1
|
Anastasovska V, Kocova M, Zdraveska N, Tesovnik T, Debeljak M, Kovač J. Medium-chain acyl-CoA dehydrogenase deficiency in North Macedonia - ten years experience. J Pediatr Endocrinol Metab 2025; 38:501-508. [PMID: 40023771 DOI: 10.1515/jpem-2024-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is an autosomal recessive disorder of fatty acid oxidation, with potentialy fatal outcome. Early diagnosis of MCADD by acylcarnitine analysis on newborn screening using tandem mass spectrometry can potentially reduce morbidity and mortality. In this study, we evaluate the prevalence and genetic background of MCADD in North Macedonia. METHODS Medium chain length acylcarnitines, were measured on newborn screening blood spot cards by tandem mass spectrometry. The molecular diagnosis was performed by whole exome sequencing of the ACADM gene, and detected mutations were confirmed with Sanger sequencing in all neonates with positive MCAD screening markers, and their parents as well. RESULTS A total of 52,942 newborns were covered by metabolic screening during the period May 2014-May 2024. 11 unrelated Macedonian neonates were detected with positive MCADD screening markers, and prevalence of 1/4,813 live births was estimated. Molecular analysis of the ACADM gene showed that c.985A>G was the most prevalent mutation occurred on 77.27 % of the alleles, while 18.18 % alleles carried c.244dupT pathogenic variant. Seven patients were homozygous for c.985A>G (63.6 %) while one was homozygous for c.244dupT (9.1 %) variant. Two patients were compound heterozygotes with c.985A>G/c.244dupT genotype (18.2 %), and one patient had c.985A>G allele without detection of the second ACADM mutant allele. CONCLUSIONS The NBS estimated prevalence of MCADD in Macedonian population was more frequent than in the other European population and worldwide incidence in general. This is the first report of the genetic background of MCADD in North Macedonia.
Collapse
Affiliation(s)
- Violeta Anastasovska
- Department of Neontal Screening, Faculty of Medicine, University Clinic for Pediatrics, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Mirjana Kocova
- Department of Neontal Screening, Faculty of Medicine, University Clinic for Pediatrics, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Nikolina Zdraveska
- Department of Neonatology, Faculty of Medicine, University Clinic for Pediatrics, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Tine Tesovnik
- Department of Genomics, Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maruša Debeljak
- Department of Genomics, Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Department of Genomics, Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Vela-Amieva M, Alcántara-Ortigoza MA, González-del Angel A, Fernández-Hernández L, Reyna-Fabián ME, Estandía-Ortega B, Guillén-López S, López-Mejía L, Belmont-Martínez L, Carrillo-Nieto RI, Ibarra-González I, Ryu SW, Lee H, Fernández-Lainez C. Concordance Between Biochemical and Molecular Diagnosis Obtained by WES in Mexican Patients with Inborn Errors of Intermediary Metabolism: Utility for Therapeutic Management. Int J Mol Sci 2024; 25:11722. [PMID: 39519275 PMCID: PMC11546494 DOI: 10.3390/ijms252111722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Biochemical phenotyping has been the milestone for diagnosing and managing patients affected by inborn errors of intermediary metabolism (IEiM); however, identifying the genotype responsible for these monogenic disorders greatly contributes to achieving these goals. Herein, whole-exome sequencing (WES) was used to determine the genotypes of 95 unrelated Mexican pediatric patients suspected of having IEiM. They were classified into those bearing specific biochemical abnormalities (Group 1), and those presenting unspecific biochemical profiles (Group 2). The overall concordance between the initial biochemical diagnosis and final genotypic diagnoses was 72.6% (N = 69/95 patients), with the highest concordance achieved in Group 1 (91.3%, N = 63/69), whereas the concordance was limited in Group 2 (23.07%). This finding suggests that previous biochemical phenotyping correlated with the high WES diagnostic success. Concordance was high for urea cycle disorders (94.1%) and organic acid disorders (77.4%). The identified mutational spectrum comprised 83 IEiM-relevant variants (pathogenic, likely pathogenic, and variants of uncertain significance or VUS), including three novel ones, distributed among 29 different genes responsible for amino acid, organic acid, urea cycle, carbohydrate, and lipid disorders. Inconclusive WES results (7.3%, N = 7/95) relied on monoallelic pathogenic genotypes or those involving two VUS for autosomal-recessive IEiMs. A second monogenic disease was observed in 10.5% (N = 10/95) of the patients. According to the WES results, modifications in treatment had to be made in 33.6% (N = 32/95) of patients, mainly attributed to the presence of a second monogenic disease, or to an actionable trait. This study includes the largest cohort of Mexican patients to date with biochemically suspected IEiM who were genetically diagnosed through WES, underscoring its importance in medical management.
