1
|
Davies JG, Menzies GE. Utilizing biological experimental data and molecular dynamics for the classification of mutational hotspots through machine learning. BIOINFORMATICS ADVANCES 2024; 4:vbae125. [PMID: 39239360 PMCID: PMC11377099 DOI: 10.1093/bioadv/vbae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Motivation Benzo[a]pyrene, a notorious DNA-damaging carcinogen, belongs to the family of polycyclic aromatic hydrocarbons commonly found in tobacco smoke. Surprisingly, nucleotide excision repair (NER) machinery exhibits inefficiency in recognizing specific bulky DNA adducts including Benzo[a]pyrene Diol-Epoxide (BPDE), a Benzo[a]pyrene metabolite. While sequence context is emerging as the leading factor linking the inadequate NER response to BPDE adducts, the precise structural attributes governing these disparities remain inadequately understood. We therefore combined the domains of molecular dynamics and machine learning to conduct a comprehensive assessment of helical distortion caused by BPDE-Guanine adducts in multiple gene contexts. Specifically, we implemented a dual approach involving a random forest classification-based analysis and subsequent feature selection to identify precise topological features that may distinguish adduct sites of variable repair capacity. Our models were trained using helical data extracted from duplexes representing both BPDE hotspot and nonhotspot sites within the TP53 gene, then applied to sites within TP53, cII, and lacZ genes. Results We show our optimized model consistently achieved exceptional performance, with accuracy, precision, and f1 scores exceeding 91%. Our feature selection approach uncovered that discernible variance in regional base pair rotation played a pivotal role in informing the decisions of our model. Notably, these disparities were highly conserved among TP53 and lacZ duplexes and appeared to be influenced by the regional GC content. As such, our findings suggest that there are indeed conserved topological features distinguishing hotspots and nonhotpot sites, highlighting regional GC content as a potential biomarker for mutation. Availability and implementation Code for comparing machine learning classifiers and evaluating their performance is available at https://github.com/jdavies24/ML-Classifier-Comparison, and code for analysing DNA structure with Curves+ and Canal using Random Forest is available at https://github.com/jdavies24/ML-classification-of-DNA-trajectories.
Collapse
Affiliation(s)
- James G Davies
- Molecular Bioscience Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Georgina E Menzies
- Molecular Bioscience Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| |
Collapse
|
2
|
Tuval A, Strandgren C, Heldin A, Palomar-Siles M, Wiman KG. Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat Rev Clin Oncol 2024; 21:106-120. [PMID: 38102383 DOI: 10.1038/s41571-023-00842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
p53, which is encoded by the most frequently mutated gene in cancer, TP53, is an attractive target for novel cancer therapies. Despite major challenges associated with this approach, several compounds that either augment the activity of wild-type p53 or restore all, or some, of the wild-type functions to p53 mutants are currently being explored. In wild-type TP53 cancer cells, p53 function is often abrogated by overexpression of the negative regulator MDM2, and agents that disrupt p53-MDM2 binding can trigger a robust p53 response, albeit potentially with induction of p53 activity in non-malignant cells. In TP53-mutant cancer cells, compounds that promote the refolding of missense mutant p53 or the translational readthrough of nonsense mutant TP53 might elicit potent cell death. Some of these compounds have been, or are being, tested in clinical trials involving patients with various types of cancer. Nonetheless, no p53-targeting drug has so far been approved for clinical use. Advances in our understanding of p53 biology provide some clues as to the underlying reasons for the variable clinical activity of p53-restoring therapies seen thus far. In this Review, we discuss the intricate interactions between p53 and its cellular and microenvironmental contexts and factors that can influence p53's activity. We also propose several strategies for improving the clinical efficacy of these agents through the complex perspective of p53 functionality.
Collapse
Affiliation(s)
- Amos Tuval
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Angelos Heldin
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden.
| |
Collapse
|
3
|
Pan Q, Portelli S, Nguyen TB, Ascher DB. Characterization on the oncogenic effect of the missense mutations of p53 via machine learning. Brief Bioinform 2023; 25:bbad428. [PMID: 38018912 PMCID: PMC10685404 DOI: 10.1093/bib/bbad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
Dysfunctions caused by missense mutations in the tumour suppressor p53 have been extensively shown to be a leading driver of many cancers. Unfortunately, it is time-consuming and labour-intensive to experimentally elucidate the effects of all possible missense variants. Recent works presented a comprehensive dataset and machine learning model to predict the functional outcome of mutations in p53. Despite the well-established dataset and precise predictions, this tool was trained on a complicated model with limited predictions on p53 mutations. In this work, we first used computational biophysical tools to investigate the functional consequences of missense mutations in p53, informing a bias of deleterious mutations with destabilizing effects. Combining these insights with experimental assays, we present two interpretable machine learning models leveraging both experimental assays and in silico biophysical measurements to accurately predict the functional consequences on p53 and validate their robustness on clinical data. Our final model based on nine features obtained comparable predictive performance with the state-of-the-art p53 specific method and outperformed other generalized, widely used predictors. Interpreting our models revealed that information on residue p53 activity, polar atom distances and changes in p53 stability were instrumental in the decisions, consistent with a bias of the properties of deleterious mutations. Our predictions have been computed for all possible missense mutations in p53, offering clinical diagnostic utility, which is crucial for patient monitoring and the development of personalized cancer treatment.
Collapse
Affiliation(s)
- Qisheng Pan
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - Stephanie Portelli
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - Thanh Binh Nguyen
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - David B Ascher
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| |
Collapse
|
4
|
Aptamer Affinity to P53 DBD: A Molecular Dynamics Study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
5
|
Tsumura T, Doi K, Marusawa H. Precision Medicine of Hepatobiliary and Pancreatic Cancers: Focusing on Clinical Trial Outcomes. Cancers (Basel) 2022; 14:cancers14153674. [PMID: 35954337 PMCID: PMC9367472 DOI: 10.3390/cancers14153674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor-agnostic precision medicine employing comprehensive genome profiling (CGP) and using next-generation sequencing (NGS) has been progressing recently. This review focuses on precision medicine for advanced unresectable hepatobiliary and pancreatic cancers. In this paper, for biliary tract cancer (BTC), therapies that target several regulators of cancer cell growth, including isocitrate dehydrogenase 1 (IDH1), fibroblast growth factor receptor 2 (FGFR2) fusion, proto-oncogene B-Raf (BRAF), and human epidermal growth factor receptor 2 (HER2) alterations, are reviewed. For pancreatic ductal adenocarcinoma (PDAC), therapies for Kirsten rat sarcoma virus (KRAS) gene mutation G12C, neuregulin (NRG)1, and breast cancer type 1 and 2 susceptibility (BRCA1/2), gene alterations are summarized. On the other hand, precision medicine targets were not established for hepatocellular carcinoma (HCC), although telomerase reverse transcriptase (TERT), tumor protein P53 (TP53), and Wnt/β catenin signaling alterations have been recognized as HCC driver oncogenes. Tumor-agnostic therapies for microsatellite instability-high (MSI-H) and neurotropic tyrosine receptor kinase (NTRK) fusion cancers effectively treat biliary and pancreatic cancers. Precision medicine methods developed using NGS of circulating tumor DNA (ctDNA) and utilizing a liquid biopsy technique are discussed.
Collapse
Affiliation(s)
- Takehiko Tsumura
- Department of Medical Oncology, Osaka Red Cross Hospital, Osaka 543-8555, Japan;
- Department of Gastroenterology, Osaka Red Cross Hospital, Osaka 543-8555, Japan;
- Correspondence: ; Tel.: +81-6-6774-5111; Fax: +81-6-6774-5131
| | - Keitaro Doi
- Department of Medical Oncology, Osaka Red Cross Hospital, Osaka 543-8555, Japan;
| | - Hiroyuki Marusawa
- Department of Gastroenterology, Osaka Red Cross Hospital, Osaka 543-8555, Japan;
| |
Collapse
|
6
|
Elbadawy M, Fujisaka K, Yamamoto H, Tsunedomi R, Nagano H, Ayame H, Ishihara Y, Mori T, Azakami D, Uchide T, Fukushima R, Abugomaa A, Kaneda M, Yamawaki H, Shinohara Y, Omatsu T, Mizutani T, Usui T, Sasaki K. Establishment of an experimental model of normal dog bladder organoid using a three-dimensional culture method. Biomed Pharmacother 2022; 151:113105. [PMID: 35605292 DOI: 10.1016/j.biopha.2022.113105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Dog bladder cancer (BC) is mostly muscle-invasive (MI) with poor prognosis, and its pathogenesis is close to human MIBC. Three-dimensional (3D) organoid culture ensures novel knowledge on cancer diseases including BC. Recently, we have established dog BC organoids (BCO) using their urine samples. BCO recapitulated the epithelial structures, characteristics, and drug sensitivity of BC-diseased dogs. However, organoids from dog normal bladder epithelium are not established yet. Therefore, the present study aimed to establish dog normal bladder organoids (NBO) for further understanding the pathogenesis of dog BC and human MIBC. The established NBO underwent various analyzes including cell marker expressions, histopathological structures, cancer-related gene expression patterns, and drug sensitivity. NBO could be produced non-invasively with a continuous culturing and recapitulated the structures and characteristics of the dog's normal bladder mucosal tissues. Different drug sensitivities were observed in each NBO. The analysis of RNA sequencing revealed that several novel genes were changed in NBO compared with BCO. NBO showed a higher expression of p53 and E-cadherin, but a lower expression of MDM2 and Twist1 compared with BCO. These results suggest that NBO could be a promising experimental 3D model for studying the developmental mechanisms of dog BC and human MIBC.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt.
