1
|
Parkhitko AA, Filine E, Tatar M. Combinatorial interventions in aging. NATURE AGING 2023; 3:1187-1200. [PMID: 37783817 PMCID: PMC11194689 DOI: 10.1038/s43587-023-00489-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/15/2023] [Indexed: 10/04/2023]
Abstract
Insight on the underlying mechanisms of aging will advance our ability to extend healthspan, treat age-related pathology and improve quality of life. Multiple genetic and pharmacological manipulations extend longevity in different species, yet monotherapy may be relatively inefficient, and we have limited data on the effect of combined interventions. Here we summarize interactions between age-related pathways and discuss strategies to simultaneously retard these in different organisms. In some cases, combined manipulations additively increase their impact on common hallmarks of aging and lifespan, suggesting they quantitatively participate within the same pathway. In other cases, interactions affect different hallmarks, suggesting their joint manipulation may independently maximize their effects on lifespan and healthy aging. While most interaction studies have been conducted with invertebrates and show varying levels of translatability, the conservation of pro-longevity pathways offers an opportunity to identify 'druggable' targets relevant to multiple human age-associated pathologies.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA.
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Zehden JA, Raviskanthan S, Mortensen PW, Ferré M, Reynier P, Milea D, Lee AG. Dominant Optic Atrophy: How to Determine the Pathogenicity of Novel Variants? J Neuroophthalmol 2022; 42:149-153. [PMID: 34629404 DOI: 10.1097/wno.0000000000001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jason A Zehden
- Baylor College of Medicine (JZ), Houston, Texas, US; Department of Ophthalmology (SR, PWM, AGL), Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas; MITOVASC Institute (MF, PR, DM), CNRS 6015, INSERM U1083, University of Angers, France ; Singapore National Eye Center (DM), Singapore, Singapore ; Singapore Eye Research Institute (DM), Singapore, Singapore ; Duke-NUS Medical School (DM), Singapore, Singapore ; Copenhagen University Hospital Denmark (DM), Copenhagen, Denmark; Departments of Ophthalmology (AGL), Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York; Department of Ophthalmology (AGL), University of Texas Medical Branch, Galveston, Texas; University of Texas MD Anderson Cancer Center (AGL), Houston, Texas; Texas A and M College of Medicine (AGL), Bryan, Texas; and Department of Ophthalmology (AGL), The University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | | | | | | | | | | |
Collapse
|
4
|
A facile cell culture device for studying nuclear and mitochondrial response of endothelial cells to hydrostatic pressure. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9:653522. [PMID: 34222230 PMCID: PMC8249810 DOI: 10.3389/fcell.2021.653522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.
Collapse
Affiliation(s)
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| |
Collapse
|
6
|
Le Roux B, Lenaers G, Zanlonghi X, Amati-Bonneau P, Chabrun F, Foulonneau T, Caignard A, Leruez S, Gohier P, Procaccio V, Milea D, den Dunnen JT, Reynier P, Ferré M. OPA1: 516 unique variants and 831 patients registered in an updated centralized Variome database. Orphanet J Rare Dis 2019; 14:214. [PMID: 31500643 PMCID: PMC6734442 DOI: 10.1186/s13023-019-1187-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The dysfunction of OPA1, a dynamin GTPase involved in mitochondrial fusion, is responsible for a large spectrum of neurological disorders, each of which includes optic neuropathy. The database dedicated to OPA1 ( https://www.lovd.nl/OPA1 ), created in 2005, has now evolved towards a centralized and more reliable database using the Global Variome shared Leiden Open-source Variation Database (LOVD) installation. RESULTS The updated OPA1 database, which registers all the patients from our center as well as those reported in the literature, now covers a total of 831 patients: 697 with isolated dominant optic atrophy (DOA), 47 with DOA "plus", and 83 with asymptomatic or unclassified DOA. It comprises 516 unique OPA1 variants, of which more than 80% (414) are considered pathogenic. Full clinical data for 118 patients are documented using the Human Phenotype Ontology, a standard vocabulary for referencing phenotypic abnormalities. Contributors may now make online submissions of phenotypes related to OPA1 mutations, giving clinical and molecular descriptions together with detailed ophthalmological and neurological data, according to an international thesaurus. CONCLUSIONS The evolution of the OPA1 database towards the LOVD, using unified nomenclature, should ensure its interoperability with other databases and prove useful for molecular diagnoses based on gene-panel sequencing, large-scale mutation statistics, and genotype-phenotype correlations.
Collapse
Affiliation(s)
- Bastien Le Roux
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
| | - Xavier Zanlonghi
- Centre de Compétence Maladie Rare, Clinique Jules Verne, Nantes, France
| | - Patrizia Amati-Bonneau
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Floris Chabrun
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Thomas Foulonneau
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
| | - Angélique Caignard
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Stéphanie Leruez
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Philippe Gohier
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Vincent Procaccio
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Dan Milea
- Singapore National Eye Center, Singapore Eye Research Institute, Duke-NUS, Singapore, Singapore
| | - Johan T den Dunnen
- Human Genetics and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Pascal Reynier
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Marc Ferré
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.
| |
Collapse
|
7
|
Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 2018; 62:341-360. [PMID: 30030364 PMCID: PMC6056715 DOI: 10.1042/ebc20170104] [Citation(s) in RCA: 816] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 02/08/2023]
Abstract
Mitochondria are highly dynamic organelles undergoing coordinated cycles of fission and fusion, referred as ‘mitochondrial dynamics’, in order to maintain their shape, distribution and size. Their transient and rapid morphological adaptations are crucial for many cellular processes such as cell cycle, immunity, apoptosis and mitochondrial quality control. Mutations in the core machinery components and defects in mitochondrial dynamics have been associated with numerous human diseases. These dynamic transitions are mainly ensured by large GTPases belonging to the Dynamin family. Mitochondrial fission is a multi-step process allowing the division of one mitochondrion in two daughter mitochondria. It is regulated by the recruitment of the GTPase Dynamin-related protein 1 (Drp1) by adaptors at actin- and endoplasmic reticulum-mediated mitochondrial constriction sites. Drp1 oligomerization followed by mitochondrial constriction leads to the recruitment of Dynamin 2 to terminate membrane scission. Inner mitochondrial membrane constriction has been proposed to be an independent process regulated by calcium influx. Mitochondrial fusion is driven by a two-step process with the outer mitochondrial membrane fusion mediated by mitofusins 1 and 2 followed by inner membrane fusion, mediated by optic atrophy 1. In addition to the role of membrane lipid composition, several members of the machinery can undergo post-translational modifications modulating these processes. Understanding the molecular mechanisms controlling mitochondrial dynamics is crucial to decipher how mitochondrial shape meets the function and to increase the knowledge on the molecular basis of diseases associated with morphology defects. This article will describe an overview of the molecular mechanisms that govern mitochondrial fission and fusion in mammals.
Collapse
|
8
|
Bagli E, Zikou AK, Agnantis N, Kitsos G. Mitochondrial Membrane Dynamics and Inherited Optic Neuropathies. ACTA ACUST UNITED AC 2018; 31:511-525. [PMID: 28652416 DOI: 10.21873/invivo.11090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
Inherited optic neuropathies are a genetically diverse group of disorders mainly characterized by visual loss and optic atrophy. Since the first recognition of Leber's hereditary optic neuropathy, several genetic defects altering primary mitochondrial respiration have been proposed to contribute to the development of syndromic and non-syndromic optic neuropathies. Moreover, the genomics and imaging revolution in the past decade has increased diagnostic efficiency and accuracy, allowing recognition of a link between mitochondrial dynamics machinery and a broad range of inherited neurodegenerative diseases involving the optic nerve. Mutations of novel genes modifying mainly the balance between mitochondrial fusion and fission have been shown to lead to overlapping clinical phenotypes ranging from isolated optic atrophy to severe, sometimes lethal multisystem disorders, and are reviewed herein. Given the particular vulnerability of retinal ganglion cells to mitochondrial dysfunction, the accessibility of the eye as a part of the central nervous system and improvements in technical imaging concerning assessment of the retinal nerve fiber layer, optic nerve evaluation becomes critical - even in asymptomatic patients - for correct diagnosis, understanding and early treatment of these complex and enigmatic clinical entities.