Collapse
Affiliation(s)
- Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | | | - Ariadna González-del Angel
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Liliana Fernández-Hernández
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Miriam Erandi Reyna-Fabián
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Bernardette Estandía-Ortega
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Sara Guillén-López
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Lizbeth López-Mejía
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Leticia Belmont-Martínez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Rosa Itzel Carrillo-Nieto
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Isabel Ibarra-González
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, UNAM, Mexico City C.P. 04530, Mexico
| | | | - Hane Lee
- 3billion, Inc., Seoul 03161, Republic of Korea
| | - Cynthia Fernández-Lainez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| |
Collapse
|
3
|
Schnabel-Besson E, Mütze U, Dikow N, Hörster F, Morath MA, Alex K, Brennenstuhl H, Settegast S, Okun JG, Schaaf CP, Winkler EC, Kölker S. Wilson and Jungner Revisited: Are Screening Criteria Fit for the 21st Century? Int J Neonatal Screen 2024; 10:62. [PMID: 39311364 PMCID: PMC11417796 DOI: 10.3390/ijns10030062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Driven by technological innovations, newborn screening (NBS) panels have been expanded and the development of genomic NBS pilot programs is rapidly progressing. Decisions on disease selection for NBS are still based on the Wilson and Jungner (WJ) criteria published in 1968. Despite this uniform reference, interpretation of the WJ criteria and actual disease selection for NBS programs are highly variable. A systematic literature search [PubMED search "Wilson" AND "Jungner"; last search 16.07.22] was performed to evaluate the applicability of the WJ criteria for current and future NBS programs and the need for adaptation. By at least two reviewers, 105 publications (systematic literature search, N = 77; manual search, N = 28) were screened for relevant content and, finally, 38 publications were evaluated. Limited by the study design of qualitative text analysis, no statistical evaluation was performed, but a structured collection of reported aspects of criticism and proposed improvements was instead collated. This revealed a set of general limitations of the WJ criteria, such as imprecise terminology, lack of measurability and objectivity, missing pediatric focus, and absent guidance on program management. Furthermore, it unraveled specific aspects of criticism on clinical, diagnostic, therapeutic, and economical aspects. A major obstacle was found to be the incompletely understood natural history and phenotypic diversity of rare diseases prior to NBS implementation, resulting in uncertainty about case definition, risk stratification, and indications for treatment. This gap could be closed through the systematic collection and evaluation of real-world evidence on the quality, safety, and (cost-)effectiveness of NBS, as well as the long-term benefits experienced by screened individuals. An integrated NBS public health program that is designed to continuously learn would fulfil these requirements, and a multi-dimensional framework for future NBS programs integrating medical, ethical, legal, and societal perspectives is overdue.
Collapse
Affiliation(s)
- Elena Schnabel-Besson
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Ulrike Mütze
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Friederike Hörster
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Marina A. Morath
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Karla Alex
- Section Translational Medical Ethics, Department of Medical Oncology, National Center for Tumor Diseases (NCT), Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Heiko Brennenstuhl
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Sascha Settegast
- Section Translational Medical Ethics, Department of Medical Oncology, National Center for Tumor Diseases (NCT), Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Jürgen G. Okun
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Christian P. Schaaf
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Eva C. Winkler
- Section Translational Medical Ethics, Department of Medical Oncology, National Center for Tumor Diseases (NCT), Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Krebs-Drouot L, Schalk A, Schaefer E, Keyser C, Gonzalez A, Calmels N, Wardé MTA, Oertel L, Acquaviva CÉ, Mandel JL, Farrugia A. Recurrent familial case of early childhood sudden death: Complex post mortem genetic investigations. Forensic Sci Int Genet 2024; 71:103028. [PMID: 38518711 DOI: 10.1016/j.fsigen.2024.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Sudden Unexplained Death in Childhood (SUDC) needs to be fully assessed considering its impact on the family, parents and siblings. Inborn Errors of Metabolism (IEM) such as Medium-Chain Acyl-CoA Dehydrogenase Deficiency (MCADD) should be taken into consideration when SUDC occurres. Our aim is to present a family with two successive SUDC and to discuss the post-mortem genetics investigations revealing an IEM implication. CASES REPORT A complete autopsy with genetic testing was performed when the proband, a 4-year-old girl, died. A few years previously, her older brother had died at the same age and off the same condition. Years later, his exhumation was necessary in order to perform a post-mortem diagnosis.The two siblings were revealed to have had the same pathogenic genotype of the ACADM gene, heterozygous substitutions in ACADM (NM_000016.5): c.985 A>G p.(Lys329Glu) and c.347 G>A p.(Cys116Tyr). In addition, they also both carried a VUS in TECRL, a gene implicated in Catecholaminergic Polymorphic Tachycardia Ventricular (CPVT) and SUDC. CONCLUSION We illustrate the importance of exome analyses for investigating unexplained sudden death, especially in children, with the possible impact for genetic counselling in the family. The finding of the implication of ACADM gene in this case, raises likely responsibility of the public health system in countries such as France, who delayed implementation of new born screening for these conditions. Exome analyses in this case detected unexpected complexity in interpretation linked to the identification of a second candidate gene for SUDC.