| | - Kodai Fujisaka
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiromi Ayame
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, Gifu 501-1193, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Surgery, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryuji Fukushima
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 ban-cho, Towada, Aomori 034-8628, Japan
| | - Yuta Shinohara
- Pet Health & Food Division, Iskara Industry CO., LTD, 1-14-2, Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Tsutomu Omatsu
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
7
|
Zhao L, Yin XX, Qin J, Wang W, He XF. Association Between the TP53 Polymorphisms and Breast Cancer Risk: An Updated Meta-Analysis. Front Genet 2022; 13:807466. [PMID: 35571038 PMCID: PMC9091657 DOI: 10.3389/fgene.2022.807466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The relationship of TP53 codons 72, IVS3 16 bp, and IVS6+62A > G polymorphisms with breast cancer (BC) risk has been analyzed in seventeen published meta-analyses. However, the credibility of statistically significant associations was ignored and many new studies have been reported on these themes. Objectives: To explore whether TP53 codons 72, IVS3 16 bp, and IVS6+62A > G polymorphisms are associated with BC risk and the clinical phenomena. Methods: To comprehensively search the data (through October 25, 2021), we provided a clear search strategy and reviewed the references of published meta-analyses. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) were used. Results: The current meta-analysis had a larger sample size than the previous ones: 99 studies with 43,951 BC and 48,479 controls for TP53 codon 72 polymorphism, 35 studies with 8,705 BC and 7,516 controls for IVS3 16 bp polymorphism, and 25 studies with 12,222 BC and 12,895 controls for IVS6+62A > G polymorphism. Five gene models were used to explore the association between the three polymorphisms and BC risk, and partial positive results were similar to published meta-analyses results. However, a large number of significant results were considered to be unreliable after correcting with Bayesian false-discovery probability (BFDP), except for the association between TP53 IVS3 16 bp polymorphism and BC risk in overall analysis (GG vs. CC: BFDP = 0.738), matched studies (GG vs. CC: BFDP = 0.173; GG vs. CC + CG: BFDP = 0.447), and tumor size below 2 cm (GG vs. CC: BFDP = 0.088; GG + CG vs. CC: BFDP = 0.730; GG vs. CC + CG: BFDP = 0.311). These unreliable results were confirmed again without new solid results emerging in further sensitivity analysis (only studies in compliance with the quality assessment standard). Conclusion: After considering the quality of the included studies and the reliability of the results, the present meta-analysis suggested that TP53 codons 72, IVS3 16 bp, and IVS6+62A > G polymorphisms were not significantly associated with the BC risk. Those results which prove that these three polymorphisms increase BC risk are more likely to be false-positive results due to various confounding factors.
Collapse
Affiliation(s)
- Lin Zhao
- Teaching Reform Class of 2018 of the First Clinical College, Changzhi Medical College, Changzhi, China
| | - Xiang-Xiongyi Yin
- Fifth Class of 2018 of the Second Clinical College, Changzhi Medical College, Changzhi, China
| | - Jun Qin
- General Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wei Wang
- Beijing Zhendong Guangming Pharmaceutical Research Institute, Beijing, China
- *Correspondence: Wei Wang, ; Xiao-Feng He,
| | - Xiao-Feng He
- Institute of Evidence-Based Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Wang, ; Xiao-Feng He,
| |
Collapse
|
8
|
Kobayashi T, Makino T, Yamashita K, Saito T, Tanaka K, Takahashi T, Kurokawa Y, Yamasaki M, Nakajima K, Morii E, Eguchi H, Doki Y. APR-246 induces apoptosis and enhances chemo-sensitivity via activation of ROS and TAp73-Noxa signal in oesophageal squamous cell cancer with TP53 missense mutation. Br J Cancer 2021; 125:1523-1532. [PMID: 34599296 DOI: 10.1038/s41416-021-01561-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/08/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Mutations in p53, identified in 90% of oesophageal squamous cell carcinoma (ESCC), are associated with unfavourable prognosis and chemo-resistance. APR-246 induces apoptosis by restoring transcriptional ability of mutant p53, and may be a promising therapeutic agent to overcome chemo-resistance in ESCC. METHODS In ESCC cell lines differing in p53 status, we performed in vitro cell viability and apoptosis assays, evaluated reactive oxygen species (ROS) generation, and assessed signal changes by western blot after APR-246 administration with/without chemo-agent. Antitumour effects and signal changes were evaluated in in vivo experiments using xenograft and patient-derived xenograft (PDX) mouse models. RESULTS APR-246 administration induced significant apoptosis by upregulating p73 and Noxa via ROS induction in ESCC cell lines harbouring p53 missense mutations. Moreover, APR-246 plus chemotherapy exerted combined antitumour effects in ESCC with p53 missense mutations. This effect was also mediated through enhanced ROS activity, leading to massive apoptosis via upregulation of p73 and Noxa. These findings were confirmed by xenograft and PDX models with p53 mutant ESCC. CONCLUSION APR-246 strongly induced apoptosis by inducing ROS activity and p73-Noxa signalling, specifically in ESCC with p53 missense mutation. This antitumour effect was further enhanced by combination with 5-FU, which we first confirmed in ESCC preclinical model.
Collapse
Affiliation(s)
- Teruyuki Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
De D, Upadhyay P, Das A, Ghosh A, Adhikary A, Goswami MM. Studies on cancer cell death through delivery of dopamine as anti-cancer drug by a newly functionalized cobalt ferrite nano-carrier. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Xia Y, Li X, Sun W. Applications of Recombinant Adenovirus-p53 Gene Therapy for Cancers in the Clinic in China. Curr Gene Ther 2021; 20:127-141. [PMID: 32951572 DOI: 10.2174/1566523220999200731003206] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 01/30/2023]
Abstract
Suppression of TP53 function is nearly ubiquitous in human cancers, and a significant fraction of cancers have mutations in the TP53 gene itself. Therefore, the wild-type TP53 gene has become an important target gene for transformation research of cancer gene therapy. In 2003, the first anti-tumor gene therapy drug rAd-p53 (recombinant human p53 adenovirus), trade name Gendicine™, was approved by the China Food and Drug Administration (CFDA) for treatment of head and neck squamous cell carcinoma (HNSCC) in combination with radiotherapy. The recombinant human TP53 gene is delivered into cancer cells by an adenovirus vector constructed to express the functional p53 protein. Although the only currently approved used of Gendicine is in combination with radiotherapy for treatment of HNSCC, clinical studies have been carried out for more than 20 other applications of Gendicine in treating cancer, including treatment of advanced lung cancer, advanced liver cancer, malignant gynecological tumors, and soft tissue sarcomas. Currently more than 30,000 patients have been treated with Gendicine. This review provides an overview of the clinical applications of Gendicine in China. We summarize a total of 48 studies with 2,561 patients with solid tumors, including 34 controlled clinical studies and 14 open clinical studies, i.e., clinical studies without a control group. There are 11 studies for head and neck cancer, 10 for liver cancer, 6 for malignant gynecological tumors, 4 for non-small cell lung cancer, 4 for soft tissue sarcoma, 4 for malignant effusion, 2 for gastrointestinal tumors, and 7 for other types of cancer. In all the reported clinical studies, the most common side effect was self-limited fever. Intratumoral injection and intra-arterial infusion were the most common routes of administration. Overall, Gendicine combined with chemotherapy, radiotherapy, or other conventional treatment regimens demonstrated significantly higher response rates compared to standard therapies alone. Some of the published studies also showed that Gendicine combination regimens demonstrated longer progression-free survival times than conventional treatments alone. To date, Gendicine has been clinically used in China for treatment of cancers other than HNSCC for more than ten years, mainly for patients with advanced or unresectable malignant tumors. However, the establishment of standard treatment regimens using TP53 gene therapy is still needed in order to advance its use in clinical practice.
Collapse
Affiliation(s)
- Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Wei Sun
- Radiology Department, Shengjing Hospital of China Medical University, Sanhao, China
| |
Collapse
|
11
|
Morita S, Suda T, Kishi Y, Iwasaki T, Hiraoka N, Nagayama I, Hoshi T, Abe S, Yagi K, Hasegawa G, Ikarashi T, Terai S. Synchronous Double Bile Duct Cancers with Distinct Genetic Features. Intern Med 2020; 59:2129-2134. [PMID: 32493852 PMCID: PMC7516326 DOI: 10.2169/internalmedicine.4613-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A 69-year-old man was referred to our hospital because of appetite loss. Imaging showed a nodular tumor in the perihilar bile duct and a second flat lesion in the distal bile duct. Right hepatopancreaticoduodenectomy was performed, and the histopathological findings demonstrated that the perihilar and distal lesions were moderately and poorly differentiated adenocarcinoma, respectively, and anatomically separated. Furthermore, the resected specimens showed no pancreaticobiliary maljunction. Histological and TP53 gene analyses in a rare case of synchronous double bile duct cancers suggest that there are various genetic pathways through which bile duct cancer develops, highlighting the complexity of its pathogenesis.