Collapse
Affiliation(s)
- Eleni Bagli
- Institute of Molecular Biology and Biotechnology-FORTH, Division of Biomedical Research, Ioannina, Greece.,Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| | - Anastasia K Zikou
- Department of Clinical Radiology, University of Ioannina, Ioannina, Greece
| | - Niki Agnantis
- Department of Pathology, University of Ioannina, Ioannina, Greece
| | - Georgios Kitsos
- Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
9
|
Hayashi T, Sasano H, Katagiri S, Tsunoda K, Kameya S, Nakazawa M, Iwata T, Tsuneoka H. Heterozygous deletion of the OPA1 gene in patients with dominant optic atrophy. Jpn J Ophthalmol 2017; 61:395-401. [DOI: 10.1007/s10384-017-0522-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/09/2017] [Indexed: 11/30/2022]
|
10
|
Characterization of two novel intronic OPA1 mutations resulting in aberrant pre-mRNA splicing. BMC MEDICAL GENETICS 2017; 18:22. [PMID: 28245802 PMCID: PMC5331656 DOI: 10.1186/s12881-017-0383-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/17/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND We report two novel splice region mutations in OPA1 in two unrelated families presenting with autosomal-dominant optic atrophy type 1 (ADOA1) (ADOA or Kjer type optic atrophy). Mutations in OPA1 encoding a mitochondrial inner membrane protein are a major cause of ADOA. METHODS We analyzed two unrelated families including four affected individuals clinically suspicious of ADOA. Standard ocular examinations were performed in affected individuals of both families. All coding exons, as well as exon-intron boundaries of the OPA1 gene were sequenced. In addition, multiplex ligation-dependent probe amplification (MLPA) was performed to uncover copy number variations in OPA1. mRNA processing was monitored using RT-PCR and subsequent cDNA analysis. RESULTS We report two novel splice region mutations in OPA1 in two unrelated individuals and their affected relatives, which were previously not described in the literature. In one family the heterozygous insertion and deletion c.[611-37_611-38insACTGGAGAATGTAAAGGGCTTT;611-6_611-16delCATATTTATCT] was found in all investigated family members leading to the activation of an intronic cryptic splice site. In the second family sequencing of OPA1 disclosed a de novo heterozygous deletion c.2012+4_2012+7delAGTA resulting in exon 18 and 19 skipping, which was not detected in healthy family members. CONCLUSION We identified two novel intronic mutations in OPA1 affecting the correct OPA1 pre-mRNA splicing, which was confirmed by OPA1 cDNA analysis. This study shows the importance of transcript analysis to determine the consequences of unclear intronic mutations in OPA1 in proximity to the intron-exon boundaries.
Collapse
|
11
|
Multiethnic involvement in autosomal-dominant optic atrophy in Singapore. Eye (Lond) 2016; 31:475-480. [PMID: 27858935 DOI: 10.1038/eye.2016.255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/30/2016] [Indexed: 11/08/2022] Open
Abstract
PurposeAutosomal-dominant optic atrophy (ADOA), often associated with mutations in the OPA1 gene (chromosome 3q28-q29) is rarely reported in Asia. Our aim was to identify and describe this condition in an Asian population in Singapore.Patients and methodsPreliminary cross-sectional study at the Singapore National Eye Centre, including patients with clinical suspicion of ADOA, who subsequently underwent genetic testing by direct sequencing of the OPA1 gene.ResultsAmong 12 patients (10 families) with clinically suspected ADOA, 7 patients (5 families) from 3 different ethnic origins (Chinese, Indian, and Malay) carried a heterozygous pathogenic variant in the OPA1 gene. The OPA1 mutations were located on exons 8, 9, 11, and 17: c.869G>A (p.Arg290Glu), c.892A>G (p.Ser298Gly), c.1140G>A (splicing mutation), and c.1669C>T (p.Arg557*), respectively. One splicing mutation (c.871-1G>A) was identified in intron 8. We also identified a novel mutation causing optic atrophy and deafness (c.892A>G (p.Ser298Gly)). Among the phenotypic features, colour pupillometry disclosed a dissociation between low vision and preserved pupillary light reflex in ADOA.ConclusionWe report the first cases of genetically confirmed OPA1-related ADOA from Singapore, including a novel mutation causing 'ADOA plus' syndrome. Further epidemiological studies are needed in order to determine the prevalence of ADOA in South-East Asia.
Collapse
|
12
|
OPA1-related disorders: Diversity of clinical expression, modes of inheritance and pathophysiology. Neurobiol Dis 2016; 90:20-6. [DOI: 10.1016/j.nbd.2015.08.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/13/2023] Open
|
13
|
Molecular Impairment Mechanisms of Novel OPA1 Mutations Predicted by Molecular Modeling in Patients With Autosomal Dominant Optic Atrophy and Auditory Neuropathy Spectrum Disorder. Otol Neurotol 2016; 37:394-402. [PMID: 26905822 DOI: 10.1097/mao.0000000000000978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Different missense mutations of the optic atrophy 1 gene (OPA1) identified in optic atrophy patients with auditory neuropathy spectrum disorder (ANSD) induce functional impairment through different molecular mechanisms. BACKGROUND OPA1 is the gene responsible for autosomal dominant optic atrophy (ADOA), but some of its mutations are also associated with ANSD. OPA1 is a member of the GTPase family of proteins and plays a key role in the maintenance of mitochondrial activities that are dependent on dimer formation of the protein. There are many reports of OPA1 mutations, but the molecular mechanisms of their functional impairments are unclear. METHODS The sequences of coding regions in OPA1 were analyzed from blood samples of ADOA patients with ANSD. Molecular modeling of the protein's ability to form dimers and its GTP-binding ability were conducted to study the effects of structural changes in OPA1 caused by two identified mutations and their resultant effects on protein function. RESULTS Two heterozygous mutations, p.T414P (c.1240A>C) and p.T540P (c.1618A>C), located in the GTPase and middle domains of OPA1, respectively, were identified in two patients. Molecular modeling indicated decreased dimer formation caused by destabilization of the association structure of the p.T414P mutant, and decreased GTP-binding caused by destabilization of the binding site structure in the p.T540P mutant. CONCLUSION These two different conformational changes might result in decreased GTPase activities that trigger ADOA associated with ANSD, and are likely to be associated with mild clinical features. Molecular modeling would provide useful information in clinical practice.
Collapse
|
14
|
Zhang AM, Bi R, Hu QX, Fan Y, Zhang Q, Yao YG. The OPA1 Gene Mutations Are Frequent in Han Chinese Patients with Suspected Optic Neuropathy. Mol Neurobiol 2016; 54:1622-1630. [DOI: 10.1007/s12035-016-9771-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/02/2016] [Indexed: 12/24/2022]
|
15
|
Rönnbäck C, Nissen C, Almind GJ, Grønskov K, Milea D, Larsen M. Genotype-phenotype heterogeneity of ganglion cell and inner plexiform layer deficit in autosomal-dominant optic atrophy. Acta Ophthalmol 2015; 93:762-6. [PMID: 26385429 DOI: 10.1111/aos.12835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/22/2015] [Indexed: 12/01/2022]
Abstract
PURPOSE To describe the thickness of the combined ganglion cell and inner plexiform layers (GC-IPL) and the peripapillary retinal nerve fibre layer (RNFL) in patients with OPA1 c.983A>G or c.2708_2711delTTAG autosomal-dominant optic atrophy (ADOA). METHODS The study included 20 individuals with c.983A>G and nine individuals with c.2708_2711delTTAG. Data for comparison were drawn from 49, previously published, individuals with OPA1 c.2826_2836delinsGGATGCTCCA and 51 individuals with no OPA1 mutation. Subjects underwent refraction, best-corrected visual acuity assessment, axial length measurement and high-definition optical coherence tomography. RESULTS There was overlap in GC-IPL thickness in subjects younger than 20-30 years between the two new groups of ADOA patients and controls. Numerical decreases in GC-IPL thickness with age did not reach statistical significance in individuals with c.983A>G (p = 0.18) or in healthy controls (p = 0.22), but it did in individuals with c.2708_2711delTTAG (p = 0.02). Visual acuity decreased with decreasing GC-IPL thickness (p = 0.0006 in c.983A>G and p = 0.0084 in c.2708_2711delTTAG). Unlike c.2826_2836delinsGGATGCTCCA, individuals with c.983A>G or c.2708_2711delTTAG did not show a pattern of maximum GC-IPL deficit inferonasal of the fovea. CONCLUSION Genotype-phenotype heterogeneity in OPA1 ADOA is evident when inner retinal atrophy is examined as a function of age. Thus, a pronounced decline with age in GC-IPL thickness is observed in c.2708_2711delTTAG ADOA, an intermediate decline with age is observed in c.983A>G ADOA, whereas little or no change with age is observed in c.2826_2836delinsGGATGCTCCA ADOA. This genotype-phenotype heterogeneity may explain why some patients have progressive visual loss while others have a relatively stable prognosis.