Collapse
Affiliation(s)
- Lila Krebs-Drouot
- Institut de Médecine Légale de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 11 Rue Humann, Strasbourg 67000, France.
| | - Audrey Schalk
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale D'Alsace, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale D'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christine Keyser
- Institut de Médecine Légale de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 11 Rue Humann, Strasbourg 67000, France; Université de Paris, BABEL, CNRS, Paris 75012, France
| | - Angela Gonzalez
- Institut de Médecine Légale de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 11 Rue Humann, Strasbourg 67000, France; Université de Paris, BABEL, CNRS, Paris 75012, France
| | - Nadège Calmels
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale D'Alsace, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Marie-Thérèse Abi Wardé
- Service de Pédiatrie Spécialisée et Générale, Unité de Neurologie Pédiatrique, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laetitia Oertel
- Institut de Médecine Légale de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 11 Rue Humann, Strasbourg 67000, France
| | - C Écile Acquaviva
- Service de Biochimie et Biologie Moléculaire-UM Pathologies Héréditaires du Métabolisme et du Globule Rouge, CHU Lyon, France
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Audrey Farrugia
- Institut de Médecine Légale de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 11 Rue Humann, Strasbourg 67000, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| |
Collapse
|
5
|
Mütze U, Kölker S. [Evaluation and optimization of newborn screening by structured long-term follow-up-using the example of inherited metabolic diseases]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:1249-1258. [PMID: 37815612 PMCID: PMC10622349 DOI: 10.1007/s00103-023-03772-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/04/2023] [Indexed: 10/11/2023]
Abstract
Newborn screening (NBS) is a highly successful secondary prevention program with the goal of preventing severe sequelae of congenital, mostly genetic, diseases by identifying them as early as possible, ideally in the pre-symptomatic period. Studies to date have shown the important achievements of NBS programs but also reveal a number of relevant weaknesses. These include the often incompletely understood natural history and phenotypic diversity of rare diseases as well as the inadequate ability to accurately predict individual disease severity at an early stage and thus the uncertainties in case definition, risk stratification, and treatment indication.In light of the rapid developments in high-throughput genetic technologies and the associated opportunities for substantial future expansion of NBS programs, it seems overdue to make structured long-term follow-up and the subsequent evaluation of the long-term health benefits mandatory for individuals with rare diseases identified through NBS. This article explains the importance of long-term follow-up for the evaluation and continuous optimization of the screening. Long-term clinical outcomes of people with inherited metabolic diseases identified by NBS are presented as examples.
Collapse
Affiliation(s)
- Ulrike Mütze
- Sektion Neuropädiatrie und Stoffwechselmedizin, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
| | - Stefan Kölker
- Sektion Neuropädiatrie und Stoffwechselmedizin, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland
| |
Collapse
|
6
|
Madeira CA, Anselmo C, Costa JM, Bonito CA, Ferreira RJ, Santos DJVA, Wanders RJ, Vicente JB, Ventura FV, Leandro P. Functional and structural impact of 10 ACADM missense mutations on human medium chain acyl-Coa dehydrogenase. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166766. [PMID: 37257730 DOI: 10.1016/j.bbadis.2023.166766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Medium chain acyl-CoA dehydrogenase (MCAD) deficiency (MCADD) is associated with ACADM gene mutations, leading to an impaired function and/or structure of MCAD. Importantly, after import into the mitochondria, MCAD must incorporate a molecule of flavin adenine dinucleotide (FAD) per subunit and assemble into tetramers. However, the effect of MCAD amino acid substitutions on FAD incorporation has not been investigated. Herein, the commonest MCAD variant (p.K304E) and 11 additional rare variants (p.Y48C, p.R55G, p.A88P, p.Y133C, p.A140T, p.D143V, p.G224R, p.L238F, p.V264I, p.Y372N, and p.G377V) were functionally and structurally characterized. Half of the studied variants presented a FAD content <65 % compared to the wild-type. Most of them were recovered as tetramers, except the p.Y372N (mainly as dimers). No correlation was found between the levels of tetramers and FAD content. However, a correlation between FAD content and the cofactor's affinity, proteolytic stability, thermostability, and thermal inactivation was established. We showed that the studied amino acid changes in MCAD may alter the substrate chain-length dependence and the interaction with electron-transferring-flavoprotein (ETF) necessary for a proper functioning electron transfer thus adding additional layers of complexity to the pathological effect of ACADM missense mutations. Although the majority of the variant MCADs presented an impaired capacity to retain FAD during their synthesis, some of them were structurally rescued by cofactor supplementation, suggesting that in the mitochondrial environment the levels and activity of those variants may be dependent of FAD's availability thus contributing for the heterogeneity of the MCADD phenotype found in patients presenting the same genotype.
Collapse
Affiliation(s)
- Catarina A Madeira
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carolina Anselmo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João M Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cátia A Bonito
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | | - Daniel J V A Santos
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Ronald J Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers-University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Fátima V Ventura
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Paula Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
7
|
Zeka N, Zeka E, Zhubi E, Hoxha I. Case report: Diagnosis of a patient with Sifrim-Hitz-Weiss syndrome, development and epileptic encephalopathy-14, and medium chain acyl-CoA dehydrogenase deficiency. Front Pediatr 2023; 11:1230056. [PMID: 37732012 PMCID: PMC10507246 DOI: 10.3389/fped.2023.1230056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 09/22/2023] Open
Abstract
Background It is generally recognized that genetic metabolic disorders can result in neurological symptoms such as seizures, developmental delay, and intellectual disability. Heterogeneous clinical presentations make the diagnosis challenging. Case presentation In this case report, we present a unique and complex genetic disorder observed in a female patient who exhibited three pathogenic gene variants in the KCNT1, ACADM, and CHD4 genes. The convergence of these variants resulted in a multifaceted clinical presentation characterized by severe seizures of combined focal and generalized onset, metabolic dysfunction, and neurodevelopmental abnormalities. The identification and functional characterization of these gene variants shed light on the intricate interplay between these genes and the patient's phenotype. EEG revealed an epileptiform abnormality which presented in the inter-ictal period from the left frontal-central area and in the ictal period from the left mid-temporal area. The brain MRI revealed volume loss in the posterior periventricular area and parietal parenchyma, myelin destruction with no sign of hypoxic involvement, and left dominant enlargement of the lateral ventricles secondary to loss of central parenchyma. The patient was diagnosed through exome sequencing with Sifrim-Hitz-Weiss syndrome, development and epileptic encephalopathy-14, and medium-chain acyl-CoA dehydrogenase deficiency. An antiseizure medication regimen with valproic acid, levetiracetam, phenobarbital, and clonazepam was initiated. However, this led to only partial control of the seizures. Conclusion Clinical follow-up of the patient will further define the clinical spectrum of KCNT1, ACADM, and CHD4 gene variants. It will also determine the long-term efficacy of the treatment of seizures and the development of precision medicine for epilepsy syndromes due to gain-of-function variants. Special emphasis should be put on the role and importance of large-scale genomic testing in understanding and diagnosing complex phenotypes and atypical epileptic syndromes.