Collapse
Affiliation(s)
- Shinichi Morita
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine Niigata University Hospital, Japan
| | - Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine Niigata University Hospital, Japan
| | - Yoji Kishi
- Division of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, Japan
- Department of Surgery, National Defense Medical College, Japan
| | - Toshimitsu Iwasaki
- Division of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, Japan
- Department of Surgery, National Defense Medical College, Japan
| | - Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Japan
| | - Itsuo Nagayama
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine Niigata University Hospital, Japan
| | - Takahiro Hoshi
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine Niigata University Hospital, Japan
| | - Satoshi Abe
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine Niigata University Hospital, Japan
| | - Kazuyoshi Yagi
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine Niigata University Hospital, Japan
| | - Go Hasegawa
- Department of Pathology, Uonuma institute of Community Medicine Niigata University Hospital, Japan
| | | | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| |
Collapse
|
12
|
Moradi A, Pourseif MM, Jafari B, Parvizpour S, Omidi Y. Nanobody-based therapeutics against colorectal cancer: Precision therapies based on the personal mutanome profile and tumor neoantigens. Pharmacol Res 2020; 156:104790. [DOI: 10.1016/j.phrs.2020.104790] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/07/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
|
13
|
Abstract
The rediscovery and reinterpretation of the Warburg effect in the year 2000 occulted for almost a decade the key functions exerted by mitochondria in cancer cells. Until recent times, the scientific community indeed focused on constitutive glycolysis as a hallmark of cancer cells, which it is not, largely ignoring the contribution of mitochondria to the malignancy of oxidative and glycolytic cancer cells, being Warburgian or merely adapted to hypoxia. In this review, we highlight that mitochondria are not only powerhouses in some cancer cells, but also dynamic regulators of life, death, proliferation, motion and stemness in other types of cancer cells. Similar to the cells that host them, mitochondria are capable to adapt to tumoral conditions, and probably to evolve to ‘oncogenic mitochondria' capable of transferring malignant capacities to recipient cells. In the wider quest of metabolic modulators of cancer, treatments have already been identified targeting mitochondria in cancer cells, but the field is still in infancy.
Collapse
Affiliation(s)
- Debora Grasso
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Tânia Capelôa
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Justine A Van de Velde
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
14
|
Wen X, Klionsky DJ. At a glance: A history of autophagy and cancer. Semin Cancer Biol 2019; 66:3-11. [PMID: 31707087 DOI: 10.1016/j.semcancer.2019.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
Since the first discovery of the lysosome and the definition of autophagy by Christian de Duve more than 60 years ago, research on autophagy, a process targeting cytoplasmic materials for lysosomal degradation and recycling, has expanded dramatically. This research has extended our understanding of the basic mechanism of autophagy as well as its role in pathophysiology. Autophagy deficiency has been reported to be involved in numerous diseases, among which cancer has been extensively studied, in part because autophagy appears to play a dual role, depending on the stage of tumorigenesis. In this review, we will briefly revisit the intriguing history of autophagy and cancer, underscoring the importance of harnessing this pathway for the benefit of human health.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
15
|
The Association and Significance of p53 in Gynecologic Cancers: The Potential of Targeted Therapy. Int J Mol Sci 2019; 20:ijms20215482. [PMID: 31689961 PMCID: PMC6862296 DOI: 10.3390/ijms20215482] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/28/2019] [Accepted: 11/02/2019] [Indexed: 12/16/2022] Open
Abstract
Dysfunction of p53 is observed in the many malignant tumors. In cervical cancer, p53 is inactivated by degradation through the complex with human papilloma virus (HPV) oncoprotein E6 and E6-associated protein (E6AP), an E3 ubiquitin protein ligase. In endometrial cancer, overexpression of p53 in immunohistochemistry is a significant prognostic factor. A discrepancy between p53 overexpression and TP53 mutations is observed in endometrioid endometrial cancer, indicating that the accumulation of p53 protein can be explained by not only gene mutations but also dysregulation of the factors such as ERβ and MDM2. Furthermore, the double-positive expression of immunoreactive estrogen receptor (ER) β and p53 proteins is closely associated with the incidence of metastasis and/or recurrence. High-grade serous ovarian carcinoma (HGSC) arises from secretary cells in the fallopian tube. The secretary cell outgrowth (SCOUT) with TP53 mutations progresses to HGSC via the p53 signature, serous intraepithelial lesion (STIL), and serous intraepithelial carcinoma (STIC), indicating that TP53 mutation is associated with carcinogenesis of HGSC. Clinical application targeting p53 has been approved for some malignant tumors. Gene therapy by the adenovirus-mediated p53 gene transfer system is performed for head and neck cancer. A clinical phase III trial using MDM2/X inhibitors, idasanutlin (RG7388) combined with cytarabine, is being performed involving relapse/refractory acute myeloid leukemia patients. The use of adenoviruses as live vectors which encode wild-type p53 has given promising results in cervical cancer patients.
Collapse
|
16
|
Maruca A, Catalano R, Bagetta D, Mesiti F, Ambrosio FA, Romeo I, Moraca F, Rocca R, Ortuso F, Artese A, Costa G, Alcaro S, Lupia A. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. Eur J Med Chem 2019; 181:111579. [PMID: 31398616 DOI: 10.1016/j.ejmech.2019.111579] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Many bioactive agents have been extracted from plants or belong to functional foods and have been considered in the treatment of serious and multifactorial diseases, such as cancer. In particular, this review is focused on the anti-cancer properties owned by several natural products typically from the Mediterranean area. In some regions of the South of Italy, a lower cancer incidence has been observed. There is increasing evidence that adherence to a Mediterranean dietary pattern correlates with reduced risk of several cancer types. This could be mainly attributed to the typical lifestyle aspects of the Mediterranean diet, such as high consumption of fruit and vegetables. In this review, the main natural products of the Mediterranean area are discussed, with particular attention on their anti-cancer properties endowed with multi-target profiles.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Isabella Romeo
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Chemistry and Chemical Technology, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Federica Moraca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Roberta Rocca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Experimental and Clinical Medicine "Magna Græcia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
17
|
Lei J, Qi R, Tang Y, Wang W, Wei G, Nussinov R, Ma B. Conformational stability and dynamics of the cancer-associated isoform Δ133p53β are modulated by p53 peptides and p53-specific DNA. FASEB J 2019; 33:4225-4235. [PMID: 30540922 PMCID: PMC6404584 DOI: 10.1096/fj.201801973r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
p53 is a tumor suppressor protein that maintains genome stability, but its Δ133p53β and Δ160p53β isoforms promote breast cancer cell invasion. The sequence truncations in the p53 core domain raise key questions related to their physicochemical properties, including structural stabilities, interaction mechanisms, and DNA-binding abilities. Herein, we investigated the conformational dynamics of Δ133p53β and Δ160p53β with and without binding to p53-specific DNA by using molecular dynamics simulations. We observed that the core domains of the 2 truncated isoforms are much less stable than wild-type (wt) p53β, and the increased solvent exposure of their aggregation-triggering segment indicates their higher aggregation propensities than wt p53. We also found that Δ133p53β stability is modulable by peptide or DNA interactions. Adding a p53 peptide (derived from truncated p53 sequence 107-129) may help stabilize Δ133p53. Most importantly, our simulations of p53 isomer-DNA complexes indicate that Δ133p53β dimer, but not Δ160p53β dimer, could form a stable complex with p53-specific DNA, which is consistent with recent experiments. This study provides physicochemical insight into Δ133p53β, Δ133p53β-DNA complexes, Δ133p53β's pathologic mechanism, and peptide-based inhibitor design against p53-related cancers.-Lei, J., Qi, R., Tang, Y., Wang, W., Wei, G., Nussinov, R., Ma, B. Conformational stability and dynamics of the cancer-associated isoform Δ133p53β are modulated by p53 peptides and p53-specific DNA.