Collapse
Affiliation(s)
- Cecilia Rönnbäck
- Department of Ophthalmology; Glostrup Hospital; Glostrup Denmark
- Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Claus Nissen
- Department of Ophthalmology; Glostrup Hospital; Glostrup Denmark
- Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Gitte J. Almind
- Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
- Kennedy Center; Clinical Genetic Clinic; Copenhagen Denmark
| | - Karen Grønskov
- Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
- Kennedy Center; Clinical Genetic Clinic; Copenhagen Denmark
| | - Dan Milea
- Department of Ophthalmology; Glostrup Hospital; Glostrup Denmark
- Singapore Eye Research Institute; Singapore National Eye Centre and Duke-NUS; Singapore Singapore
| | - Michael Larsen
- Department of Ophthalmology; Glostrup Hospital; Glostrup Denmark
- Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
- Kennedy Center; National Eye Clinic; Copenhagen Denmark
| |
Collapse
|
16
|
Abstract
Mitochondrial dysfunction underlies many human disorders, including those that affect the visual system. The retinal ganglion cells, whose axons form the optic nerve, are often damaged by mitochondrial-related diseases which result in blindness. Both mitochondrial DNA (mtDNA) and nuclear gene mutations impacting many different mitochondrial processes can result in optic nerve disease. Of particular importance are mutations that impair mitochondrial network dynamics (fusion and fission), oxidative phosphorylation (OXPHOS), and formation of iron-sulfur complexes. Current genetic knowledge can inform genetic counseling and suggest strategies for novel gene-based therapies. Identifying new optic neuropathy-causing genes and defining the role of current and novel genes in disease will be important steps toward the development of effective and potentially neuroprotective therapies.
Collapse
Affiliation(s)
- Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, Massachusetts 02114;
| |
Collapse
|
17
|
A novel OPA1 mutation causing variable age of onset autosomal dominant optic atrophy plus in an Australian family. J Neurol 2015; 262:2323-8. [PMID: 26194196 DOI: 10.1007/s00415-015-7849-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Pathogenic mutations in the OPA1 gene can be associated with Autosomal Dominant Optic Atrophy (ADOA). In approximately 20 % of patients with OPA1 mutations, a more complex neurodegenerative disorder with extraocular manifestations, known as ADOA Plus, can arise. 12 members of a multigenerational family were assessed clinically and screened for a genetic mutation in OPA1. Eight family members displayed manifestations consistent with ADOA Plus and four did not. Affected members of the oldest available generation displayed the most severe phenotype, which included severe optic atrophy, deafness, ptosis, ophthalmoplegia, proximal myopathy, neuropathy and ataxia. The next generation was less severely affected but several members displayed manifestations only after the fifth decade. Genetic analysis revealed a heterozygous variant in the OPA1 gene (c.1053T>A, p.Asp351Glu) that segregated with disease. The affected family members described here exhibited visual loss later than is typical for OPA1-related disease, as well as later onset of other neurological abnormalities in the fifth or sixth decades of life that progressed to severe neurological disability by the seventh decade. These findings expand the clinical spectrum of OPA1-related disease associated with a novel OPA1 mutation.
Collapse
|
18
|
Zorzano A, Claret M. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front Aging Neurosci 2015; 7:101. [PMID: 26113818 PMCID: PMC4461829 DOI: 10.3389/fnagi.2015.00101] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/11/2015] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy (ADOA). Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.
Collapse
Affiliation(s)
- Antonio Zorzano
- Molecular Medicine Program, Institute of Research in Biomedicine (IRB Barcelona) Barcelona, Spain ; Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Barcelona, Spain
| | - Marc Claret
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Barcelona, Spain ; Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| |
Collapse
|
19
|
Carelli V, Musumeci O, Caporali L, Zanna C, La Morgia C, Del Dotto V, Porcelli AM, Rugolo M, Valentino ML, Iommarini L, Maresca A, Barboni P, Carbonelli M, Trombetta C, Valente EM, Patergnani S, Giorgi C, Pinton P, Rizzo G, Tonon C, Lodi R, Avoni P, Liguori R, Baruzzi A, Toscano A, Zeviani M. Syndromic parkinsonism and dementia associated with OPA1 missense mutations. Ann Neurol 2015; 78:21-38. [PMID: 25820230 PMCID: PMC5008165 DOI: 10.1002/ana.24410] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/07/2023]
Abstract
Objective Mounting evidence links neurodegenerative disorders such as Parkinson disease and Alzheimer disease with mitochondrial dysfunction, and recent emphasis has focused on mitochondrial dynamics and quality control. Mitochondrial dynamics and mtDNA maintenance is another link recently emerged, implicating mutations in the mitochondrial fusion genes OPA1 and MFN2 in the pathogenesis of multisystem syndromes characterized by neurodegeneration and accumulation of mtDNA multiple deletions in postmitotic tissues. Here, we report 2 Italian families affected by dominant chronic progressive external ophthalmoplegia (CPEO) complicated by parkinsonism and dementia. Methods Patients were extensively studied by optical coherence tomography (OCT) to assess retinal nerve fibers, and underwent muscle and brain magnetic resonance spectroscopy (MRS), and muscle biopsy and fibroblasts were analyzed. Candidate genes were sequenced, and mtDNA was analyzed for rearrangements. Results Affected individuals displayed a slowly progressive syndrome characterized by CPEO, mitochondrial myopathy, sensorineural deafness, peripheral neuropathy, parkinsonism, and/or cognitive impairment, in most cases without visual complains, but with subclinical loss of retinal nerve fibers at OCT. Muscle biopsies showed cytochrome c oxidase‐negative fibers and mtDNA multiple deletions, and MRS displayed defective oxidative metabolism in muscle and brain. We found 2 heterozygous OPA1 missense mutations affecting highly conserved amino acid positions (p.G488R, p.A495V) in the guanosine triphosphatase domain, each segregating with affected individuals. Fibroblast studies showed a reduced amount of OPA1 protein with normal mRNA expression, fragmented mitochondria, impaired bioenergetics, increased autophagy and mitophagy. Interpretation The association of CPEO and parkinsonism/dementia with subclinical optic neuropathy widens the phenotypic spectrum of OPA1 mutations, highlighting the association of defective mitochondrial dynamics, mtDNA multiple deletions, and altered mitophagy with parkinsonism. Ann Neurol 2015;78:21–38
Collapse
Affiliation(s)
- Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Olimpia Musumeci
- Department of Neuroscience, University of Messina, Messina, Italy
| | - Leonardo Caporali
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Claudia Zanna
- Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valentina Del Dotto
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | | | - Enza Maria Valente
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Simone Patergnani
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giovanni Rizzo
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Functional Magnetic Resonance Unit, St Orsola-Malpighi Polyclinic, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- Functional Magnetic Resonance Unit, St Orsola-Malpighi Polyclinic, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Avoni
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Agostino Baruzzi
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonio Toscano
- Department of Neuroscience, University of Messina, Messina, Italy
| | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council, Cambridge, United Kingdom
| |
Collapse
|
20
|
Ferré M, Caignard A, Milea D, Leruez S, Cassereau J, Chevrollier A, Amati-Bonneau P, Verny C, Bonneau D, Procaccio V, Reynier P. Improved Locus-Specific Database forOPA1Mutations Allows Inclusion of Advanced Clinical Data. Hum Mutat 2014; 36:20-5. [DOI: 10.1002/humu.22703] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/12/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Marc Ferré
- CNRS 6214/INSERM 1083; Angers University; Angers France
- Department of Biochemistry and Genetics; University Hospital; Angers France
| | - Angélique Caignard
- CNRS 6214/INSERM 1083; Angers University; Angers France
- Department of Ophthalmology; University Hospital; Angers France
| | - Dan Milea
- CNRS 6214/INSERM 1083; Angers University; Angers France
- Department of Ophthalmology; University Hospital; Angers France
- Singapore National Eye Centre, Singapore Eye Research Institute; Duke-NUS Singapore
| | - Stéphanie Leruez
- CNRS 6214/INSERM 1083; Angers University; Angers France
- Department of Ophthalmology; University Hospital; Angers France
| | - Julien Cassereau
- CNRS 6214/INSERM 1083; Angers University; Angers France
- Department of Neurology; University Hospital; Angers France
| | | | - Patrizia Amati-Bonneau