Collapse
Affiliation(s)
- Naim Zeka
- Pediatric Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
- Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Eris Zeka
- Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Esra Zhubi
- Evidence Synthesis Group, Prishtina, Kosovo
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Ilir Hoxha
- Evidence Synthesis Group, Prishtina, Kosovo
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Research Unit, Heimerer College, Prishtina, Kosovo
| |
Collapse
|
8
|
Yang Y, Gu H, Zhang K, Guo Z, Wang X, Wei Q, Weng L, Han X, Lv Y, Cao M, Cao P, Huang C, Qiu Z. Exosomal ACADM sensitizes gemcitabine-resistance through modulating fatty acid metabolism and ferroptosis in pancreatic cancer. BMC Cancer 2023; 23:789. [PMID: 37612627 PMCID: PMC10463774 DOI: 10.1186/s12885-023-11239-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
This study aimed to evaluate the potential of exosomes from cancer cells to predict chemoresistance in pancreatic cancer (PC) and explore the molecular mechanisms through RNA-sequencing and mass spectrometry. We sought to understand the connection between the exosomal Medium-chain acyl-CoA dehydrogenase (ACADM) level and the reaction to gemcitabine in vivo and in patients with PC. We employed loss-of-function, gain-of-function, metabolome mass spectrometry, and xenograft models to investigate the effect of exosomal ACADM in chemoresistance in PC. Our results showed that the molecules involved in lipid metabolism in exosomes vary between PC cells with different gemcitabine sensitivity. Exosomal ACADM (Exo-ACADM) was strongly correlated with gemcitabine sensitivity in vivo, which can be used as a predictor for postoperative gemcitabine chemosensitivity in pancreatic patients. Moreover, ACADM was found to regulate the gemcitabine response by affecting ferroptosis through Glutathione peroxidase 4 (GPX4) and mevalonate pathways. It was also observed that ACADM increased the consumption of unsaturated fatty acids and decreased intracellular lipid peroxides and reactive oxygen species (ROS) levels. In conclusion, this research suggests that Exo-ACADM may be a viable biomarker for predicting the responsiveness of patients to chemotherapy.
Collapse
Affiliation(s)
- Yuhan Yang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Haitao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Kundong Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zengya Guo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaofeng Wang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingyun Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Ling Weng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Xuan Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Yan Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Meng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
9
|
Schnabel E, Kölker S, Gleich F, Feyh P, Hörster F, Haas D, Fang-Hoffmann J, Morath M, Gramer G, Röschinger W, Garbade SF, Hoffmann GF, Okun JG, Mütze U. Combined Newborn Screening Allows Comprehensive Identification also of Attenuated Phenotypes for Methylmalonic Acidurias and Homocystinuria. Nutrients 2023; 15:3355. [PMID: 37571294 PMCID: PMC10420807 DOI: 10.3390/nu15153355] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.
Collapse
Affiliation(s)
- Elena Schnabel
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Patrik Feyh
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Friederike Hörster
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Dorothea Haas
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Junmin Fang-Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Marina Morath
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Gwendolyn Gramer
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
- Department for Inborn Metabolic Diseases, University Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wulf Röschinger
- Labor Becker MVZ GbR, Newborn Screening Unit, 81671 Munich, Germany
| | - Sven F. Garbade
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Georg F. Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| |
Collapse
|
10
|
Weiss KJ, Berger U, Haider M, Wagner M, Märtner EMC, Regenauer-Vandewiele S, Lotz-Havla A, Schuhmann E, Röschinger W, Maier EM. Free carnitine concentrations and biochemical parameters in medium-chain acyl-CoA dehydrogenase deficiency: Genotype-phenotype correlation. Clin Genet 2023; 103:644-654. [PMID: 36840705 DOI: 10.1111/cge.14316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Biallelic variants in the ACADM gene cause medium-chain acyl-CoA dehydrogenase deficiency (MCADD). This study reports on differences in the occurrence of secondary free carnitine (C0) deficiency and different biochemical phenotypes related to genotype and age in 109 MCADD patients followed-up at a single tertiary care center during 22 years. C0 deficiency occurred earlier and more frequently in c.985A>G homozygotes (genotype A) compared to c.985A>G compound heterozygotes (genotype B) and individuals carrying variants other than c.985A>G and c.199C>T (genotype D) (median age 4.2 vs. 6.6 years; p < 0.001). No patient carrying c.199C>T (genotype C) developed C0 deficiency. A daily dosage of 20-40 mg/kg carnitine was sufficient to maintain normal C0 concentrations. Compared to genotype A as reference group, octanoylcarnitine (C8) was significantly lower in genotypes B and C, whereas C0 was significantly higher by 8.28 μmol/L in genotype C (p < 0.05). In conclusion, C0 deficiency is mainly found in patients with pathogenic genotypes associated with high concentrations of presumably toxic acylcarnitines, while individuals carrying the variant c.199C>T are spared and show consistently mild biochemical phenotypes into adulthood. Low-dose carnitine supplementation maintains normal C0 concentrations. However, future studies need to evaluate clinical benefits on acute and chronic manifestations of MCADD.