Collapse
Affiliation(s)
- Jiangtao Lei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences–Ministry of Education, Department of Physics, Fudan University, Shanghai, China
| | - Ruxi Qi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences–Ministry of Education, Department of Physics, Fudan University, Shanghai, China
| | - Yegen Tang
- Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences–Ministry of Education, Department of Physics, Fudan University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA; and
- Department of Human Genetics and Molecular Medicine, Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA; and
| |
Collapse
|
18
|
Olotu FA, Soliman MES. Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: Structural and molecular insights toward the design of potent reactivators in cancer therapy. J Cell Biochem 2018; 120:951-966. [PMID: 30160791 DOI: 10.1002/jcb.27458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/19/2018] [Indexed: 01/08/2023]
Abstract
The DNA-binding ability of p53 represents the crux of its tumor suppressive activities, which involves transcriptional activation of target genes responsible for apoptosis and cell-cycle arrest. Mutational occurrences within or in close proximity to the DNA-binding surface of p53 have accounted for the loss of direct DNA-binding ability and inactivation implicated in many cases of cancer. Moreover, the design of therapeutic compounds that can restore DNA-binding ability in p53 mutants has been identified as a way forward in curtailing their oncogenic activities. However, there is still the need for more insights into evaluate the perturbations that occur at the DNA-binding interface of mp53 relative to DNA-binding loss, inactivation, and design of potent reactivators, hence the purpose of this study. Therefore, we evaluated p53-structural (R175H) and contact (R273C) mutational effects using tunnel perturbation analysis and other computational tools. We identified significant perturbations in the active tunnels of p53, which resulted in altered geometry and loss, unlike in the wild-type p53. This corroborated with structural, DNA-binding, and interaction network analysis, which showed that loss of flexibility, repulsion of DNA-interactive residues, and instability occurred at the binding interface of both mutants. Also, these mutations altered bonding interactions and network topology at the DNA-binding interface, resulting in the reduction of p53-DNA binding proximity and affinity. Therefore, these findings would aid the structure-based design of novel chemical entities capable of restoring p53-DNA binding and activation.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-Computation and Drug Design Laboratory, Department of Pharmaceutical Chemistry, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, Department of Pharmaceutical Chemistry, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
19
|
Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018; 16:9-18. [PMID: 29928381 DOI: 10.3892/ol.2018.8679] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) results from the progressive accumulation of multiple genetic and epigenetic aberrations within cells. The progression from colorectal adenoma to carcinoma is caused by three major pathways: Microsatellite instability, chromosomal instability and CpG island methylator phenotype. A growing body of scientific evidences suggests that CRC is a heterogeneous disease, and genetic characteristics of the tumors determine their prognostic outcome and response to targeted therapies. Early diagnosis and effective targeted therapies based on a current knowledge of the molecular characteristics of CRC are essential to the successful treatment of CRC. Therefore, the present review summarized the current understanding of the molecular characteristics of CRC, and discussed its implications for diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Hong-Quan Duong
- Department of Cancer Research, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi 100000, Vietnam
| |
Collapse
|
20
|
Tunca B, Erisen L, Coskun H, Cecener G, Ozuysal S, Egeli U. P53 Gene Mutations in Surgical Margins and Primary Tumor Tissues of Patients with Squamous Cell Carcinoma of the Head and Neck. TUMORI JOURNAL 2018; 93:182-8. [PMID: 17557566 DOI: 10.1177/030089160709300212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and Background The frequency of p53 mutations in primary tumors, the effect of the mutations on some clinical and pathological features of head and neck squamous cell carcinoma, and the impact of p53 mutations in the surgical margins on local recurrence were determined. Material and Methods We investigated the presence of p53 mutations in primary tumor samples and in the surgical margins of 34 patients with head and neck cancer using single strand conformational polymorphism and sequencing analysis. Results The p53 mutations (codons 175addAT, 175delGC, 206G→A, and 248delC) were found in the primary tumor samples of 15 of 34 patients (44.12%) and in the surgical margins of 5 of the 15 tumors (33.33%) with p53 mutations. Conclusions We found no statistically significant association between the presence of p53 mutations in the primary tumor, the clinical and pathological features, or outcome of head and neck squamous cell carcinoma in this study. Furthermore, the presence of p53 mutations in the surgical margins may not increase the risk of local-regional recurrence, but probably increases the risk of developing distant metastases or second primary tumors.
Collapse
Affiliation(s)
- Berrin Tunca
- Department of Medical Biology, School of Medicine, Uludag University, Bursa, Turkey.
| | | | | | | | | | | |
Collapse
|
21
|
Ben Abid S, Sahnoun M, Yacoubi-Hadj Amor I, Abdelmoula-Souissi S, Hassairi H, Mokdad-Gargouri R, Gargouri A. New Phage Display-Isolated Heptapeptide Recognizing the Regulatory Carboxy-Terminal Domain of Human Tumour Protein p53. Protein J 2017; 36:443-452. [PMID: 28710679 DOI: 10.1007/s10930-017-9730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcription factor tumor protein p53 (P53) controls a variety of genes most involved in cell cycle and is at the origin of apoptosis when DNA is irreparably damaged. We planned to select novel tumor protein p53-interacting peptides through the screening of hepta-peptide phage-display libraries. For this aim, human tumor suppressor protein p53 was expressed in Escherichia coli as Glutathione S-transferase fusion and purified by affinity chromatography. The phage library was then screened on this immobilized protein target. After three rounds of panning, phages were sequenced and shown to contain a consensus sequence NPNSAQG. Thereafter, either free p53 liberated from the fusion protein through thrombin treatment or Histidine-tagged p53 were recognized efficiently by the selected phage. To locate the p53-binding epitope of the selected hepta-peptide, three long peptides parts of the three known domains of the protein were synthesized and screened by the selected phage/peptide. Thus, the Carboxy-terminal p53 region was shown to be the target of the isolated phage as well as by its derived Fluorescein isothiocyanate-peptide. Molecular docking showed Lysine 386 as an important residue potentially engaged in this interaction. The selected hepta-peptide is a novel p53-interacting peptide, not described by other studies, and could be used as therapeutic tool in the future.
Collapse
Affiliation(s)
- Sihem Ben Abid
- Laboratory of Eukaryotic Molecular Biotechnology, Center of Biotechnology of Sfax (CBS)/University of Sfax, Sidi Mansour, Sfax, Tunisia
| | - Mouna Sahnoun
- Laboratory of Microbial Biotechnology and Engineering Enzymes, Center of Biotechnology of Sfax (CBS)/University of Sfax, Sidi Mansour, Sfax, Tunisia
| | - Ines Yacoubi-Hadj Amor
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS)/University of Sfax, Sidi Mansour, Sfax, Tunisia
| | - Salma Abdelmoula-Souissi
- Laboratory of Eukaryotic Molecular Biotechnology, Center of Biotechnology of Sfax (CBS)/University of Sfax, Sidi Mansour, Sfax, Tunisia
| | - Hajer Hassairi
- Laboratory of Analyses, Center of Biotechnology of Sfax (CBS)/University of Sfax, Sidi Mansour, Sfax, Tunisia
| | - Raja Mokdad-Gargouri
- Laboratory of Eukaryotic Molecular Biotechnology, Center of Biotechnology of Sfax (CBS)/University of Sfax, Sidi Mansour, Sfax, Tunisia
| | - Ali Gargouri
- Laboratory of Eukaryotic Molecular Biotechnology, Center of Biotechnology of Sfax (CBS)/University of Sfax, Sidi Mansour, Sfax, Tunisia.
| |
Collapse
|
22
|
Thayer KM, Han ISM. Chemical principles additive model aligns low consensus DNA targets of p53 tumor suppressor protein. Comput Biol Chem 2017; 68:186-193. [PMID: 28363149 DOI: 10.1016/j.compbiolchem.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/05/2017] [Indexed: 11/25/2022]
Abstract
Computational prediction of the interaction between protein transcription factors and their cognate DNA binding sites in genomic promoters constitutes a formidable challenge in two situations: when the number of discriminatory interactions is small compared to the length of the binding site, and when DNA binding sites possess a poorly conserved consensus binding motif. The transcription factor p53 tumor suppressor protein and its target DNA exhibit both of these issues. From crystal structure analysis, only three discriminatory amino acid side chains contact the DNA for a binding site spanning ten base pairs. Furthermore, our analysis of a dataset of genome wide fragments binding to p53 revealed many sequences lacking the expected consensus. The low information content leads to an overestimation of binding sites, and the lack of conservation equates to a computational alignment problem. Within a fragment of DNA known to bind to p53, computationally locating the position of the site equates to aligning the DNA with the binding interface. From a molecular perspective, that alignment implies a specification of which DNA bases are interacting with which amino acid side chains, and aligning many sequences to the same protein interface concomitantly produces a multiple sequence alignment. From this vantage, we propose to cast prediction of p53 binding sites as an alignment to the protein binding surface with the novel approach of optimizing the alignment of DNA fragments to the p53 binding interface based on chemical principles. A scoring scheme based on this premise was successfully implemented to score a dataset of biological DNA fragments known to contain p53 binding sites. The results illuminate the mechanism of recognition for the protein-DNA system at the forefront of cancer research. These findings implicate that p53 may recognize its target binding sites via several different mechanisms which may include indirect readout.
Collapse
Affiliation(s)
- Kelly M Thayer
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States of America; Department of Chemistry, Wesleyan University, Hall-Atwater Laboratories, Middletown, CT 06459, United States of America.
| | - In Sub M Han
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States of America
| |
Collapse
|
23
|
Danhier P, Bański P, Payen VL, Grasso D, Ippolito L, Sonveaux P, Porporato PE. Cancer metabolism in space and time: Beyond the Warburg effect. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:556-572. [PMID: 28167100 DOI: 10.1016/j.bbabio.2017.02.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/19/2017] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
Abstract
Altered metabolism in cancer cells is pivotal for tumor growth, most notably by providing energy, reducing equivalents and building blocks while several metabolites exert a signaling function promoting tumor growth and progression. A cancer tissue cannot be simply reduced to a bulk of proliferating cells. Tumors are indeed complex and dynamic structures where single cells can heterogeneously perform various biological activities with different metabolic requirements. Because tumors are composed of different types of cells with metabolic activities affected by different spatial and temporal contexts, it is important to address metabolism taking into account cellular and biological heterogeneity. In this review, we describe this heterogeneity also in metabolic fluxes, thus showing the relative contribution of different metabolic activities to tumor progression according to the cellular context. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Pierre Danhier
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 73 box B1.73.08, 1200 Brussels, Belgium
| | - Piotr Bański
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Valéry L Payen
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Debora Grasso
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium; Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino Italy.
| |
Collapse
|
24
|
Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death domain (FADD) proteins to induce apoptosis in colorectal cancer. Sci Rep 2016; 6:32979. [PMID: 27622714 PMCID: PMC5020693 DOI: 10.1038/srep32979] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 07/12/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor suppressor p53 preserves the genomic integrity by restricting anomaly at the gene level. The hotspots for mutation in half of all colon cancers reside in p53. Hence, in a p53-mutated cellular milieu targeting cancer cells may be achievable by targeting the paralogue(s) of p53. Here we have shown the effectiveness of crocetin, a dietary component, in inducing apoptosis of colon cancer cells with varying p53 status. In wild-type p53-expressing cancer cells, p53 in one hand transactivates BAX and in parallel up-regulates p53-induced death domain protein (PIDD) that in turn cleaves and activates BID through caspase-2. Both BAX and t-BID converge at mitochondria to alter the transmembrane potential thereby leading to caspase-9 and caspase-3-mediated apoptosis. In contrast, in functional p53-impaired cells, this phytochemical exploits p53-paralogue p73, which up-regulates FAS to cleave BID through FAS-FADD-caspase-8-pathway. These findings not only underline the phenomenon of functional switch-over from p53 to p73 in p53-impaired condition, but also validate p73 as a promising and potential target for cancer therapy in absence of functional p53.