- CNRS 6214/INSERM 1083; Angers University; Angers France
- Department of Biochemistry and Genetics; University Hospital; Angers France
| | - Christophe Verny
- CNRS 6214/INSERM 1083; Angers University; Angers France
- Department of Neurology; University Hospital; Angers France
| | - Dominique Bonneau
- CNRS 6214/INSERM 1083; Angers University; Angers France
- Department of Biochemistry and Genetics; University Hospital; Angers France
| | - Vincent Procaccio
- CNRS 6214/INSERM 1083; Angers University; Angers France
- Department of Biochemistry and Genetics; University Hospital; Angers France
| | - Pascal Reynier
- CNRS 6214/INSERM 1083; Angers University; Angers France
- Department of Biochemistry and Genetics; University Hospital; Angers France
| |
Collapse
|
21
|
Mitochondrial dysfunction affecting visual pathways. Rev Neurol (Paris) 2014; 170:344-54. [DOI: 10.1016/j.neurol.2014.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023]
|
22
|
High-resolution en face images of microcystic macular edema in patients with autosomal dominant optic atrophy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:676803. [PMID: 24369534 PMCID: PMC3863472 DOI: 10.1155/2013/676803] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/21/2013] [Accepted: 11/04/2013] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate the characteristics of microcystic macular edema (MME) determined from the en face images obtained by an adaptive optics (AO) fundus camera in patients with autosomal dominant optic atrophy (ADOA) and to try to determine the mechanisms underlying the degeneration of the inner retinal cells and RNFL by using the advantage of AO. Six patients from 4 families with ADOA underwent detailed ophthalmic examinations including spectral domain optical coherence tomography (SD-OCT). Mutational screening of all coding and flanking intron sequences of the OPA1 gene was performed by DNA sequencing. SD-OCT showed a severe reduction in the retinal nerve fiber layer (RNFL) thickness in all patients. A new splicing defect and two new frameshift mutations with premature termination of the Opa1 protein were identified in three families. A reported nonsense mutation was identified in one family. SD-OCT of one patient showed MME in the inner nuclear layer (INL) of the retina. AO images showed microcysts in the en face images of the INL. Our data indicate that AO is a useful method to identify MME in neurodegenerative diseases and may also help determine the mechanisms underlying the degeneration of the inner retinal cells and RNFL.
Collapse
|
23
|
Skidd PM, Lessell S, Cestari DM. Autosomal Dominant Hereditary Optic Neuropathy (ADOA): A Review of the Genetics and Clinical Manifestations of ADOA and ADOA+. Semin Ophthalmol 2013; 28:422-6. [DOI: 10.3109/08820538.2013.825296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Alavi MV, Fuhrmann N. Dominant optic atrophy, OPA1, and mitochondrial quality control: understanding mitochondrial network dynamics. Mol Neurodegener 2013; 8:32. [PMID: 24067127 PMCID: PMC3856479 DOI: 10.1186/1750-1326-8-32] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/16/2013] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial quality control is fundamental to all neurodegenerative diseases, including the most prominent ones, Alzheimer’s Disease and Parkinsonism. It is accomplished by mitochondrial network dynamics – continuous fission and fusion of mitochondria. Mitochondrial fission is facilitated by DRP1, while MFN1 and MFN2 on the mitochondrial outer membrane and OPA1 on the mitochondrial inner membrane are essential for mitochondrial fusion. Mitochondrial network dynamics are regulated in highly sophisticated ways by various different posttranslational modifications, such as phosphorylation, ubiquitination, and proteolytic processing of their key-proteins. By this, mitochondria process a wide range of different intracellular and extracellular parameters in order to adapt mitochondrial function to actual energetic and metabolic demands of the host cell, attenuate mitochondrial damage, recycle dysfunctional mitochondria via the mitochondrial autophagy pathway, or arrange for the recycling of the complete host cell by apoptosis. Most of the genes coding for proteins involved in this process have been associated with neurodegenerative diseases. Mutations in one of these genes are associated with a neurodegenerative disease that originally was described to affect retinal ganglion cells only. Since more and more evidence shows that other cell types are affected as well, we would like to discuss the pathology of dominant optic atrophy, which is caused by heterozygous sequence variants in OPA1, in the light of the current view on OPA1 protein function in mitochondrial quality control, in particular on its function in mitochondrial fusion and cytochrome C release. We think OPA1 is a good example to understand the molecular basis for mitochondrial network dynamics.
Collapse
Affiliation(s)
- Marcel V Alavi
- Department of Ophthalmology, University of California, San Francisco, 10 Koret Way, 94143-0730 San Francisco, CA, USA.
| | | |
Collapse
|
25
|
Haun F, Nakamura T, Lipton SA. Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases. J Cell Death 2013; 6:27-35. [PMID: 24587691 PMCID: PMC3935363 DOI: 10.4137/jcd.s10847] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mitochondrial dysfunction occurs in neurodegenerative diseases, however molecular mechanisms underlying this process remain elusive. Emerging evidence suggests that nitrosative stress, mediated by reactive nitrogen species (RNS), may play a role in mitochondrial pathology. Here, we review findings that highlight the abnormal mitochondrial morphology observed in many neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s diseases. One mechanism whereby RNS can affect mitochondrial function and thus neuronal survival occurs via protein S-nitrosylation, representing chemical reaction of a nitric oxide (NO) group with a critical cysteine thiol. In this review, we focus on the signaling pathway whereby S-nitrosylation of the mitochondrial fission protein Drp1 (dynamin-related protein 1; forming S-nitrosothiol (SNO)-Drp1) precipitates excessive mitochondrial fission or fragmentation and consequent bioenergetic compromise. Subsequently, the formation of SNO-Drp1 leads to synaptic damage and neuronal death. Thus, intervention in the SNO-Drp1 pathway may provide therapeutic benefit in neurodegenerative diseases.
Collapse
Affiliation(s)
- Florian Haun
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA ; Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, Freiburg, Germany ; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany ; Faculty of Biology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Tomohiro Nakamura
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA
| | - Stuart A Lipton
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA
| |
Collapse
|
26
|
Mitochondrial fusion proteins and human diseases. Neurol Res Int 2013; 2013:293893. [PMID: 23781337 PMCID: PMC3678461 DOI: 10.1155/2013/293893] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1) and 2 (MFN2), located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1), in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer's and Parkinson's diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.
Collapse
|
27
|
Liskova P, Ulmanova O, Tesina P, Melsova H, Diblik P, Hansikova H, Tesarova M, Votruba M. Novel OPA1 missense mutation in a family with optic atrophy and severe widespread neurological disorder. Acta Ophthalmol 2013; 91:e225-31. [PMID: 23387428 DOI: 10.1111/aos.12038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To identify the underlying molecular genetic cause in a Czech family with optic atrophy, deafness, ptosis, ophthalmoplegia, polyneuropathy and ataxia transmitted as an autosomal dominant trait. METHODS Ophthalmological and neurological examination followed by molecular genetic analyses. RESULTS Seven family members were clinically affected. There was a variable but progressive visual, hearing and neurological disability across the family as a whole. The majority of subjects presented with impairment of visual function and a variable degree of ptosis and/or ophthalmoplegia from the first to the third decade of life. Deafness, neuropathy and ataxia appeared later, in the third and fourth decade. Migraine, tachycardia, intention tremor, nystagmus and cervical dystonia were observed in isolated individuals. A significant overall feature was the high level of neurological disability leading to 3 of 4 members being unable to walk or stand unaided before the age of 60 years. A novel missense mutation c.1345A>C (p.Thr449Pro) in OPA1 segregating with the disease phenotype over three generations was detected. In silico analysis supported pathogenicity of the identified sequence variant. CONCLUSION Our work expands the spectrum of mutation in OPA1, which may lead to severe multisystem neurological disorder. The molecular genetic cause of dominant optic atrophy in the Czech population is reported for the first time. We propose that regular cardiac follow-up in patients diagnosed with dominant optic atrophy and widespread neurological disease should be considered.