Collapse
Affiliation(s)
- Katharina J Weiss
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ursula Berger
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Maliha Haider
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | | | | | - Amelie Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Wulf Röschinger
- Labor Becker MVZ GbR, Newborn Screening Unit, Munich, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
11
|
Mütze U, Mengler K, Boy N, Gleich F, Opladen T, Garbade SF, Kölker S. How longitudinal observational studies can guide screening strategy for rare diseases. J Inherit Metab Dis 2022; 45:889-901. [PMID: 35488475 DOI: 10.1002/jimd.12508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
Newborn screening (NBS) is an important secondary prevention program, aiming to shift the paradigm of medicine to the pre-clinical stage of a disease. Starting more than 50 years ago, technical advances, such as tandem mass spectrometry (MS/MS), paved the way to a continuous extension of NBS programs. However, formal evidence of the long-term clinical benefits in large cohorts and cost-effectiveness of extended NBS programs is still scarce. Although published studies confirmed important benefits of NBS programs, it also unraveled a significant number of limitations. These include an incompletely understood natural history and phenotypic diversity of some screened diseases, unreliable early and precise prediction of individual disease severity, uncertainty about case definition, risk stratification, and indication to treat, resulting in a diagnostic and treatment dilemma in individuals with ambiguous screening and confirmatory test results. Interoperable patient registries are multi-purpose tools that could help to close the current knowledge gaps and to inform further optimization of NBS strategy. Standing at the edge of introducing high throughput genetic technologies to NBS programs with the opportunity to massively extend NBS programs and with the risk of aggravating current limitations of NBS programs, it seems overdue to include mandatory long-term follow-up of NBS cohorts into the list of screening principles and to build an international collaborative framework that enables data collection and exchange in a protected environment, integrating the perspectives of patients, families, and the society.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina Mengler
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Opladen
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
12
|
Medium-chain acyl-CoA dehydrogenase deficiency: prevalence of ACADM pathogenic variants c.985A>G and c.199T>C in a healthy population in Rio Grande do Sul, Brazil. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Alcaide P, Ferrer-López I, Gutierrez L, Leal F, Martín-Hernández E, Quijada-Fraile P, Bellusci M, Moráis A, Pedrón-Giner C, Rausell D, Correcher P, Unceta M, Stanescu S, Ugarte M, Ruiz-Sala P, Pérez B. Lymphocyte Medium-Chain Acyl-CoA Dehydrogenase Activity and Its Potential as a Diagnostic Confirmation Tool in Newborn Screening Cases. J Clin Med 2022; 11:jcm11102933. [PMID: 35629059 PMCID: PMC9145342 DOI: 10.3390/jcm11102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The determination of acylcarnitines (AC) in dried blood spots (DBS) by tandem mass spectrometry in newborn screening (NBS) programs has enabled medium-chain acyl-coA dehydrogenase deficiency (MCADD) to be identified in presymptomatic newborns. Nevertheless, different confirmatory tests must be performed to confirm the diagnosis. In this work, we have collected and analyzed the NBS results and confirmatory test results (plasma AC, molecular findings, and lymphocyte MCAD activity) of forty individuals, correlating them with clinical outcomes and treatment, with the aim of obtaining useful diagnostic information that could be applied in the follow-up of the patients. Our results led us to classify patients into two groups. The first group (14 cases) had high increased octanoylcarnitine (C8) levels, biallelic pathogenic variants, and severe impaired enzyme activity (<10% of the intra-assay control (IAC)); all of these cases received nutritional therapy and required carnitine supplementation during follow-up, representing the most severe form of the disease. The second group (16 patients) was a heterogeneous group presenting moderate increases in C8, biallelic likely pathogenic/pathogenic variants, and intermediate activity (<41% IAC). All of them are currently asymptomatic and could be considered as having a milder form of the disease. Finally, eight cases presented a normal−mild increase in plasma C8, with only one pathogenic variant detected, and high−intermediate residual activity (15−100%). Based on our results, we confirm that combined evaluation of acylcarnitine profiles, genetic findings, and residual enzyme activities proves useful in predicting the risk of future metabolic decompensation, in making decisions regarding future treatment or follow-up, and also in confirming the clinical effects of unknown clinical variants.
Collapse
Affiliation(s)
- Patricia Alcaide
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain; (I.F.-L.); (L.G.); (F.L.); (M.U.); (P.R.-S.); (B.P.)