Collapse
|
25
|
Baudot AD, Crighton D, O'Prey J, Somers J, Sierra Gonzalez P, Ryan KM. p53 directly regulates the glycosidase FUCA1 to promote chemotherapy-induced cell death. Cell Cycle 2016; 15:2299-308. [PMID: 27315169 PMCID: PMC5004703 DOI: 10.1080/15384101.2016.1191714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 12/16/2022] Open
Abstract
p53 is a central factor in tumor suppression as exemplified by its frequent loss in human cancer. p53 exerts its tumor suppressive effects in multiple ways, but the ability to invoke the eradication of damaged cells by programmed cell death is considered a key factor. The ways in which p53 promotes cell death can involve direct activation or engagement of the cell death machinery, or can be via indirect mechanisms, for example though regulation of ER stress and autophagy. We present here another level of control in p53-mediated tumor suppression by showing that p53 activates the glycosidase, FUCA1, a modulator of N-linked glycosylation. We show that p53 transcriptionally activates FUCA1 and that p53 modulates fucosidase activity via FUCA1 up-regulation. Importantly, we also report that chemotherapeutic drugs induce FUCA1 and fucosidase activity in a p53-dependent manner. In this context, while we found that over-expression of FUCA1 does not induce cell death, RNAi-mediated knockdown of endogenous FUCA1 significantly attenuates p53-dependent, chemotherapy-induced apoptotic death. In summary, these findings add an additional component to p53s tumor suppressive response and highlight another mechanism by which the tumor suppressor controls programmed cell death that could potentially be exploited for cancer therapy.
Collapse
Affiliation(s)
- Alice D. Baudot
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, Scotland, UK
| | - Diane Crighton
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, Scotland, UK
| | - Jim O'Prey
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, Scotland, UK
| | - Joanna Somers
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, Scotland, UK
| | | | - Kevin M. Ryan
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, Scotland, UK
| |
Collapse
|
26
|
Aghagolzadeh P, Radpour R. New trends in molecular and cellular biomarker discovery for colorectal cancer. World J Gastroenterol 2016; 22:5678-5693. [PMID: 27433083 PMCID: PMC4932205 DOI: 10.3748/wjg.v22.i25.5678] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/16/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death worldwide, which is consequence of multistep tumorigenesis of several genetic and epigenetic events. Since CRC is mostly asymptomatic until it progresses to advanced stages, the early detection using effective screening approaches, selection of appropriate therapeutic strategies and efficient follow-up programs are essential to reduce CRC mortalities. Biomarker discovery for CRC based on the personalized genotype and clinical information could facilitate the classification of patients with certain types and stages of cancer to tailor preventive and therapeutic approaches. These cancer-related biomarkers should be highly sensitive and specific in a wide range of specimen(s) (including tumor tissues, patients’ fluids or stool). Reliable biomarkers which enable the early detection of CRC, can improve early diagnosis, prognosis, treatment response prediction, and recurrence risk. Advances in our understanding of the natural history of CRC have led to the development of different CRC associated molecular and cellular biomarkers. This review highlights the new trends and approaches in CRC biomarker discovery, which could be potentially used for early diagnosis, development of new therapeutic approaches and follow-up of patients.
Collapse
|
27
|
Wei SJ, Chee S, Yurlova L, Lane D, Verma C, Brown C, Ghadessy F. Avoiding drug resistance through extended drug target interfaces: a case for stapled peptides. Oncotarget 2016; 7:32232-46. [PMID: 27057630 PMCID: PMC5078010 DOI: 10.18632/oncotarget.8572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Abstract
Cancer drugs often fail due to the emergence of clinical resistance. This can manifest through mutations in target proteins that selectively exclude drug binding whilst retaining aberrant function. A priori knowledge of resistance-inducing mutations is therefore important for both drug design and clinical surveillance. Stapled peptides represent a novel class of antagonists capable of inhibiting therapeutically relevant protein-protein interactions. Here, we address the important question of potential resistance to stapled peptide inhibitors. HDM2 is the critical negative regulator of p53, and is often overexpressed in cancers that retain wild-type p53 function. Interrogation of a large collection of randomly mutated HDM2 proteins failed to identify point mutations that could selectively abrogate binding by a stapled peptide inhibitor (PM2). In contrast, the same interrogation methodology has previously uncovered point mutations that selectively inhibit binding by Nutlin, the prototypical small molecule inhibitor of HDM2. Our results demonstrate both the high level of structural p53 mimicry employed by PM2 to engage HDM2, and the potential resilience of stapled peptide antagonists to mutations in target proteins. This inherent feature could reduce clinical resistance should this class of drugs enter the clinic.
Collapse
Affiliation(s)
- Siau Jia Wei
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | - Sharon Chee
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | | | - David Lane
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | - Chandra Verma
- Bioinformatics Institute (A*STAR), 07-01 Matrix, 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | | | - Farid Ghadessy
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| |
Collapse
|
28
|
Koulgi S, Achalere A, Sonavane U, Joshi R. Investigating DNA Binding and Conformational Variation in Temperature Sensitive p53 Cancer Mutants Using QM-MM Simulations. PLoS One 2015; 10:e0143065. [PMID: 26579714 PMCID: PMC4651507 DOI: 10.1371/journal.pone.0143065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Abstract
The tp53 gene is found to be mutated in 50% of all the cancers. The p53 protein, a product of tp53 gene, is a multi-domain protein. It consists of a core DNA binding domain (DBD) which is responsible for its binding and transcription of downstream target genes. The mutations in p53 protein are responsible for creating cancerous conditions and are found to be occurring at a high frequency in the DBD region of p53. Some of these mutations are also known to be temperature sensitive (ts) in nature. They are known to exhibit partial or strong binding with DNA in the temperature range (298–306 K). Whereas, at 310 K and above they show complete loss in binding. We have analyzed the changes in binding and conformational behavior at 300 K and 310 K for three of the ts-mutants viz., V143A, R249S and R175H. QM-MM simulations have been performed on the wild type and the above mentioned ts-mutants for 30 ns each. The optimal estimate of free energy of binding for a particular number of interface hydrogen bonds was calculated using the maximum likelihood method as described by Chodera et. al (2007). This parameter has been observed to be able to mimic the binding affinity of the p53 ts-mutants at 300 K and 310 K. Thus the correlation between MM-GBSA free energy of binding and hydrogen bonds formed by the interface residues between p53 and DNA has revealed the temperature dependent nature of these mutants. The role of main chain dihedrals was obtained by performing dihedral principal component analysis (PCA). This analysis, suggests that the conformational variations in the main chain dihedrals (ϕ and ψ) of the p53 ts-mutants may have caused reduction in the overall stability of the protein. The solvent exposure of the side chains of the interface residues were found to hamper the binding of the p53 to the DNA. Solvent Accessible Surface Area (SASA) also proved to be a crucial property in distinguishing the conformers obtained at 300 K and 310 K for the three ts-mutants from the wild type at 300 K.
Collapse
Affiliation(s)
- Shruti Koulgi
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
| | - Archana Achalere
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
| | - Uddhavesh Sonavane
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
| | - Rajendra Joshi
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
- * E-mail:
| |
Collapse
|
29
|
Regulation of iron homeostasis by the p53-ISCU pathway. Sci Rep 2015; 5:16497. [PMID: 26560363 PMCID: PMC4642350 DOI: 10.1038/srep16497] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/15/2015] [Indexed: 11/09/2022] Open
Abstract
Accumulation of iron in tissues increases the risk of cancer, but iron regulatory mechanisms in cancer tissues are largely unknown. Here, we report that p53 regulates iron metabolism through the transcriptional regulation of ISCU (iron-sulfur cluster assembly enzyme), which encodes a scaffold protein that plays a critical role in Fe-S cluster biogenesis. p53 activation induced ISCU expression through binding to an intronic p53-binding site. Knockdown of ISCU enhanced the binding of iron regulatory protein 1 (IRP1), a cytosolic Fe-S protein, to an iron-responsive element in the 5′ UTR of ferritin heavy polypeptide 1 (FTH1) mRNA and subsequently reduced the translation of FTH1, a major iron storage protein. In addition, in response to DNA damage, p53 induced FTH1 and suppressed transferrin receptor, which regulates iron entry into cells. HCT116 p53+/+ cells were resistant to iron accumulation, but HCT116 p53−/− cells accumulated intracellular iron after DNA damage. Moreover, excess dietary iron caused significant elevation of serum iron levels in p53−/− mice. ISCU expression was decreased in the majority of human liver cancer tissues, and its reduced expression was significantly associated with p53 mutation. Our finding revealed a novel role of the p53-ISCU pathway in the maintenance of iron homeostasis in hepatocellular carcinogenesis.