Collapse
Affiliation(s)
- Petra Liskova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rahn JJ, Stackley KD, Chan SSL. Opa1 is required for proper mitochondrial metabolism in early development. PLoS One 2013; 8:e59218. [PMID: 23516612 PMCID: PMC3597633 DOI: 10.1371/journal.pone.0059218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/12/2013] [Indexed: 12/03/2022] Open
Abstract
Opa1 catalyzes fusion of inner mitochondrial membranes and formation of the cristae. OPA1 mutations in humans lead to autosomal dominant optic atrophy. OPA1 knockout mice lose viability around embryonic day 9 from unknown reasons, indicating that OPA1 is essential for embryonic development. Zebrafish are an attractive model for studying vertebrate development and have been used for many years to describe developmental events that are difficult or impractical to view in mammalian models. In this study, Opa1 was successfully depleted in zebrafish embryos using antisense morpholinos, which resulted in disrupted mitochondrial morphology. Phenotypically, these embryos exhibited abnormal blood circulation and heart defects, as well as small eyes and small pectoral fin buds. Additionally, startle response was reduced and locomotor activity was impaired. Furthermore, Opa1 depletion caused bioenergetic defects, without impairing mitochondrial efficiency. In response to mitochondrial dysfunction, a transient upregulation of the master regulator of mitochondrial biogenesis, pgc1a, was observed. These results not only reveal a new Opa1-associated phenotype in a vertebrate model system, but also further elucidates the absolute requirement of Opa1 for successful vertebrate development.
Collapse
Affiliation(s)
- Jennifer J Rahn
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | | | |
Collapse
|
29
|
Leruez S, Milea D, Defoort-Dhellemmes S, Colin E, Crochet M, Procaccio V, Ferré M, Lamblin J, Drouin V, Vincent-Delorme C, Lenaers G, Hamel C, Blanchet C, Juul G, Larsen M, Verny C, Reynier P, Amati-Bonneau P, Bonneau D. Sensorineural hearing loss in OPA1-linked disorders. Brain 2013; 136:e236. [DOI: 10.1093/brain/aws340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Pangare M, Makino A. Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res 2012; 48:1-26. [PMID: 22504486 DOI: 10.1540/jsmr.48.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Micro- and macrovascular complications are commonly seen in diabetic patients and endothelial dysfunction contributes to the development and progression of the complications. Abnormal functions in endothelial cells lead to the increase in vascular tension and atherosclerosis, followed by systemic hypertension as well as increased incidence of ischemia and stroke in diabetic patients. Mitochondria are organelles serving as a source of energy production and as regulators of cell survival (e.g., apoptosis and cell development) and ion homeostasis (e.g., H(+), Ca(2+)). Endothelial mitochondria are mainly responsible for generation of reactive oxygen species (ROS) and maintaining the Ca(2+) concentration in the cytosol. There is increasing evidence that mitochondrial morphological and functional changes are implicated in vascular endothelial dysfunction. Enhanced mitochondrial fission and/or attenuated fusion lead to mitochondrial fragmentation and disrupt the endothelial physiological function. Abnormal mitochondrial biogenesis and disturbance of mitochondrial autophagy increase the accumulation of damaged mitochondria, such as irreversibly depolarized or leaky mitochondria, and facilitate cell death. Augmented mitochondrial ROS production and Ca(2+) overload in mitochondria not only cause the maladaptive effect on the endothelial function, but also are potentially detrimental to cell survival. In this article, we review the physiological and pathophysiological role of mitochondria in endothelial function with special focus on diabetes.
Collapse
Affiliation(s)
- Meenal Pangare
- University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
31
|
Debattisti V, Scorrano L. D. melanogaster, mitochondria and neurodegeneration: small model organism, big discoveries. Mol Cell Neurosci 2012; 55:77-86. [PMID: 22940086 DOI: 10.1016/j.mcn.2012.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022] Open
Abstract
In developed countries, increased life expectancy is accompanied by an increased prevalence of age-related disorders like cancer and neurodegenerative diseases. Albeit the molecular mechanisms behind the clinically, pathologically and etiologically heterogeneous forms of neurodegeneration are often unclear, impairment of mitochondrial fusion-fission and dynamics emerged in recent years as a feature of neuronal dysfunction and death, pinpointing the need for animal models to investigate the relationship between mitochondrial shape and neurodegeneration. While research on mammalian models is slowed down by the complexity of the organisms and their genomes, the long latency of the symptoms and by the difficulty to generate and analyze large cohorts, the lower metazoan Drosophila melanogaster overcomes these problems, proving to be a suitable model to study neurodegenerative diseases and mitochondria-shaping proteins. Here we will summarize our current knowledge on the link between mitochondrial shape and models of neurodegeneration in the fruitfly. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Valentina Debattisti
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2 35129 Padova, Italy
| | | |
Collapse
|
32
|
Almind GJ, Ek J, Rosenberg T, Eiberg H, Larsen M, Lucamp L, Brøndum-Nielsen K, Grønskov K. Dominant optic atrophy in Denmark - report of 15 novel mutations in OPA1, using a strategy with a detection rate of 90%. BMC MEDICAL GENETICS 2012; 13:65. [PMID: 22857269 PMCID: PMC3507804 DOI: 10.1186/1471-2350-13-65] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/26/2012] [Indexed: 11/25/2022]
Abstract
Background Investigation of the OPA1 mutation spectrum in autosomal dominant optic atrophy (ADOA) in Denmark. Methods Index patients from 93 unrelated ADOA families were assessed for a common Danish founder mutation (c.2826_2836delinsGGATGCTCCA) inOPA1. If negative, direct DNA sequencing of the coding sequence and multiplex ligation-dependent probe amplification (MLPA) were performed. Results from MLPA analysis have been previously reported. Haplotype analysis was carried out analysing single nucleotide polymorphisms (SNP). Retrospective clinical data were retrieved from medical files. Results Probably causative mutations were identified in 84 out of 93 families (90%) including 15 novel mutations. Three mutations c.983A > G, c.2708_2711delTTAG and c.2826_2836delinsGGATGCTCCA, were responsible for ADOA in10, 11 and 28 families, respectively, corresponding to 11%, 12% and 30%. A common haplotype in nine of ten c.983A > G families suggests that they descend from a single founder. The c.2708_2711delTTAG mutation was present on at least two haplotypes and has been repeatedly reported in various ethnic groups,thus represents a mutational hotspot. Clinical examinations of index patients with the two latter mutations demonstrated large inter- and intra-familial variations apparently. Conclusions Genetic testing for OPA1mutations assist in the diagnosis. We have identified mutations in OPA1 in 90% of families including 15 novel mutations. Both DNA sequencing and MLPA analysis are necessary to achieve a high detection rate. More than half of the affected families in Denmark are represented by three common mutations, at least two of which are due to a founder effect, which may account for the high prevalence of ADOA in Denmark.
Collapse
Affiliation(s)
- Gitte J Almind
- Center for Applied Human Molecular Genetics, Kennedy Center, Glostrup, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang VW, Wang J. Determination of the clinical significance of an unclassified variant. Methods Mol Biol 2012; 837:337-48. [PMID: 22215559 DOI: 10.1007/978-1-61779-504-6_23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
After completion of Human Genome Project (HGP) in 2003, as well as the new technology development in genomic research, the most accurate genetics blueprint of human is available. Researchers started to dissect and understand the genetic map of the human species. As a consequence, analyses of novel or unclassified genetic variations become increasingly important in translational medicine. One of the medical specialties in modern medicine is clinical genetics, which is overseen by the American Board of Medical Genetics (ABMG). In 2008, ABMG published a guideline for interpretation of new variants using ACMG Standards and Guidelines (Richards et al. Genet Med 10:294-300, 2008). In this chapter, we provide updated procedures of evaluating different databases, computational tools, and structural analysis methods that we currently utilize to assist in clinical interpretation.