- Correspondence: ; Tel.: +34-914-974-589
| | - Isaac Ferrer-López
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain; (I.F.-L.); (L.G.); (F.L.); (M.U.); (P.R.-S.); (B.P.)
| | - Leticia Gutierrez
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain; (I.F.-L.); (L.G.); (F.L.); (M.U.); (P.R.-S.); (B.P.)
| | - Fatima Leal
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain; (I.F.-L.); (L.G.); (F.L.); (M.U.); (P.R.-S.); (B.P.)
| | - Elena Martín-Hernández
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) para Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (E.M.-H.); (P.Q.-F.); (M.B.)
| | - Pilar Quijada-Fraile
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) para Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (E.M.-H.); (P.Q.-F.); (M.B.)
| | - Marcello Bellusci
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) para Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (E.M.-H.); (P.Q.-F.); (M.B.)
| | - Ana Moráis
- Unidad de Nutrición Infantil y Enfermedades Metabólicas, Hospital Universitario Infantil La Paz, 28046 Madrid, Spain;
| | - Consuelo Pedrón-Giner
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain;
| | - Dolores Rausell
- Laboratorio de Metabolopatías, Servicio de Análisis Clínicos, Hospital Universitario La Fe, 46026 Valencia, Spain; (D.R.); (P.C.)
| | - Patricia Correcher
- Laboratorio de Metabolopatías, Servicio de Análisis Clínicos, Hospital Universitario La Fe, 46026 Valencia, Spain; (D.R.); (P.C.)
| | - María Unceta
- Análisis Clínicos, Servicio de Bioquímica, Unidad de Enfermedades Metabólicas, Hospital Universitario de Cruces, 48903 Barakaldo, Spain;
| | - Sinziana Stanescu
- Servicio de Pediatría, Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain;
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain; (I.F.-L.); (L.G.); (F.L.); (M.U.); (P.R.-S.); (B.P.)
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain; (I.F.-L.); (L.G.); (F.L.); (M.U.); (P.R.-S.); (B.P.)
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain; (I.F.-L.); (L.G.); (F.L.); (M.U.); (P.R.-S.); (B.P.)
| |
Collapse
|
14
|
Fonseca PAS, Schenkel FS, Cánovas A. Genome-wide association study using haplotype libraries and repeated measures model to identify candidate genomic regions for stillbirth in Holstein cattle. J Dairy Sci 2022; 105:1314-1326. [PMID: 34998559 DOI: 10.3168/jds.2021-20936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Reduced fertility is one of the main causes of economic losses on dairy farms, resulting in economic losses estimated at $938 per stillbirth case in Holstein herds. The identification of genomic regions associated with stillbirth could help to develop better management and breeding strategies aimed to reduce the frequency of undesirable gestation outcomes. Here, 10,570 cows and 50,541 birth records were used to perform a haplotype-based GWAS. A total of 41 significantly associated pseudo-SNPs (haplotypes within haplotype blocks converted to a binary classification) were identified after Bonferroni adjustment for multiple tests. A total of 117 positional candidate genes were annotated within or close (in a 200-kb interval) to significant pseudo-SNPs (haplotype blocks). The guilt-by-association functional prioritization identified 31 potential functional candidate genes for reproductive performance out of the 117 positional candidate genes annotated. These genes play crucial roles in biological processes associated with pregnancy persistence, fetus development, immune response, among others. These results helped us to better understand the genetic basis of stillbirth in dairy cattle and may be useful for the prediction of stillbirth in Holstein cattle, helping to reduce the related economic losses caused by this phenotype.
Collapse
Affiliation(s)
- P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
15
|
Mütze U, Nennstiel U, Odenwald B, Haase C, Ceglarek U, Janzen N, Garbade SF, Hoffmann GF, Kölker S, Haas D. Sudden neonatal death in individuals with medium-chain acyl-coenzyme A dehydrogenase deficiency: limit of newborn screening. Eur J Pediatr 2022; 181:2415-2422. [PMID: 35294644 PMCID: PMC9110443 DOI: 10.1007/s00431-022-04421-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 02/02/2023]
Abstract
Medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency is the most common disorder of mitochondrial β-oxidation of fatty acids resulting in hypoketotic hypoglycemia, hepatopathy, and often fatal outcome in undiagnosed children. Introduction of tandem mass spectrometry-based newborn screening programs in the late 1990s has significantly reduced morbidity and mortality in MCAD deficiency; however, neonatal death in individuals with early disease manifestation and severe hypoglycemia may still occur. We describe the fatal disease course in eight newborns with MCAD deficiency, aiming to raise awareness for early clinical symptoms and the life-saving treatment, and promote systematic post-mortem protocols for biochemical and genetic testing, necessary for correct diagnosis and counselling of the family if unexpected death occurred in the neonatal period.Conclusion: Early newborn screening and awareness for clinical symptoms is lifesaving in MCAD deficiency, which may present with fatal neonatal crisis. Systematic post-mortem diagnostic protocols are needed for sudden neonatal deaths.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Department of General Pediatrics, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany.
