1
|
Bravo-Pérez C, Toderici M, Chambers JE, Martínez-Menárguez JA, Garrido-Rodriguez P, Pérez-Sanchez H, de la Morena-Barrio B, Padilla J, Miñano A, Cifuentes-Riquelme R, Vicente V, Lozano ML, Marciniak SJ, de la Morena-Barrio ME, Corral J. Full-length antithrombin frameshift variant with aberrant C-terminus causes endoplasmic reticulum retention with a dominant-negative effect. JCI Insight 2022; 7:161430. [PMID: 36214221 PMCID: PMC9675572 DOI: 10.1172/jci.insight.161430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/24/2022] [Indexed: 02/02/2023] Open
Abstract
Antithrombin, a major endogenous anticoagulant, is a serine protease inhibitor (serpin). We characterized the biological and clinical impact of variants involving C-terminal antithrombin. We performed comprehensive molecular, cellular, and clinical characterization of patients with C-terminal antithrombin variants from a cohort of 444 unrelated individuals with confirmed antithrombin deficiency. We identified 17 patients carrying 12 C-terminal variants, 5 of whom had the p.Arg445Serfs*17 deletion. Five missense variants caused qualitative deficiency, and 7, including 4 insertion-deletion variants, induced severe quantitative deficiency, particularly p.Arg445Serfs*17 (antithrombin <40%). This +1 frameshift variant had a molecular size similar to that of WT antithrombin but possessed a different C-terminus. Morphologic and cotransfection experiments showed that recombinant p.Arg445Serfs*17 was retained at the endoplasmic reticulum and had a dominant-negative effect on WT antithrombin. Characterization of different 1+ frameshift, aberrant C-terminal variants revealed that protein secretion was determined by frameshift site. The introduction of Pro441 in the aberrant C-terminus, shared by 5 efficiently secreted variants, partially rescued p.Arg445Serfs*17 secretion. C-terminal antithrombin mutants have notable heterogeneity, related to variant type and localization. Aberrant C-terminal variants caused by 1+ frameshift, with similar size as WT antithrombin, may be secreted or not, depending on frameshift site. The severe clinical phenotypes of these genetic changes are consistent with their dominant-negative effects.
Collapse
Affiliation(s)
- Carlos Bravo-Pérez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Mara Toderici
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Joseph E. Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, Biomedical Research Institute of Murcia, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Pedro Garrido-Rodriguez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Horacio Pérez-Sanchez
- Structural Bioinformatics and High Performance Computing Research Group, Universidad Católica de Murcia, Murcia, Spain
| | - Belén de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - José Padilla
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Antonia Miñano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Rosa Cifuentes-Riquelme
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Maria L. Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Maria Eugenia de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| |
Collapse
|
2
|
Molecular basis of SERPINC1 mutations in Japanese patients with antithrombin deficiency. Thromb Res 2019; 178:159-170. [PMID: 31030036 DOI: 10.1016/j.thromres.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Congenital antithrombin (AT) deficiency, which arises from various SERPINC1 defects, is an autosomal-dominant thrombophilic disorder associated with a high risk of recurrent venous thromboembolism. PATIENTS/METHODS We investigated SERPINC1 defects in Japanese patients with congenital AT deficiency who developed venous thromboembolism or had a family history of deep vein thrombosis. We analyzed the full DNA sequences of SERPINC1 exons and exon-intron junctions by PCR-mediated direct sequencing. If no mutation was found, multiplex ligation-dependent probe amplification (MLPA) was conducted for the relative quantification of the copy number of all exons in SERPINC1. If splice-site mutations were detected, mRNA splicing abnormalities were further investigated using an in vitro cell-based exontrap assay. RESULTS We identified 19 different SERPINC1 abnormalities, including 8 novel mutations, in 21 Japanese patients with AT deficiency. These abnormalities were distributed as follows: 9 missense mutations (42.9%), 3 nonsense mutations (14.3%), 1 splice-site mutation (4.8%), 2 small insertions (9.5%), 2 deletion mutations (9.5%) and 4 large deletions (19.0%). Cases with large deletions of SERPINC1 included Alu-mediated gene rearrangements and non-Alu-mediated complex gene rearrangements; the latter could conceivably be explained using the fork stalling and template switching (FoSTeS) model. CONCLUSIONS We identified a variety of SERPINC1 defects in Japanese patients with AT deficiency. The SERPINC1 mutations detected in patients with type I AT deficiency included single nucleotide missense or nonsense mutations, small intragenic insertions or deletions, and large genomic structural deletions. Large deletions of SERPINC1 were caused by various recurrent or non-recurrent complex genomic rearrangement mutations.