Collapse
Affiliation(s)
- Victor Wei Zhang
- Mitochondrial Diagnostic Laboratory, Medical Genetics Laboratories, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
34
|
Chang JH, Jang JD, Jamieson RV, Grigg JR. Long-Term Follow-Up Study of Autosomal Dominant Optic Atrophy in an Australian Population. ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY (PHILADELPHIA, PA.) 2012; 1:88-90. [PMID: 26107129 DOI: 10.1097/apo.0b013e31824a65b1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to describe the phenotype of Australian patients with a clinical diagnosis of dominant optic atrophy (DOA) and provide long-term follow-up data on its natural history. DESIGN Retrospective analysis. METHODS All patients with the clinical diagnosis of DOA observed during a 30-year period at a single tertiary referral center (Save Sight Institute, Sydney Eye Hospital, Sydney, Australia) with at least 12 months of follow-up were included in the study. Clinical characteristics were assessed with particular attention to change in visual acuity (VA). RESULTS There were 36 patients with DOA from 26 different Australian families. The most common clinical presentation of DOA was insidious onset of visual difficulties beginning in childhood. Mean (SD) age at diagnosis of DOA was 16 (14) years. During a mean follow-up period of 10.6 years (median, 10 years), 44% of study eyes had no change in VA, 35% had reduction of VA by 1 Snellen line, 13% had a reduction of VA by 2 Snellen lines, and 8% of the study eyes had a VA reduction of more than 2 Snellen lines. Six of 36 patients were legally blind at last follow-up. CONCLUSIONS There is considerable heterogeneity in the presenting VA and natural history of DOA between individual patients and within families with DOA, with VA ranging from 6/6 to hand motion perception. This study provides valuable information to aid the clinician counseling the long-term visual outcome in patients with DOA and their families.
Collapse
Affiliation(s)
- John H Chang
- From the *Save Sight Institute, University of Sydney, Sydney Eye Hospital Campus, Sydney, New South Wales; †South Australian Institute of Ophthalmology, Royal Adelaide Hospital, North Terrace, Adelaide South Australia; and ‡Genetic Eye Research Group, Children's Medical Research Institute, The Children's Hospital at Westmead, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
35
|
Zhang J, Yuan Y, Lin B, Feng H, Li Y, Dai X, Zhou H, Dong X, Liu XL, Guan MX. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy. Biochem Biophys Res Commun 2012; 419:670-5. [PMID: 22382025 DOI: 10.1016/j.bbrc.2012.02.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 02/13/2012] [Indexed: 12/01/2022]
Abstract
A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressive visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Williams PA, Piechota M, von Ruhland C, Taylor E, Morgan JE, Votruba M. Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain 2012; 135:493-505. [DOI: 10.1093/brain/awr330] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Cassereau J, Chevrollier A, Bonneau D, Verny C, Procaccio V, Reynier P, Ferré M. A locus-specific database for mutations in GDAP1 allows analysis of genotype-phenotype correlations in Charcot-Marie-Tooth diseases type 4A and 2K. Orphanet J Rare Dis 2011; 6:87. [PMID: 22200116 PMCID: PMC3313893 DOI: 10.1186/1750-1172-6-87] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/26/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The ganglioside-induced differentiation-associated protein 1 gene (GDAP1), which is involved in the Charcot-Marie-Tooth disease (CMT), the most commonly inherited peripheral neuropathy, encodes a protein anchored to the mitochondrial outer membrane. The phenotypic presentations of patients carrying GDAP1 mutations are heterogeneous, making it difficult to determine genotype-phenotype correlations, since the majority of the mutations have been found in only a few unrelated patients. Locus-specific databases (LSDB) established in the framework of the Human Variome Project provide powerful tools for the investigation of such rare diseases. METHODS AND RESULTS We report the development of a publicly accessible LSDB for the GDAP1 gene. The GDAP1 LSDB has adopted the Leiden Open-source Variation Database (LOVD) software platform. This database, which now contains 57 unique variants reported in 179 cases of CMT, offers a detailed description of the molecular, clinical and electrophysiological data of the patients. The usefulness of the GDAP1 database is illustrated by the finding that GDAP1 mutations lead to primary axonal damage in CMT, with secondary demyelination in the more severe cases of the disease. CONCLUSION Findings of this nature should lead to a better understanding of the pathophysiology of CMT. Finally, the GDAP1 LSDB, which is part of the mitodyn.org portal of databases of genes incriminated in disorders involving mitochondrial dynamics and bioenergetics, should yield new insights into mitochondrial diseases.
Collapse
|
38
|
Ranieri M, Del Bo R, Bordoni A, Ronchi D, Colombo I, Riboldi G, Cosi A, Servida M, Magri F, Moggio M, Bresolin N, Comi GP, Corti S. Optic atrophy plus phenotype due to mutations in the OPA1 gene: two more Italian families. J Neurol Sci 2011; 315:146-9. [PMID: 22197506 PMCID: PMC3315002 DOI: 10.1016/j.jns.2011.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/24/2011] [Accepted: 12/02/2011] [Indexed: 12/01/2022]
Abstract
Autosomal Dominant Optic Atrophy (ADOA) is characterized by the selective degeneration of retinal ganglion cells. The occurrence of mutations in the gene encoding the dynamin-like GTPase protein Optic Atrophy 1 (OPA1) has been observed in about 60–70% of ADOA cases. A subset of missense mutations, mostly within the GTPase domain, has recently been associated with a syndromic ADOA form called “OPA1 plus” phenotype presenting, at muscle level, mitochondrial DNA (mtDNA) instability. In this study we disclosed two OPA1 gene mutations in independent probands from two families affected by OPA1 plus phenotype: the previously reported c.985-2A > G substitution and a novel microdeletion (c.2819-1_2821del). The correlation between genotype and phenotype and the effects of these variants at the transcript level and in the muscle tissue were investigated, confirming the broad complexity in the phenotypic spectrum associated with these OPA1 mutations.
Collapse
Affiliation(s)
- Michela Ranieri
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hamahata T, Fujimaki T, Fujiki K, Miyazaki A, Mizota A, Murakami A. OPA1 mutations in Japanese patients suspected to have autosomal dominant optic atrophy. Jpn J Ophthalmol 2011; 56:91-7. [PMID: 22042570 DOI: 10.1007/s10384-011-0096-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/25/2011] [Indexed: 11/29/2022]
Abstract
PURPOSE To report three types of heterozygous mutations in the OPA1 gene in five patients from three families with autosomal dominant optic atrophy (ADOA, MIM#165500). METHODS DNA was extracted from the leukocytes of the peripheral blood. For mtDNA, mutations were examined at positions 11778, 3460 and 14484. For the OPA1 gene, the exons were amplified by PCR and mutations were detected by restriction enzymes or the dye terminator method. RESULTS We detected three types of OPA1 mutation but no mtDNA mutations. In the OPA1 gene, heterozygous frameshift mutations from codon 903 due to a four-base pair deletion in exon 27 were detected in three patients from one family (c.2708_2711delTTAG, p.V903GfsX905). A heterozygous mutation due to a three-base pair deletion in exon 17, leading to a one-amino acid deletion (c.1618_1620delACT, p.T540del), and a heterozygous mutation due to a one-base substitution in exon 11, leading to a stop codon (c.1084G>T, p.E362X), were detected in sporadic cases. CONCLUSION OPA1 mutations existed in three Japanese families with ADOA. After a detailed clinical assessment of the proband, the screening of the OPA1 gene may be helpful for precise diagnosis of ADOA, provided the relevant information of the family members is limited.