| | - Uta Nennstiel
- Screening Center, Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Birgit Odenwald
- Screening Center, Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Claudia Haase
- Klinik Für Kinder- und Jugendmedizin, Helios Klinikum Erfurt, Erfurt, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital, University of Leipzig, Leipzig, Germany
| | - Nils Janzen
- Screening-Labor Hannover, Hannover, Germany ,Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany ,Division of Laboratory Medicine, Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus Auf der Bult, Hannover, Germany
| | - Sven F. Garbade
- Division of Child Neurology and Metabolic Medicine, Department of General Pediatrics, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Georg F. Hoffmann
- Division of Child Neurology and Metabolic Medicine, Department of General Pediatrics, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Department of General Pediatrics, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Dorothea Haas
- Division of Child Neurology and Metabolic Medicine, Department of General Pediatrics, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
16
|
Tucci S, Wagner C, Grünert SC, Matysiak U, Weinhold N, Klein J, Porta F, Spada M, Bordugo A, Rodella G, Furlan F, Sajeva A, Menni F, Spiekerkoetter U. Genotype and residual enzyme activity in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: Are predictions possible? J Inherit Metab Dis 2021; 44:916-925. [PMID: 33580884 DOI: 10.1002/jimd.12368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common defect of mitochondrial β-oxidation. Confirmation diagnostics after newborn screening (NBS) can be performed either by enzyme testing and/or by sequencing of the ACADM gene. Here, we report the results from enzyme testing in lymphocytes with gene variants from molecular analysis of the ACADM gene and with the initial acylcarnitine concentrations in the NBS sample. From April 2013 to August 2019, in 388 individuals with characteristic acylcarnitine profiles suggestive of MCADD the octanoyl-CoA-oxidation was measured in lymphocytes. In those individuals with residual activities <50%, molecular genetic analysis of the ACADM gene was performed. In 50% of the samples (195/388), MCADD with a residual activity ranging from 0% to 30% was confirmed. Forty-five percent of the samples (172/388) showed a residual activity >35% excluding MCADD. In the remaining 21 individuals, MCAD residual activity ranged from 30% to 35%. The latter group comprised both heterozygous carriers and individuals carrying two gene variants on different alleles. Twenty new variants could be identified and functionally classified based on their effect on enzyme function. C6 and C8 acylcarnitine species in NBS correlated with MCAD activity and disease severity. MCADD was only confirmed in half of the cases referred suggesting a higher false positive rate than expected. Measurement of the enzyme function in lymphocytes allowed fast confirmation diagnostics and clear determination of the pathogenicity of new gene variants. There is a clear correlation between genotype and enzyme function underlining the reproducibility of the functional measurement in vitro.
Collapse
Affiliation(s)
- Sara Tucci
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christine Wagner
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Uta Matysiak
- Pediatric Genetics, Center for Pediatrics and Adolescent Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Weinhold
- Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, Berlin, Germany
| | - Jeannette Klein
- Newborn Screening Laboratory, Otto-Heubner-Center for Pediatrics and Adolescent Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Francesco Porta
- Department of Pediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | - Marco Spada
- Department of Pediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | - Andrea Bordugo
- Department of Mother and Child, Pediatric Clinic, University Hospital of Verona, Verona, Italy
- Inherited Metabolic Diseases Unit, Department of Paediatrics, Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine Diseases, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giulia Rodella
- Department of Mother and Child, Pediatric Clinic, University Hospital of Verona, Verona, Italy
- Inherited Metabolic Diseases Unit, Department of Paediatrics, Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine Diseases, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Francesca Furlan
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Sajeva
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Menni
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
17
|
Schiergens KA, Weiss KJ, Röschinger W, Lotz-Havla AS, Schmitt J, Dalla Pozza R, Ulrich S, Odenwald B, Kreuder J, Maier EM. Newborn screening for carnitine transporter defect in Bavaria and the long-term follow-up of the identified newborns and mothers: Assessing the benefit and possible harm based on 19 ½ years of experience. Mol Genet Metab Rep 2021; 28:100776. [PMID: 34178604 PMCID: PMC8214137 DOI: 10.1016/j.ymgmr.2021.100776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/30/2022] Open
Abstract
Carnitine transporter defect (CTD) is a potentially life-threatening disorder causing acute metabolic decompensation, cardiac arrhythmia, and cardiac and skeletal myopathies. CTD is included in many newborn screening (NBS) programs. The screening parameter free carnitine, however, is influenced by maternal conditions due to placental transfer. This study reviewed the NBS results for CTD as part of a pilot study in Bavaria, Germany, and the long-term follow-up of the identified patients treated in our center between January 1999 and June 2018. Among 1,816,000 Bavarian NBS samples, six newborns were diagnosed with CTD (incidence of 1:302,667; positive predictive value (PPV) of 1.63% from 2008 to 2018). In the 24 newborns presented to our center for confirmatory testing, we detected four newborns and six mothers with CTD, one newborn and three mothers in whom CTD was presumed but not genetically confirmed, and one mother with glutaric aciduria type I. In 11 newborns, no indication for an inborn error of metabolism was found. The newborns and mothers with CTD had no serious cardiac adverse events or relevant muscular symptoms at diagnosis and during treatment for up to 14 years. Three mothers were lost to follow-up. Revealing a lower incidence than expected, our data confirm that NBS for CTD most likely misses newborns with CTD. It rather produces high numbers of false-positives and a low PPV picking up asymptomatic mothers with a diagnosis of uncertain clinical significance. Our data add to the growing evidence that argues against an implementation of CTD in NBS programs. Newborn screening (NBS) aims at early detection and treatment of relevant disorders. High numbers of false-positives burden the healthy population and health care systems. NBS for carnitine transporter defect produces high numbers of false-positives. NBS for carnitine transporter defect picks up asymptomatic mothers. Selective screening at clinical suspicion more suitable than population screening.