Collapse
|
30
|
Menzies GE, Reed SH, Brancale A, Lewis PD. Base damage, local sequence context and TP53 mutation hotspots: a molecular dynamics study of benzo[a]pyrene induced DNA distortion and mutability. Nucleic Acids Res 2015; 43:9133-46. [PMID: 26400171 PMCID: PMC4627081 DOI: 10.1093/nar/gkv910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022] Open
Abstract
The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots.
Collapse
Affiliation(s)
- Georgina E Menzies
- Institute of Life Science, Swansea University School of Medicine, Swansea University, SA2 8PP, UK
| | - Simon H Reed
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmacology, Cardiff University, CF10 3NB, UK
| | - Paul D Lewis
- Institute of Life Science, Swansea University School of Medicine, Swansea University, SA2 8PP, UK
| |
Collapse
|
31
|
Shi Y, Han Y, Xie F, Wang A, Feng X, Li N, Guo H, Chen D. ASPP2 enhances oxaliplatin (L-OHP)-induced colorectal cancer cell apoptosis in a p53-independent manner by inhibiting cell autophagy. J Cell Mol Med 2014; 19:535-43. [PMID: 25534115 PMCID: PMC4369811 DOI: 10.1111/jcmm.12435] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/19/2014] [Indexed: 11/27/2022] Open
Abstract
Inactivation of p53-mediated cell death pathways is a central component of cancer progression. ASPP2 (apoptosis stimulated protein of p53-2) is a p53 binding protein that specially stimulates pro-apoptosis function of p53. Down-regulation of ASPP2 is observed in many human cancers and is associated with poor prognosis and metastasis. In this study, ASPP2 was found to enhance L-OHP-induced apoptosis in HCT116 p53−/− cells in a p53-independent manner. Such apoptosis-promoting effect of ASPP2 was achieved by inhibiting autophagy. Further experiments with ASPP2 RNA interference and autophagy inhibitor (3-methyladenine, 3-MA) confirmed that ASPP2 enhanced HCT116 p53−/− cell apoptosis via inhibiting the autophagy. The association of cell death and autophagy was also found in ASPP2+/− mice, where colon tissue with reduced ASPP2 expression displayed more autophagy and less cell death. Finally, colorectal tumours and their adjacent normal tissues from 20 colorectal cancer patients were used to examine ASPP2 expression, p53 expression and p53 mutation, to understand their relationships with the patients' outcome. Three site mutations were found in p53 transcripts from 16 of 20 patients. ASPP2 mRNA expressions were higher, and autophagy level was lower in the adjacent normal tissues, compared with the tumour tissues, which was independent of both p53 mutation and expression level. Taken together, ASPP2 increased tumour sensitivity to chemotherapy via inhibiting autophagy in a p53-independent manner, which was associated with the tumour formation, suggesting that both p53 inactivation and ASPP2 expression level were involved in the sensitivity of colorectal cancer to chemotherapy.
Collapse
Affiliation(s)
- Ying Shi
- Beijing Youan Hospital, Capital University of Medical Sciences, Beijing, China; Beijing Institute of Hepatology, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hiyama M, Kusakabe KT, Takeshita A, Sugi S, Kuniyoshi N, Imai H, Kano K, Kiso Y. Nutrient starvation affects expression of LC3 family at the feto-maternal interface during murine placentation. J Vet Med Sci 2014; 77:305-11. [PMID: 25421500 PMCID: PMC4383776 DOI: 10.1292/jvms.14-0490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
LC3 - the mammalian homolog of Atg8 - was found as autophagosome membrane binding protein in mammals and widely used as an autophagosomal marker. LC3A, B and C show different expression patterns in each tissue. The aim of this study was to reveal the differences of expression patterns among LC3 families in mouse placenta under normal condition and nutrient starving condition. LC3A and B were highly expressed in decidual cells. LC3A and B were increased in D14 compared with D12 and D16 in mouse placenta, while LC3C was decreased. Starvation induced increase in LC3B expression specifically. Immunohistochemistry showed different expression patterns among LC3A, B and C. LC3A expression in syncytiotrophoblast was vanished by starvation. The results of real time RT-PCR suggested differences between D12 and D16 in autophagic cascade induced by starvation. Taken together, this study suggests that autophagy could play a role in placental invasion system and that nutrient starvation affects LC3B expression.
Collapse
Affiliation(s)
- Masato Hiyama
- Laboratory of Basic Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lin L, Piao J, Ma Y, Jin T, Quan C, Kong J, Li Y, Lin Z. Mechanisms underlying cancer growth and apoptosis by DEK overexpression in colorectal cancer. PLoS One 2014; 9:e111260. [PMID: 25340858 PMCID: PMC4207817 DOI: 10.1371/journal.pone.0111260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022] Open
Abstract
Our previous study indicated that DEK protein was overexpressed in colorectal carcinoma (CRC) compared with the normal colorectal mucosa. DEK was also significantly correlated with the prognostic characteristics of patients with CRC, demonstrating that DEK played an important role in CRC progression. In this work, we evaluate the effects of DEK on biological behaviors in CRC and explore the related molecular mechanisms. The results showed that DEK was overexpressed in human CRC tissues, and was correlated with the Ki-67 index and the apoptotic index. DEK depletion by RNAi in SW-620 and HCT116 cells significantly decreased cell proliferation, but increased cell apoptosis. Upregulation of DEK was involved in the p53/MDM, Bcl-2 family, and caspase pathways. Our study demonstrates that DEK promotes the growth of CRC, and could be a therapeutic target in CRC.
Collapse
Affiliation(s)
- Lijuan Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
- Department of Medical Imaging, College of Medicine, Eastern Liaoning University, Dandong, China
| | - Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yibing Ma
- Department of Pathology, Dandong Centre Hospital, Dandong, China
| | - Tiefeng Jin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, Changchun, China
| | - Jienan Kong
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, Changchun, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| |
Collapse
|
34
|
Kazemi A, Safa M, Shahbazi A. RITA enhances chemosensivity of pre-B ALL cells to doxorubicin by inducing p53-dependent apoptosis. ACTA ACUST UNITED AC 2014; 16:225-31. [PMID: 21756539 DOI: 10.1179/102453311x12953015767536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The use of low-molecular-weight, non-peptidic molecules that disrupt the interaction between the p53 tumor suppressor and its negative regulator MDM2 has provided a promising alternative for the treatment of different types of cancer. Here, we used small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) to sensitize leukemic NALM-6 cells to doxorubicin by upregulating p53 protein. RITA alone effectively inhibited NALM-6 cells viability in dose-dependent manner as measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay and induced apoptosis as evaluated by flow cytometry, whereas RITA in combination with doxorubicin enhanced NALM-6 cells to doxorubicin-sensitivity and promoted doxorubicin induced apoptosis. Levels of p53 protein and its proapoptotic target genes, quantified by western blot and real-time PCR respectively, showed that expression of p53 was significantly increased after RITA treatment. Using p53 inhibitors PFT-alpha and PFT-mu it was shown that p53-mediated apoptosis induced by RITA can be regulated by both p53-transcription-dependent and -independent pathways. Moreover, RITA-induced apoptosis was accompanied by the activation of caspase-3 and PARP cleavage. Therefore, exploiting synergistic effects between RITA and chemotherapeutics might be an effective clinical strategy for leukemia chemotherapy.
Collapse
Affiliation(s)
- Ahmad Kazemi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
35
|
Mortalin is a prognostic factor of gastric cancer with normal p53 function. Gastric Cancer 2014; 17:255-62. [PMID: 23828548 DOI: 10.1007/s10120-013-0279-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/11/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mortalin is a heat-non-inducible member of the heat shock protein 70 family. Mortalin binds to p53 and prevents p53 from entering the nucleus. To understand the significance of mortalin in gastric cancer, we investigated the expression of mortalin and p53. METHODS Expression of mortalin and p53 was examined by immunohistochemical staining of 182 clinical samples of gastric cancer. RESULTS Mortalin-positive and aberrant p53-positive tumors were found in 75.2 and 49.5 % of cases, respectively. Mortalin-positive tumors were deeper in invasion and had more lymph node and liver metastases compared with mortalin-negative tumors (P < 0.01, P < 0.05, respectively). Mortalin-positive tumors had worse prognosis compared with mortalin-negative tumors (P = 0.035). Moreover, in tumors with normal p53 function, mortalin-positive tumors had worse prognosis compared with mortalin-negative tumors (P = 0.017). CONCLUSIONS Mortalin has a great impact on gastric cancer with normal p53. Therefore, mortalin is a target molecule for treatment of gastric cancer, as well as a promising prognostic factor, especially in tumors with normal p53.
Collapse
|
36
|
Alvarez-Gonzalez R, Mendoza-Alvarez H, Frey M, Zentgraf H. Up-regulation of two distinct p53-DNA binding functions by covalent poly(ADP-ribosyl)ation: transactivating and single strand break sensing. Cancer Invest 2013; 31:563-70. [PMID: 24164297 DOI: 10.3109/07357907.2013.845670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We used a [(32)P] p53 sequence-specific oligodeoxynucleotide and Electrophoretic-Mobility-Shift-Assays to monitor p53 DNA sequence-specific binding with p53-R267W, a nonbinding point mutant; and p53-Δ30, a deletion-mutant which lacks the carboxy-terminus that recognizes DNA-strand-breaks. Recombinant p53 and poly(ADP-ribose)polymerase-1 (PARP-1) were incubated with labeled βNAD(+) with/without DNA. The poly(ADP-ribosyl)ation of each protein increased with incubation-time and βNAD(+) and p53 concentration(s). Since p53-Δ30 was efficiently labeled, poly(ADP-ribosyl)ation target site(s) of wt-p53 must reside outside its carboxy-terminal-domain. The poly(ADP-ribosyl)ation of p53-Δ30 did not diminish its DNA binding; Instead, it enhanced DNA-sequence-specific-binding. Therefore, we conclude that DNA-sequence-specific-binding and DNA-nick-sensing of mutant-p53 are differentially regulated by poly(ADP-ribosyl)ation.