Collapse
|
3
|
Navarro-Fernández J, de la Morena-Barrio ME, Padilla J, Miñano A, Bohdan N, Águila S, Martínez-Martínez I, Sevivas TS, de Cos C, Fernández-Mosteirín N, Llamas P, Asenjo S, Medina P, Souto JC, Overvad K, Kristensen SR, Corral J, Vicente V. Antithrombin Dublin (p.Val30Glu): a relatively common variant with moderate thrombosis risk of causing transient antithrombin deficiency. Thromb Haemost 2016; 116:146-54. [PMID: 27098529 DOI: 10.1160/th15-11-0871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/02/2016] [Indexed: 12/24/2022]
Abstract
The key haemostatic role of antithrombin and the risk of thrombosis associated with its deficiency support that the low incidence of antithrombin deficiency among patients with thrombosis might be explained by underestimation of this disorder. It was our aim to identify mutations in SERPINC1 causing transient antithrombin deficiency. SERPINC1 was sequenced in 214 cases with a positive test for antithrombin deficiency, including 67 with no deficiency in the sample delivered to our laboratory. The p.Val30Glu mutation (Antithrombin Dublin) was identified in five out of these 67 cases, as well as in three out of 127 cases with other SERPINC1 mutations. Genotyping in 1593 patients with venous thrombosis and 2592 controls from two populations, revealed a low prevalent polymorphism (0.3 %) that moderately increased the risk of venous thrombosis (OR: 2.9; 95 % CI: 1.07-8.09; p= 0.03) and identified one homozygous patient with an early thrombotic event. Carriers had normal anti-FXa activity, and plasma antithrombin was not sensitive to heat stress or proteolytic cleavage. Analysis of one sample with transient deficit revealed a type I deficiency, without aberrant or increased latent forms. The recombinant variant, which lacked the two amino-terminal residues, had reduced secretion from HEK-EBNA cells, formed hyperstable disulphide-linked polymers, and had negligible activity. In conclusion, p.Val30Glu by affecting the cleavage of antithrombin's signal peptide, results in a mature protein lacking the N-terminal dipeptide with no functional consequences in normal conditions, but that increases the sensitivity to be folded intracellularly into polymers, facilitating transient antithrombin deficiency and the subsequent risk of thrombosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Javier Corral
- Dr. Javier Corral, University of Murcia, Centro Regional de Hemodonación, Calle Ronda de Garay s/n, Murcia 30003, Spain, Tel.: +34968341990, Fax: +34968261914, E-mail:
| | | |
Collapse
|
4
|
Maruyama K, Morishita E, Karato M, Kadono T, Sekiya A, Goto Y, Sato T, Nomoto H, Omi W, Tsuzura S, Imai H, Asakura H, Ohtake S, Nakao S. Antithrombin deficiency in three Japanese families: one novel and two reported point mutations in the antithrombin gene. Thromb Res 2013; 132:e118-23. [PMID: 23809926 DOI: 10.1016/j.thromres.2013.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/25/2013] [Accepted: 06/02/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Inherited antithrombin (AT) deficiency is associated with a predisposition to familial venous thromboembolic disease. We analyzed the AT gene in three unrelated patients with an AT deficiency who developed thrombosis. MATERIALS AND METHODS We analyzed the SERPINC1 gene in three patients. Additionally, we expressed the three mutants in the COS-1 cells and compared their secretion rates and levels of AT activity with those of the wild-type (WT). RESULTS We identified three distinct heterozygous mutations of c.2534C>T: p.56Arginine → Cysteine (R56C), c.13398C>A: p.459Alanine → Aspartic acid (A459D) and c.2703C>G: p.112 Proline → Arginine (P112R). In the in vitro expression experiments, the AT antigen levels in the conditioned media (CM) of the R56C mutant were nearly equal to those of WT. In contrast, the AT antigen levels in the CM of the A459D and P112R mutants were significantly decreased. The AT activity of R56C was decreased in association with a shorter incubation time in a FXa inhibition assay and a thrombin inhibition-based activity test. However, the AT activity of R56C was comparable to that of WT when the incubation time was increased. CONCLUSIONS We concluded that the R56C mutant is responsible for type II HBS deficiency. We considered that the A459D and P112R mutants can be classified as belonging to the type I AT deficiency.