Collapse
Affiliation(s)
- Tetsuya Hamahata
- Department of Ophthalmology, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Gallus GN, Cardaioli E, Rufa A, Collura M, Da Pozzo P, Pretegiani E, Tumino M, Pavone L, Federico A. High frequency of OPA1 mutations causing high ADOA prevalence in south-eastern Sicily, Italy. Clin Genet 2011; 82:277-82. [DOI: 10.1111/j.1399-0004.2011.01751.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Van Bergen NJ, Crowston JG, Kearns LS, Staffieri SE, Hewitt AW, Cohn AC, Mackey DA, Trounce IA. Mitochondrial oxidative phosphorylation compensation may preserve vision in patients with OPA1-linked autosomal dominant optic atrophy. PLoS One 2011; 6:e21347. [PMID: 21731710 PMCID: PMC3120866 DOI: 10.1371/journal.pone.0021347] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/27/2011] [Indexed: 02/01/2023] Open
Abstract
Autosomal Dominant Optic Atrophy (ADOA) is the most common inherited optic atrophy where vision impairment results from specific loss of retinal ganglion cells of the optic nerve. Around 60% of ADOA cases are linked to mutations in the OPA1 gene. OPA1 is a fission-fusion protein involved in mitochondrial inner membrane remodelling. ADOA presents with marked variation in clinical phenotype and varying degrees of vision loss, even among siblings carrying identical mutations in OPA1. To determine whether the degree of vision loss is associated with the level of mitochondrial impairment, we examined mitochondrial function in lymphoblast cell lines obtained from six large Australian OPA1-linked ADOA pedigrees. Comparing patients with severe vision loss (visual acuity [VA]<6/36) and patients with relatively preserved vision (VA>6/9) a clear defect in mitochondrial ATP synthesis and reduced respiration rates were observed in patients with poor vision. In addition, oxidative phosphorylation (OXPHOS) enzymology in ADOA patients with normal vision revealed increased complex II+III activity and levels of complex IV protein. These data suggest that OPA1 deficiency impairs OXPHOS efficiency, but compensation through increases in the distal complexes of the respiratory chain may preserve mitochondrial ATP production in patients who maintain normal vision. Identification of genetic variants that enable this response may provide novel therapeutic insights into OXPHOS compensation for preventing vision loss in optic neuropathies.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Jonathan G. Crowston
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Lisa S. Kearns
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Sandra E. Staffieri
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Alex W. Hewitt
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Amy C. Cohn
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - David A. Mackey
- University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Perth, Western Australia, Australia
| | - Ian A. Trounce
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
42
|
Almind GJ, Grønskov K, Milea D, Larsen M, Brøndum-Nielsen K, Ek J. Genomic deletions in OPA1 in Danish patients with autosomal dominant optic atrophy. BMC MEDICAL GENETICS 2011; 12:49. [PMID: 21457585 PMCID: PMC3079616 DOI: 10.1186/1471-2350-12-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/04/2011] [Indexed: 05/26/2023]
Abstract
Background Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89% of cases. Although deletions of OPA1 were recently reported in ADOA, the frequency of OPA1 genomic rearrangements in Denmark, where ADOA has a high prevalence, is unknown. The aim of the study was to identify copy number variations in OPA1 in Danish ADOA patients. Methods Forty unrelated ADOA patients, selected from a group of 100 ADOA patients as being negative for OPA1 point mutations, were tested for genomic rearrangements in OPA1 by multiplex ligation probe amplification (MLPA). When only one probe was abnormal results were confirmed by additional manually added probes. Segregation analysis was performed in families with detected mutations when possible. Results Ten families had OPA1 deletions, including two with deletions of the entire coding region and eight with intragenic deletions. Segregation analysis was possible in five families, and showed that the deletions segregated with the disease. Conclusion Deletions in the OPA1 gene were found in 10 patients presenting with phenotypic autosomal dominant optic neuropathy. Genetic testing for deletions in OPA1 should be offered for patients with clinically diagnosed ADOA and no OPA1 mutations detected by DNA sequencing analysis.
Collapse
Affiliation(s)
- Gitte J Almind
- Center for Applied Human Molecular Genetics, The Kennedy Center, Glostrup, Denmark.
| | | | | | | | | | | |
Collapse
|
43
|
Yu-Wai-Man P, Bailie M, Atawan A, Chinnery PF, Griffiths PG. Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye (Lond) 2011; 25:596-602. [PMID: 21378995 DOI: 10.1038/eye.2011.2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The majority of patients with autosomal dominant optic atrophy (DOA) harbour pathogenic OPA1 mutations. Although DOA is characterised by the preferential loss of retinal ganglion cells (RGCs), about 20% of patients with OPA1 mutations will develop a more severe disease variant (DOA+), with additional neuromuscular features. In this prospective, observational case series, optical coherence tomography (OCT) was used to define the pattern of retinal nerve fibre layer (RNFL) loss in patients with both the pure and syndromal forms of DOA. METHODS Forty patients with a molecular diagnosis of DOA due to OPA1 mutations were prospectively recruited from our neuro-ophthalmology clinic: 26 patients with isolated optic atrophy and 14 patients manifesting DOA+ features. Peripapillary RNFL thickness was measured with the Fast RNFL (3.4) acquisition protocol on a Stratus OCT. RESULTS There was a statistically significant reduction in average RNFL thickness in the OPA1 group compared with normal controls (P<0.0001). The percentage decrease was greatest in the temporal quadrant (59.0%), followed by the inferior (49.6%), superior (41.8%), and nasal (25.9%) quadrants. Patients with DOA+ features had worse visual outcomes compared with patients with pure DOA. Except in the temporal quadrant, RNFL measurements were significantly thinner for the DOA+ group. There was an inverse correlation between average RNFL thickness and logarithm of the minimum angle of resolution (LogMAR) visual acuity (P<0.0001). CONCLUSIONS RGC loss in DOA is characterised by severe involvement of the temporal papillomacular bundle, with relative sparing of the nasal fibres. RNFL thinning is more pronounced in patients with DOA+ phenotypes.
Collapse
Affiliation(s)
- P Yu-Wai-Man
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | |
Collapse
|
44
|
Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies - disease mechanisms and therapeutic strategies. Prog Retin Eye Res 2011; 30:81-114. [PMID: 21112411 PMCID: PMC3081075 DOI: 10.1016/j.preteyeres.2010.11.002] [Citation(s) in RCA: 440] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leber hereditary optic neuropathy (LHON) and autosomal-dominant optic atrophy (DOA) are the two most common inherited optic neuropathies in the general population. Both disorders share striking pathological similarities, marked by the selective loss of retinal ganglion cells (RGCs) and the early involvement of the papillomacular bundle. Three mitochondrial DNA (mtDNA) point mutations; m.3460G>A, m.11778G>A, and m.14484T>C account for over 90% of LHON cases, and in DOA, the majority of affected families harbour mutations in the OPA1 gene, which codes for a mitochondrial inner membrane protein. Optic nerve degeneration in LHON and DOA is therefore due to disturbed mitochondrial function and a predominantly complex I respiratory chain defect has been identified using both in vitro and in vivo biochemical assays. However, the trigger for RGC loss is much more complex than a simple bioenergetic crisis and other important disease mechanisms have emerged relating to mitochondrial network dynamics, mtDNA maintenance, axonal transport, and the involvement of the cytoskeleton in maintaining a differential mitochondrial gradient at sites such as the lamina cribosa. The downstream consequences of these mitochondrial disturbances are likely to be influenced by the local cellular milieu. The vulnerability of RGCs in LHON and DOA could derive not only from tissue-specific, genetically-determined biological factors, but also from an increased susceptibility to exogenous influences such as light exposure, smoking, and pharmacological agents with putative mitochondrial toxic effects. Our concept of inherited mitochondrial optic neuropathies has evolved over the past decade, with the observation that patients with LHON and DOA can manifest a much broader phenotypic spectrum than pure optic nerve involvement. Interestingly, these phenotypes are sometimes clinically indistinguishable from other neurodegenerative disorders such as Charcot-Marie-Tooth disease, hereditary spastic paraplegia, and multiple sclerosis, where mitochondrial dysfunction is also thought to be an important pathophysiological player. A number of vertebrate and invertebrate disease models has recently been established to circumvent the lack of human tissues, and these have already provided considerable insight by allowing direct RGC experimentation. The ultimate goal is to translate these research advances into clinical practice and new treatment strategies are currently being investigated to improve the visual prognosis for patients with mitochondrial optic neuropathies.
