed five-membered heterocycles function as nitrene precursors reacting with sulfoxides as exemplified by the imidation of dimethyl sulfoxide.
Collapse
Affiliation(s)
- Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Dimitra Bampi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
4
|
Sharma M, Fritz RM, Bhatia H, Adebanjo JO, Lu Z, Omary MA, Cundari TR, Choudhury A, Stavropoulos P. C-H amination chemistry mediated by trinuclear Cu(I) sites supported by a ligand scaffold featuring an arene platform and tetramethylguanidinyl residues. Dalton Trans 2024; 53:15946-15958. [PMID: 39264342 PMCID: PMC11487648 DOI: 10.1039/d4dt01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tripodal ligands that can encapsulate single or multiple metal sites in C3-symmetric geometric configurations constitute valuable targets for novel catalysts. Of particular interest in ligand development are efforts toward incorporating apical elements that exhibit little if any electron donicity, to enhance the electrophilic nature of a trans positioned active oxidant (e.g., metal-oxo, -nitrene). The tripodal ligand TMG3trphen-Arene has been synthesized, featuring an arene platform 1,3,5-substituted with phenylene arms possessing tetramethylguanidinyl (TMG) residues. Compound [(TMG3trphen-Arene)Cu3(μ-Cl)3] has been subsequently synthesized by extracting a Cu3(μ-Cl)3 cluster from anhydrous CuCl and shown to encapsulate a crown-shaped Cu3(μ-Cl)3 fragment, supported by Cu-NTMG bonds and modest Cu3⋯arene long-range contacts. Energy decomposition analysis (EDA) indicates that electrostatic contributions to the total interaction energy far exceed those due to orbital interactions. The latter involve orbital pairings largely associated with the NTMG stabilization of the Cu3(μ-Cl)3 cluster. The independent gradient model based on the Hirshfeld partition (IGMH) corroborates that contacts between the arene platform and the Cu3 triangle are noncovalent in nature. Catalyst [(TMG3trphen-Arene)Cu3(μ-Cl)3] enables amination of sec-benzylic and tert-C-H bonds of a panel of substrates by pre-synthesized PhINTces in solvent matrices that incorporate small amounts of HFIP. The involvement of an electrophilic aminating agent is evidenced by the better yields obtained for electron-rich benzylic sites and is further supported by Hammett analysis that reveals the development of a small positive charge during C-H bond activation. A rather modest KIE effect (2.1) is obtained from intramolecular H(D) competition in the amination of ethylbenzene, at the borderline of reported values for concerted and stepwise C-H amination systems. DFT analysis of the putative copper-nitrene oxidant indicates that the nitrene N atom is bridging between two copper sites in closely spaced triplet (ground state) and broken-symmetry singlet electronic configurations.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | - Reece M Fritz
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | - Himanshu Bhatia
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | - Joseph O Adebanjo
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Zhou Lu
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Mohammad A Omary
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| |
Collapse
|
5
|
Brunard E, Boquet V, Saget T, Sosa Carrizo ED, Sircoglou M, Dauban P. Catalyst-Controlled Intermolecular Homobenzylic C(sp 3)-H Amination for the Synthesis of β-Arylethylamines. J Am Chem Soc 2024; 146:5843-5854. [PMID: 38387076 DOI: 10.1021/jacs.3c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The combination of a tailored sulfamate with a C4-symmetrical rhodium(II) tetracarboxylate allows to uncover a selective intermolecular amination of unactivated homobenzylic C(sp3)-H bonds. The reaction has a broad scope (>30 examples) and proceeds with a high level of regioselectivity with homobenzylic/benzylic ratio of up to 35:1, thereby providing a direct access to β-arylethylamines that are of utmost interest in medicinal chemistry. Computational investigations evidenced a concerted mechanism, involving an asynchronous transition state. Based on a combined activation strain model and energy decomposition analysis, the regioselectivity of the reaction was found to rely mainly on the degree of orbital interaction between the [Rh2]-nitrene and the C-H bond. The latter is facilitated at the homobenzylic position due to the establishment of specific noncovalent interactions within the catalytic pocket.
Collapse
Affiliation(s)
- Erwan Brunard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Vincent Boquet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Tanguy Saget
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - E Daiann Sosa Carrizo
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400 Orsay, France
| | - Marie Sircoglou
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400 Orsay, France
| | - Philippe Dauban
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Noda H, Asada Y, Shibasaki M. Examining the effects of additives and precursors on the reactivity of rhodium alkyl nitrenes generated from substituted hydroxylamines. Front Chem 2023; 11:1271896. [PMID: 38025067 PMCID: PMC10654751 DOI: 10.3389/fchem.2023.1271896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, the reactivity of the alkyl nitrenes, generated from the substituted hydroxylamine precursors, was determined using the same rhodium catalyst. The results revealed that in competitive C-H insertion experiments, the regioselectivity between benzylic and tertiary C-H bonds could be modulated by adding Brønsted acids or changing the substituents on oxygen. This study enhances our understanding of the metallonitrene structures and provides valuable insights for further development of selective N-heterocycle syntheses.