Collapse
|
37
|
Pires DEV, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations in proteins using graph-based signatures. ACTA ACUST UNITED AC 2013; 30:335-42. [PMID: 24281696 PMCID: PMC3904523 DOI: 10.1093/bioinformatics/btt691] [Citation(s) in RCA: 671] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Motivation: Mutations play fundamental roles in evolution by introducing diversity into genomes. Missense mutations in structural genes may become either selectively advantageous or disadvantageous to the organism by affecting protein stability and/or interfering with interactions between partners. Thus, the ability to predict the impact of mutations on protein stability and interactions is of significant value, particularly in understanding the effects of Mendelian and somatic mutations on the progression of disease. Here, we propose a novel approach to the study of missense mutations, called mCSM, which relies on graph-based signatures. These encode distance patterns between atoms and are used to represent the protein residue environment and to train predictive models. To understand the roles of mutations in disease, we have evaluated their impacts not only on protein stability but also on protein–protein and protein–nucleic acid interactions. Results: We show that mCSM performs as well as or better than other methods that are used widely. The mCSM signatures were successfully used in different tasks demonstrating that the impact of a mutation can be correlated with the atomic-distance patterns surrounding an amino acid residue. We showed that mCSM can predict stability changes of a wide range of mutations occurring in the tumour suppressor protein p53, demonstrating the applicability of the proposed method in a challenging disease scenario. Availability and implementation: A web server is available at http://structure.bioc.cam.ac.uk/mcsm. Contact:dpires@dcc.ufmg.br; tom@cryst.bioc.cam.ac.uk Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Douglas E V Pires
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK and ACRF Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St Vincents Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | | | | |
Collapse
|
38
|
Koulgi S, Achalere A, Sharma N, Sonavane U, Joshi R. QM-MM simulations on p53-DNA complex: a study of hot spot and rescue mutants. J Mol Model 2013; 19:5545-59. [DOI: 10.1007/s00894-013-2042-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/21/2013] [Indexed: 01/27/2023]
|
39
|
Inhibition of nutlin-resistant HDM2 mutants by stapled peptides. PLoS One 2013; 8:e81068. [PMID: 24278380 PMCID: PMC3835680 DOI: 10.1371/journal.pone.0081068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/08/2013] [Indexed: 01/22/2023] Open
Abstract
Pharmacological modulation of p53 activity is an attractive therapeutic strategy in cancers with wild-type p53. Presently in clinical trials, the small molecule Nutlin-3A competitively binds to HDM2, a key negative regulator of p53 and blocks its activity. We have described resistance mutations in HDM2 that selectively reduce affinity for Nutlin but not p53. In the present communication, we show that stapled peptides targeting the same region of HDM2 as Nutlin are refractory to these mutations, and display reduced discrimination between the wild-type and mutant HDM2s with regards to functional abrogation of interaction with p53. The larger interaction footprint afforded by stapled peptides suggests that this class of ligands may prove comparatively more resilient to acquired resistance in a clinical setting.
Collapse
|
40
|
Guaragnella N, Palermo V, Galli A, Moro L, Mazzoni C, Giannattasio S. The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res 2013; 14:2-16. [PMID: 24103154 DOI: 10.1111/1567-1364.12094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/26/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022] Open
Abstract
When the glucose supply is high, despite the presence of oxygen, Saccharomyces cerevisiae uses fermentation as its main metabolic pathway and switches to oxidative metabolism only when this carbon source is limited. There are similarities between glucose-induced repression of oxidative metabolism of yeast and metabolic reprogramming of tumor cells. The glucose-induced repression of oxidative metabolism is regulated by oncogene homologues in yeast, such as RAS and Sch9p, the yeast homologue of Akt. Yeast also undergoes an apoptosis-like programmed cell death process sharing several features with mammalian apoptosis, including oxidative stress and a major role played by mitochondria. Evasion of apoptosis and sustained proliferative signaling are hallmarks of cancer. This, together with the possibility of heterologous expression of human genes in yeast, has allowed new insights to be obtained into the function of mammalian oncogenes/oncosuppressors. Here, we elaborate on the similarities between tumor and yeast cells underpinning the use of this model organism in cancer research. We also review the achievements obtained through heterologous expression in yeast of p53, BRCA1, and BRCA2, which are among the best-known cancer-susceptibility genes, with the aim of understanding their role in tumorigenesis. Yeast-cell-based functional assays for cancer genetic testing will also be dealt with.
Collapse
|
41
|
Dahabreh IJ, Schmid CH, Lau J, Varvarigou V, Murray S, Trikalinos TA. Genotype misclassification in genetic association studies of the rs1042522 TP53 (Arg72Pro) polymorphism: a systematic review of studies of breast, lung, colorectal, ovarian, and endometrial cancer. Am J Epidemiol 2013; 177:1317-25. [PMID: 23729685 DOI: 10.1093/aje/kws394] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Preferential loss of heterozygosity at the rs1042522 locus of the tumor protein 53 gene (TP53) (Arg72Pro) is observed in several tumors. Genetic association studies in oncology often use tumor tissue rather than unaffected tissue for genotyping; in such cases, loss of heterozygosity at the TP53 locus could lead to differential misclassification and could bias estimates of association. We searched multiple databases (through March 8, 2011) for studies investigating the association of Arg72Pro with breast, lung, colorectal, ovarian, or endometrial cancer. Meta-analysis was performed with multilevel Bayesian models. Informative priors for the bias effect were derived from a meta-analysis of the same polymorphism in cervical cancer. Of 160 studies (68 breast, 42 lung, 26 colorectal, 16 ovarian, and 8 endometrial cancer), 22 used tumor tissue as the source of genotyping material for cases. Use of tumor tissue versus other sources of genotyping material was associated with an apparent protective effect of the proline allele (relative odds ratio = 0.78, 95% credible interval: 0.70, 0.88). The probability that use of tumor tissue induced bias was estimated to be higher than 99%. Use of tumor tissue as the source of genotyping material for cases is associated with significant bias in the estimate of the genetic effect in cancer genetic association studies.
Collapse
Affiliation(s)
- Issa J Dahabreh
- Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Long JS, Crighton D, O'Prey J, Mackay G, Zheng L, Palmer TM, Gottlieb E, Ryan KM. Extracellular adenosine sensing-a metabolic cell death priming mechanism downstream of p53. Mol Cell 2013; 50:394-406. [PMID: 23603120 DOI: 10.1016/j.molcel.2013.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/06/2013] [Accepted: 03/14/2013] [Indexed: 01/26/2023]
Abstract
Tumor cells undergo changes in metabolism to meet their energetic and anabolic needs. It is conceivable that mechanisms exist to sense these changes and link them to pathways that eradicate cells primed for cancer development. We report that the tumor suppressor p53 activates a cell death priming mechanism that senses extracellular adenosine. Adenosine, the backbone of ATP, accumulates under conditions of cellular stress or altered metabolism. We show that its receptor, A2B, is upregulated by p53. A2B expression has little effect on cell viability, but ligand engagement activates a caspase- and Puma-dependent apoptotic response involving downregulation of antiapoptotic Bcl-2 proteins. Stimulation of A2B also significantly enhances cell death mediated by p53 and upon accumulation of endogenous adenosine following chemotherapeutic drug treatment and exposure to hypoxia. Since extracellular adenosine also accumulates within many solid tumors, this distinct p53 function links programmed cell death to both a cancer- and therapy-associated metabolic change.
Collapse
Affiliation(s)
- Jaclyn S Long
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wei SJ, Joseph T, Sim AYL, Yurlova L, Zolghadr K, Lane D, Verma C, Ghadessy F. In vitro selection of mutant HDM2 resistant to Nutlin inhibition. PLoS One 2013; 8:e62564. [PMID: 23653682 PMCID: PMC3641235 DOI: 10.1371/journal.pone.0062564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/22/2013] [Indexed: 11/25/2022] Open
Abstract
HDM2 binds to the p53 tumour suppressor and targets it for proteosomal degradation. Presently in clinical trials, the small molecule Nutlin-3A competitively binds to HDM2 and abrogates its repressive function. Using a novel in vitro selection methodology, we simulated the emergence of resistance by evolving HDM2 mutants capable of binding p53 in the presence of Nutlin concentrations that inhibit the wild-type HDM2-p53 interaction. The in vitro phenotypes were recapitulated in ex vivo assays measuring both p53 transactivation function and the direct p53-HDM2 interaction in the presence of Nutlin. Mutations conferring drug resistance were not confined to the N-terminal p53/Nutlin–binding domain, and were additionally seen in the acidic, zinc finger and RING domains. Mechanistic insights gleaned from this broad spectrum of mutations will aid in future drug design and further our understanding of the complex p53-HDM2 interaction.