Collapse
Affiliation(s)
- Keiko Maruyama
- Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Na YR, Im H. Specific interactions of serpins in their native forms attenuate their conformational transitions. Protein Sci 2007; 16:1659-66. [PMID: 17600149 PMCID: PMC2203359 DOI: 10.1110/ps.072838107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein superfamily. Serpins are unique in that their native forms are not the most thermodynamically stable conformation; instead, a more stable, latent conformation exists. During the transition to the latent form, the first strand of beta-sheet C (s1C) in the serpin is peeled away from the beta-sheet, and the reactive center loop (RCL) is inserted into beta-sheet A, rendering the serpin inactive. To elucidate the contribution of specific interactions in the metastable native form to the latency transition, we examined the effect of mutations at the s1C of PAI-1, specifically in positions P4' through P10'. Several mutations strengthened the interactions between these residues and the core protein, and slowed the transition of the protein from the metastable native form to the latent form. In particular, anchoring of the strand to the protein's hydrophobic core at the beginning (P4' site) and center of the strand (P8' site) greatly retarded the latency transition. Mutations that weakened the interactions at the s1C region facilitated the conformational conversion of the protein to the latent form. PAI-1's overall structural stability was largely unchanged by the mutations, as evaluated by urea-induced equilibrium unfolding monitored via fluorescence emission. Therefore, the mutations likely exerted their effects by modulating the height of the energy barrier from the native to the latent form. Our results show that interactions found only in the metastable native form of serpins are important structural features that attenuate folding of the proteins into their latent forms.
Collapse
Affiliation(s)
- Yu-Ran Na
- Department of Molecular Biology, Sejong University, Kwangjin-gu, Seoul 143-747, Korea
| | | |
Collapse
|
7
|
Abstract
In the past few years, important advances have been made in the identification of factors predisposing to familial thrombophilia. Particular attention has been paid to the characterization of known inherited defects and their genotype-phenotype relationship, and to studying the interaction between single or multiple inherited conditions and acquired risk factors for venous thrombosis. The recent discovery of 'new' and very common genetic lesions predisposing to thrombosis has greatly expanded the interest in this field. Hereditary predisposition to venous thrombosis may be related to lesions in one or more of 10-15 genes encoding antithrombin, Protein C, Protein S, Factor V, prothrombin, enzymes of the homocysteine metabolic pathway, fibrinogen, heparin cofactor II, plasminogen and thrombomodulin. About 500 different gene lesions (substitutions, deletions, insertions) have so far been reported to affect these genes in patients with thrombotic disease. Because there are potentially multiple interactions between genetic and environmental factors, familial thrombophilia is now considered to be a multifactorial disease. The aim of this chapter is to review aspects of the molecular genetics of familial thrombophilia. In particular, those gene/protein defects for which there is convincing evidence of an association with familial thrombosis will be examined in detail.
Collapse
Affiliation(s)
- P Simioni
- Department of Medical and Surgical Sciences, University of Padua Medical School, Italy
| |
Collapse
|
8
|
Abstract
Antithrombin is the major proteinase inhibitor of thrombin and other blood coagulation proteinases. Antithrombin has two functional domains, a heparin binding site and a reactive centre (that complexes and inactivates the proteinase). Its deficiency results in an increased risk of venous thromboembolism. Appreciable progress has been made in recent years in understanding the structure and function of this protein, the genetic cause of inherited deficiency and its clinical consequence. The structure of antithrombin is now considered in terms of the models derived from X-ray crystallography, which have provided explanations for the function of its heparin interaction site and of its reactive loop. The structural organization of the antithrombin gene has been defined and numerous mutations have been identified that are responsible for antithrombin deficiency: these may reduce the level of the protein (Type I deficiency), alter the function of the protein (Type II deficiency, altering heparin binding or reactive sites), or even have multiple or 'pleiotropic effects' (Type II deficiency, altering both functional domains and the level of protein).
Collapse
Affiliation(s)
- D A Lane
- Department of Haematology, Charing Cross and Westminister Medical School, Hammersmith, London, UK
| | | | | | | |
Collapse
|
11
|
Abstract
This study of naturally occurring mutations predisposing to venous thrombosis has led to a number of important advances in our understanding of protein structure and function relationships and the molecular basis of gene mutation. It has also potentiated the accurate and reliable presymptomatic and antenatal detection of predisposing gene lesions. Perhaps the major challenge facing us is the probabilistic nature of thromboembolism; only a certain proportion of patients with recognized gene defects predisposing to thrombosis will actually suffer from thrombotic episodes. Environmental insults of various kinds, and perhaps epistatic effects resulting from the influence of other loci, are likely to be contributory factors and will help to determine whether a thrombotic event occurs in individuals already compromised by a defect in a gene whose malfunction is known to predispose to thrombosis. Since molecular genetic techniques allow us to dissect the allelioheterogeneity of the different deficiency states by characterizing the wide spectrum of gene mutations giving rise to thrombosis, it may eventually prove possible to relate specific gene lesions to the probability of thromboembolism as well as to the severity and frequency of thrombotic episodes. The multifactorial nature of thrombosis demands a multidisciplinary approach to the analysis of its causation, early detection, treatment and prevention. The application of the new and powerful techniques of molecular genetics promises to make a substantial contribution to all aspects of thrombosis research.
Collapse
Affiliation(s)
- D N Cooper
- Charter Molecular Genetics Laboratory, Thrombosis Research Institute, London, UK
| |
Collapse
|