Collapse
Affiliation(s)
- Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | | | | |
Collapse
|
7
|
Serusi L, Zebrowski P, Schörgenhumer J, Massa A, Waser M. Stereoselective Syntheses of Masked β-Amino Acid Containing Phthalides. Helv Chim Acta 2022; 105:e202200110. [PMID: 36845268 PMCID: PMC7614226 DOI: 10.1002/hlca.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We herein report a protocol for the asymmetric aldol-initiated cascade addition of isoxazolidin-5-ones to ortho-cyanobenzaldehydes by using Takemoto's bifunctional organocatalyst. This approach allows for the synthesis of various novel β2,2-amino acid-phthalide conjugates with good enantio- and diastereoselectivities in reasonable yields and the further ring-opening of these compounds to acyclic carboxylic acid derivatives was demonstrated too.
Collapse
Affiliation(s)
- Lorenzo Serusi
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, AT-4040 Linz, Austria,Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, IT-84084-Fisciano (SA), Italy
| | - Paul Zebrowski
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, AT-4040 Linz, Austria
| | - Johannes Schörgenhumer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Antonio Massa
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, IT-84084-Fisciano (SA), Italy
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, AT-4040 Linz, Austria,
| |
Collapse
|
8
|
Tang X, Tak RK, Noda H, Shibasaki M. A Missing Link in Multisubstituted Pyrrolidines: Remote Stereocontrol Forged by Rhodium‐Alkyl Nitrene. Angew Chem Int Ed Engl 2022; 61:e202212421. [DOI: 10.1002/anie.202212421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Xinxin Tang
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| | - Raj K. Tak
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| |
Collapse
|
9
|
Gwon Y, Lee M, Kim D, Chang S. Iridium-Catalyzed Amidation of In Situ Prepared Silyl Ketene Acetals to Access α-Amino Esters. Org Lett 2022; 24:1088-1093. [PMID: 35084196 DOI: 10.1021/acs.orglett.1c04376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disclosed herein is a convenient Ir-catalyzed amidation of esters to access α-amido esters. Initially prepared silyl ketene acetals are directly employed, without separate purification, for subsequent amidation with an oxycarbonylnitrenoid precursor using the Cp*(LX)Ir(III) catalyst. The α-amidation was facile for both α-aryl and α-alkyl esters. Density functional theory studies revealed that the generation of a putative Ir-nitrenoid is facilitated by the chelation of the countercation additive during the N-O bond cleavage of the nitrene precursor.
Collapse
Affiliation(s)
- Yunyeong Gwon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Minhan Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
10
|
Groysman S, Kurup SS. Catalytic synthesis of azoarenes via metal-mediated nitrene coupling. Dalton Trans 2022; 51:4577-4589. [DOI: 10.1039/d2dt00228k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various valuable properties of azoarenes (“azo dyes”), including their vivid colors and their facile cis-trans photoisomerization, lead to their wide use in the chemical industry. As a result, ~700,000 metric...
Collapse
|
11
|
Noda H. Imbuing an Old Heterocycle with the Power of Modern Catalysis: An Isoxazolidin-5-one Story. Chem Pharm Bull (Tokyo) 2021; 69:1160-1169. [PMID: 34853282 DOI: 10.1248/cpb.c21-00750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isoxazolidin-5-ones have been regarded as β-amino acid surrogates owing to their labile N-O bond. While many efforts have been devoted to the catalytic enantioselective synthesis of the core of this heterocycle, its further transformation has been less explored, especially in the context of catalysis. This review summarizes the author's research on the development of catalytic reactions using isoxazolidin-5-ones as substrates. Asymmetric catalysis has proven effective for C-C bond formation at the carbonyl α-carbon. Catalytic asymmetric allylation and direct Mannich-type reactions have been developed. Further, the resulting products have been readily converted into the corresponding quaternary β2,2-amino acids. Moreover, isoxazolidin-5-ones have been identified as alkyl nitrene precursors in the presence of a suitable metal catalyst. The generated metallonitrene undergoes either the electrophilic amination of the aromatic ring or aliphatic C-H insertion, affording a series of cyclic β-amino acids. A remarkable difference in chemoselectivity between rhodium and copper alkyl nitrenes has also been demonstrated, highlighting the unique nature of the underexplored reactive intermediates. The various linear and cyclic β-amino acids obtained through the study are likely to find great utility in a broad range of chemical sciences.
Collapse
|
12
|
Tak RK, Noda H, Shibasaki M. Ligand-Enabled, Copper-Catalyzed Electrophilic Amination for the Asymmetric Synthesis of β-Amino Acids. Org Lett 2021; 23:8617-8621. [PMID: 34689558 DOI: 10.1021/acs.orglett.1c03328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic asymmetric nitrene transfer has emerged as a reliable method for the synthesis of nitrogen-containing chiral compounds. Herein, we report the copper-catalyzed intramolecular asymmetric electrophilic amination of aromatic rings. The reactive intermediate is a copper-alkyl nitrene generated from isoxazolidin-5-ones. Copper catalysis promotes three classes of asymmetric transformations, namely, asymmetric desymmetrization, parallel kinetic resolution, and kinetic resolution, expanding the repertoire of alkyl nitrene transfer and providing various cyclic and linear β-amino acids in their enantioenriched forms.
Collapse
Affiliation(s)
- Raj K Tak
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|