Collapse
MESH Headings
- Animals
- DNA, Mitochondrial/genetics
- Disease Models, Animal
- Humans
- Optic Atrophy, Autosomal Dominant/pathology
- Optic Atrophy, Autosomal Dominant/physiopathology
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Hereditary, Leber/pathology
- Optic Atrophy, Hereditary, Leber/physiopathology
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Nerve/pathology
- Phenotype
- Point Mutation
- Retinal Ganglion Cells/pathology
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, UK.
| | | | | |
Collapse
|
45
|
Makino A, Suarez J, Gawlowski T, Han W, Wang H, Scott BT, Dillmann WH. Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1296-302. [PMID: 21346246 DOI: 10.1152/ajpregu.00437.2010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are crucial organelles in cell life serving as a source of energy production and as regulators of Ca(2+) homeostasis, apoptosis, and development. Mitochondria frequently change their shape by fusion and fission, and recent research on these morphological dynamics of mitochondria has highlighted their role in normal cell physiology and disease. In this study, we investigated the effect of high glucose on mitochondrial dynamics in neonatal cardiac myocytes (NCMs). High-glucose treatment of NCMs significantly decreased the level of optical atrophy 1 (OPA1) (mitochondrial fusion-related protein) protein expression. NCMs exhibit two different kinds of mitochondrial structure: round shape around the nuclear area and elongated tubular structures in the pseudopod area. High-glucose-treated NCMs exhibited augmented mitochondrial fragmentation in the pseudopod area. This effect was significantly decreased by OPA1 overexpression. High-glucose exposure also led to increased O-GlcNAcylation of OPA1 in NCMs. GlcNAcase (GCA) overexpression in high-glucose-treated NCMs decreased OPA1 protein O-GlcNAcylation and significantly increased mitochondrial elongation. In addition to the morphological change caused by high glucose, we observed that high glucose decreased mitochondrial membrane potential and complex IV activity and that OPA1 overexpression increased both levels to the control level. These data suggest that decreased OPA1 protein level and increased O-GlcNAcylation of OPA1 protein by high glucose lead to mitochondrial dysfunction by increasing mitochondrial fragmentation, decreasing mitochondrial membrane potential, and attenuating the activity of mitochondrial complex IV, and that overexpression of OPA1 and GCA in cardiac myocytes may help improve the cardiac dysfunction in diabetes.
Collapse
Affiliation(s)
- Ayako Makino
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Fletcher EL, Jobling AI, Vessey KA, Luu C, Guymer RH, Baird PN. Animal models of retinal disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:211-86. [PMID: 21377628 DOI: 10.1016/b978-0-12-384878-9.00006-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Diseases of the retina are the leading causes of blindness in the industrialized world. The recognition that animals develop retinal diseases with similar traits to humans has led to not only a dramatic improvement in our understanding of the pathogenesis of retinal disease but also provided a means for testing possible treatment regimes and successful gene therapy trials. With the advent of genetic and molecular biological tools, the association between specific gene mutations and retinal signs has been made. Animals carrying natural mutations usually in one gene now provide well-established models for a host of inherited retinal diseases, including retinitis pigmentosa, Leber congenital amaurosis, inherited macular degeneration, and optic nerve diseases. In addition, the development of transgenic technologies has provided a means by which to study the effects of these and novel induced mutations on retinal structure and function. Despite these advances, there is a paucity of suitable animal models for complex diseases, including age-related macular degeneration (AMD) and diabetic retinopathy, largely because these diseases are not caused by single gene defects, but involve complex genetics and/or exacerbation through environmental factors, epigenetic, or other modes of genetic influence. In this review, we outline in detail the available animal models for inherited retinal diseases and how this information has furthered our understanding of retinal diseases. We also examine how transgenic technologies have helped to develop our understanding of the role of isolated genes or pathways in complex diseases like AMD, diabetes, and glaucoma.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Vives-Bauza C, Przedborski S. Mitophagy: the latest problem for Parkinson's disease. Trends Mol Med 2010; 17:158-65. [PMID: 21146459 DOI: 10.1016/j.molmed.2010.11.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of unknown cause. Some familial forms of PD are provoked by mutations in the genes encoding for the PTEN (phosphatase and tensin homolog)-induced putative kinase-1 (PINK1) and Parkin. Mounting evidence indicates that PINK1 and Parkin might function in concert to modulate mitochondrial degradation, termed mitophagy. However, the molecular mechanisms by which PINK1/Parkin affect mitophagy are just beginning to be elucidated. Herein, we review the main advances in our understanding of the PINK1/Parkin pathway. Because of the phenotypic similarities among the different forms of PD, a better understanding of PINK1/Parkin biology might have far-reaching pathogenic and therapeutic implications for both the inherited and the sporadic forms of PD.
Collapse
|
48
|
Genetic screening for OPA1 and OPA3 mutations in patients with suspected inherited optic neuropathies. Ophthalmology 2010; 118:558-63. [PMID: 21036400 DOI: 10.1016/j.ophtha.2010.07.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/11/2010] [Accepted: 07/29/2010] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Autosomal-dominant optic atrophy (DOA) is one of the most common inherited optic neuropathies, and it is genetically heterogeneous, with mutations in both OPA1 and OPA3 known to cause disease. Approximately 60% of cases harbor OPA1 mutations, whereas OPA3 mutations have been reported in only 2 pedigrees with DOA and premature cataracts. The aim of this study was to determine the yield of OPA1 and OPA3 screening in a cohort of presumed DOA cases referred to a tertiary diagnostic laboratory. DESIGN Retrospective case series. PARTICIPANTS One hundred eighty-eight probands with bilateral optic atrophy referred for molecular genetic investigations at a tertiary diagnostic facility: 38 patients with an autosomal-dominant pattern of inheritance and 150 sporadic cases. METHODS OPA1 and OPA3 genetic testing was initially performed using polymerase chain reaction-based sequencing methods. The presence of large-scale OPA1 and OPA3 genomic rearrangements was assessed further with a targeted comparative genomic hybridization microarray platform. The 3 primary Leber hereditary optic neuropathy (LHON) mutations, m.3460G→>A, m.11778G→A, and m.14484T→C, also were screened in all patients. MAIN OUTCOME MEASURES The proportion of patients with OPA1 and OPA3 pathogenic mutations. The clinical profile observed in molecularly confirmed DOA cases. RESULTS Twenty-one different OPA1 mutations were found in 27 (14.4%) of the 188 probands screened. The mutations included 6 novel pathogenic variants and the first reported OPA1 initiation codon mutation at c.1A→T. An OPA1 missense mutation, c.239A→G (p.Y80C), was identified in an 11-year-old black girl with optic atrophy and peripheral sensorimotor neuropathy in her lower limbs. The OPA1 detection rate was significantly higher among individuals with a positive family history of visual failure (50.0%) compared with sporadic cases (5.3%). The primary LHON screen was negative in the patient cohort, and additional molecular investigations did not reveal any large-scale OPA1 rearrangements or OPA3 genetic defects. The mean baseline visual acuity for the OPA1-positive group was 0.48 logarithm of the minimum angle of resolution (units mean Snellen equivalent, 20/61; range, 20/20-20/400; 95% confidence interval, 20/52-20/71), and visual deterioration occurred in 54.2% of patients during follow-up. CONCLUSIONS OPA1 mutations are the most common genetic defects identified in patients with suspected DOA, whereas OPA3 mutations are very rare in isolated optic atrophy cases.
Collapse
|
49
|
Lenaers G, Amati-Bonneau P, Delettre C, Chevrollier A, Verny C, Miléa D, Procaccio V, Bonneau D, Hamel C, Reynier P. De la levure aux maladies neurodégénératives. Med Sci (Paris) 2010; 26:836-41. [DOI: 10.1051/medsci/20102610836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Cho DH, Nakamura T, Lipton SA. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 2010; 67:3435-47. [PMID: 20577776 PMCID: PMC11115814 DOI: 10.1007/s00018-010-0435-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/22/2022]
Abstract
Mitochondria are highly dynamic organelles that continuously undergo two opposite processes, fission and fusion. Mitochondrial dynamics influence not only mitochondrial morphology, but also mitochondrial biogenesis, mitochondrial distribution within the cell, cell bioenergetics, and cell injury or death. Drp1 mediates mitochondrial fission, whereas Mfn1/2 and Opa1 control mitochondrial fusion. Neurons require large amounts of energy to carry out their highly specialized functions. Thus, mitochondrial dysfunction is a prominent feature in a variety of neurodegenerative diseases. Mutations of Mfn2 and Opa1 lead to neuropathies such as Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. Moreover, both Aβ peptide and mutant huntingtin protein induce mitochondrial fragmentation and neuronal cell death. In addition, mutants of Parkinson's disease-related genes also show abnormal mitochondrial morphology. This review highlights our current understanding of abnormal mitochondrial dynamics relevant to neuronal synaptic loss and cell death in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease.
Collapse
Affiliation(s)
- Dong-Hyung Cho
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
- Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Pungpap-dong, Songpa-gu, Seoul, 138-736 Korea
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi 446-701 Korea
| | - Tomohiro Nakamura
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Stuart A. Lipton
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|