Collapse
Affiliation(s)
- Siau Jia Wei
- p53Lab, Agency for Science, Technology and Research, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singpore
| | - Thomas Joseph
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singpore
| | - Adelene Y. L. Sim
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singpore
| | | | | | - David Lane
- p53Lab, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singpore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (CV); sg (FG)
| | - Farid Ghadessy
- p53Lab, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail: (CV); sg (FG)
| |
Collapse
|
44
|
Moon JY, Cho M, Ahn KS, Cho SK. Nobiletin Induces Apoptosis and Potentiates the Effects of the Anticancer Drug 5-Fluorouracil in p53-Mutated SNU-16 Human Gastric Cancer Cells. Nutr Cancer 2013; 65:286-95. [DOI: 10.1080/01635581.2013.756529] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Leroy B, Fournier JL, Ishioka C, Monti P, Inga A, Fronza G, Soussi T. The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res 2012; 41:D962-9. [PMID: 23161690 PMCID: PMC3531172 DOI: 10.1093/nar/gks1033] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A novel resource centre for TP53 mutations and mutants has been developed (http://p53.fr). TP53 gene dysfunction can be found in the majority of human cancer types. The potential use of TP53 mutation as a biomarker for clinical studies or exposome analysis has led to the publication of thousands of reports describing the TP53 gene status in >10 000 tumours. The UMD TP53 mutation database was created in 1990 and has been regularly updated. The 2012 release of the database has been carefully curated, and all suspicious reports have been eliminated. It is available either as a flat file that can be easily manipulated or as novel multi-platform analytical software that has been designed to analyse various aspects of TP53 mutations. Several tools to ascertain TP53 mutations are also available for download. We have developed TP53MULTLoad, a manually curated database providing comprehensive details on the properties of 2549 missense TP53 mutants. More than 100 000 entries have been arranged in 39 different activity fields, such as change of transactivation on various promoters, apoptosis or growth arrest. For several hot spot mutants, multiple gain of function activities are also included. The database can be easily browsed via a graphical user interface.
Collapse
Affiliation(s)
- Bernard Leroy
- Université Pierre et Marie Curie-Paris6, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Pegg D, Bleavins M, Herman J, Wojcinski Z, Graziano M, Henck J, Criswell KA, Anderson T, Duddy S. Hemangiosarcoma in mice administered pregabalin: analysis of genotoxicity, tumor incidence, and tumor genetics. Toxicol Sci 2012; 128:9-21. [PMID: 22539615 DOI: 10.1093/toxsci/kfs146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pregabalin, (S)-3-(aminomethyl)-5-methylhexanoic acid, binds with high affinity to the α(2)δ subunit of voltage-gated calcium channels and exerts analgesic, anxiolytic, and antiseizure activities. Two-year carcinogenicity studies were completed in B6C3F1 and CD-1 mice and two separate studies in Wistar rats. Doses in mice were 200, 1000, and 5000 mg/kg/day, with systemic exposures (AUC(0-24 h)) up to 31 times the mean exposure in humans, given the maximum recommended clinical dose. In rats, doses were 50, 150, and 450 mg/kg/day in males and 100, 300, and 900 mg/kg/day in females; systemic exposures up to 24 times were achieved in clinical trials. In both strains of mice, pregabalin treatment was associated with an increased incidence of hemangiosarcoma primarily in liver, spleen, and bone marrow. The incidence of hemangiosarcoma was higher in B6C3F1 mice than in CD-1 mice, consistent with its spontaneous incidence. Pregabalin did not increase the incidence of any other tumor type in rats and was not genotoxic, based on an extensive battery of in vivo and in vitro tests in bacterial and mammalian systems. Thus, pregabalin is a single-species, single tumor-type, nongenotoxic mouse carcinogen. Hemangiosarcomas occurring in mice treated with pregabalin were genotypically distinct from hemangiosarcomas induced by genotoxic carcinogens in humans with respect to ras and p53 mutation patterns and were similar to spontaneous tumors. Furthermore, there was a strong association between pregabalin treatment and bone marrow changes in these studies in mice, suggesting a possible link between the effects observed in bone marrow and the increase in tumor incidence in pregabalin-treated mice.
Collapse
Affiliation(s)
- David Pegg
- Pfizer Worldwide Research and Development, Drug Safety Research and Development, Groton, Connecticut 06340, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tanikawa C, Espinosa M, Suzuki A, Masuda K, Yamamoto K, Tsuchiya E, Ueda K, Daigo Y, Nakamura Y, Matsuda K. Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun 2012; 3:676. [PMID: 22334079 DOI: 10.1038/ncomms1676] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/11/2012] [Indexed: 01/17/2023] Open
Abstract
Histone proteins are modified in response to various external signals; however, their mechanisms are still not fully understood. Citrullination is a post-transcriptional modification that converts arginine in proteins into citrulline. Here we show in vivo and in vitro citrullination of the arginine 3 residue of histone H4 (cit-H4R3) in response to DNA damage through the p53-PADI4 pathway. We also show DNA damage-induced citrullination of Lamin C. Cit-H4R3 and citrullinated Lamin C localize around fragmented nuclei in apoptotic cells. Ectopic expression of PADI4 leads to chromatin decondensation and promotes DNA cleavage, whereas Padi4(-/-) mice exhibit resistance to radiation-induced apoptosis in the thymus. Furthermore, the level of cit-H4R3 is negatively correlated with p53 protein expression and with tumour size in non-small cell lung cancer tissues. Our findings reveal that cit-H4R3 may be an 'apoptotic histone code' to detect damaged cells and induce nuclear fragmentation, which has a crucial role in carcinogenesis.
Collapse
Affiliation(s)
- Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Khan MMG, Rydén AM, Chowdhury MS, Hasan MA, Kazi JU. Maximum likelihood analysis of mammalian p53 indicates the presence of positively selected sites and higher tumorigenic mutations in purifying sites. Gene 2011; 483:29-35. [PMID: 21640173 DOI: 10.1016/j.gene.2011.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/15/2011] [Accepted: 05/16/2011] [Indexed: 01/10/2023]
Abstract
The tumor suppressor gene TP53 (p53) maintains genome stability. Mutation or loss of p53 is found in most cancers. Analysis of evolutionary constrains and p53 mutations reveal important sites for concomitant functional studies. In this study, phylogenetic analyses of the coding sequences of p53 from 26 mammals were carried out by applying a maximum likelihood method. The results display two branches under adaptive evolution in mammals. Moreover, each codon of p53 was analyzed by the PAML method for presence of positively selected sites. PAML identified several statistically significant amino acids that undergo positive selection. The data indicates that amino acids responsible for the core functions of p53 are highly conserved, while positively selected sites are predominantly located in the N- and C-terminus of p53. Further analysis of evolutionary pressure and mutations showed the occurrence of more frequent tumorigenic mutations in purifying sites of p53.
Collapse
Affiliation(s)
- Maola M G Khan
- Biochemistry and Molecular Biology, Jahangirnagar University, Bangladesh
| | | | | | | | | |
Collapse
|
49
|
Abstract
First established as a valuable vertebrate model system for studying development, zebrafish have emerged as an attractive animal system for modeling human cancers. Major technical advances have been essential for the generation of zebrafish cancer models relevant to human diseases. These models develop tumors in various organ sites that bear striking resemblance to human malignances, both histologically and genetically. Thus, the focus of cancer research in zebrafish has transcended the need to validate zebrafish as a viable model organism to study cancer biology. With the significant advantages of in vivo imaging, the power of forward genetics, well-established high efficiency for transgenesis, and ease of transplantation, further exploration of the zebrafish cancer models not only will generate unique insights into underlying mechanisms of cancer but will also provide platforms useful for drug discovery.
Collapse
Affiliation(s)
- Shu Liu
- Department of Surgery, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
50
|
Samuel T, Fadlalla K, Turner T, Yehualaeshet TE. The flavonoid quercetin transiently inhibits the activity of taxol and nocodazole through interference with the cell cycle. Nutr Cancer 2011; 62:1025-35. [PMID: 21058190 DOI: 10.1080/01635581.2010.492087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quercetin is a flavonoid with anticancer properties. In this study, we examined the effects of quercetin on cell cycle, viability, and proliferation of cancer cells, either singly or in combination with the microtubule-targeting drugs taxol and nocodazole. Although quercetin induced cell death in a dose-dependent manner, 12.5-50 μM quercetin inhibited the activity of both taxol and nocodazole to induce G2/M arrest in various cell lines. Quercetin also partially restored drug-induced loss in viability of treated cells for up to 72 h. This antagonism of microtubule-targeting drugs was accompanied by a delay in cell cycle progression and inhibition of the buildup of cyclin-B1 at the microtubule organizing center of treated cells. However, quercetin did not inhibit the microtubule targeting of taxol or nocodazole. Despite the short-term protection of cells by quercetin, colony formation and clonogenicity of HCT116 cells were still suppressed by quercetin or quercetin-taxol combination. The status of cell adherence to growth matrix was critical in determining the sensitivity of HCT116 cells to quercetin. We conclude that although long-term exposure of cancer cells to quercetin may prevent cell proliferation and survival, the interference of quercetin with cell cycle progression diminishes the efficacy of microtubule-targeting drugs to arrest cells at G2/M.
Collapse
Affiliation(s)
- Temesgen Samuel
- Pathobiology Department, Tuskegee University, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee, Alabama 36088, USA.
| | | | | | | |
Collapse
|