Collapse
Affiliation(s)
- Katharina A Schiergens
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina J Weiss
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Wulf Röschinger
- Newborn Screening Unit, Becker and colleagues laboratory, Ottobrunner Str. 6, 81737, Munich, Germany
| | - Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Joachim Schmitt
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Robert Dalla Pozza
- Department of Pediatric Cardiology, Munich University Hospital, Marchioninistr. 15, 81377 Munich, Germany
| | - Sarah Ulrich
- Department of Pediatric Cardiology, Munich University Hospital, Marchioninistr. 15, 81377 Munich, Germany
| | - Birgit Odenwald
- Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Joachim Kreuder
- Pediatric Heart Center, Justus-Liebig-University, Feulgenstr. 10-12, 35392 Giessen, Germany
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| |
Collapse
|
18
|
Lotz-Havla AS, Weiß KJ, Schiergens KA, Brunet T, Kohlhase J, Regenauer-Vandewiele S, Maier EM. Subcutaneous vitamin B12 administration using a portable infusion pump in cobalamin-related remethylation disorders: a gentle and easy to use alternative to intramuscular injections. Orphanet J Rare Dis 2021; 16:215. [PMID: 33980297 PMCID: PMC8114704 DOI: 10.1186/s13023-021-01847-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background Cobalamin (cbl)-related remethylation disorders are a heterogeneous group of inherited disorders comprising the remethylation of homocysteine to methionine and affecting multiple organ systems, most prominently the nervous system and the bone marrow. To date, the parenteral, generally intramuscular, lifelong administration of hydroxycobalamin (OHCbl) is the mainstay of therapy in these disorders. The dosage and frequency of OHCbl is titrated in each patient to the minimum effective dose in order to account for the painful injections. This may result in undertreatment, a possible risk factor for disease progression and disease-related complications. Results We describe parenteral administration of OHCbl using a subcutaneous catheter together with a portable infusion pump in a home therapy setting in four pediatric patients with remethylation disorders, two patients with cblC, one patient with cblG, and one patient with cblE deficiency, in whom intramuscular injections were not or no longer feasible. The placement of the subcutaneous catheters and handling of the infusion pump were readily accomplished and well accepted by the patients and their families. No adverse events occurred. The use of a small, portable syringe driver pump allowed for a most flexible administration of OHCbl in everyday life. The concentrations of total homocysteine levels were determined at regular patient visits and remained within the therapeutic target range. This approach allowed for the continuation of OHCbl therapy or the adjustment of therapy required to improve metabolic control in our patients. Conclusions Subcutaneous infusion using a subcutaneous catheter system and a portable pump for OHCbl administration in combined and isolated remethylation disorders is safe, acceptable, and effective. It decreases disease burden in preventing frequent single injections and providing patient independence. Thus, it may promote long-term adherence to therapy in patients and parents.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina J Weiß
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina A Schiergens
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Technische Universität München, Trogerstr. 32, 81675, Munich, Germany
| | - Jürgen Kohlhase
- SYNLAB Center for Human Genetics, Heinrich-von-Stephan-Str. 5, 79100, Freiburg, Germany
| | - Stephanie Regenauer-Vandewiele
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
19
|
Tao L, Zhong L, Li Y, Li D, Xiu D, Zhou J. Integrated proteomics and phosphoproteomics reveal perturbed regulative pathways in pancreatic ductal adenocarcinoma. Mol Omics 2021; 17:230-240. [PMID: 33355329 DOI: 10.1039/d0mo00125b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to its inefficient diagnosis, rapid progress, and tenacious drug resistance. Here, we aimed to analyze the expressive patterns of proteins and phosphorylation in PDAC tissue samples and compare them to normal pancreatic tissue to investigate the underlying mechanisms and to reveal potential protein targets for diagnosis and drug development. Liquid chromatography coupled to mass spectrometry (LC-MS) based proteomics and phosphoproteomics analyses were performed using 20 pairs of patient-derived PDAC tissue and normal pancreatic tissue samples. Protein identification and quantification were conducted using MaxQuant software. Bioinformatics analysis was used to retrieve PDAC-relevant pathways and gene ontology (GO) terms. 4985 proteins and 3643 phosphoproteins were identified with high confidence; of these, 322 proteins and 235 phosphoproteins were dysregulated in PDAC. Several pathways, including several extracellular matrix-related pathways, were found to be strongly associated with PDAC. Further, the expression levels of filamin A (FLNA), integrin alpha-V (ITGAV), thymidine phosphorylase (TYMP), medium-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADM), short-chain specific acyl-CoA dehydrogenase, mitochondrial (ACADS), and acetyl-CoA acetyltransferase, mitochondrial (ACAT1) were examined through western blot and immunohistochemistry analysis, and the results confirmed the validity of the proteomics analysis results. These findings provide comprehensive insight into the dysregulated regulative networks in PDAC tissue samples at the protein and phosphorylation levels, and they provide clues for further pathological studies and drug-target development.
Collapse
Affiliation(s)
- Lianyuan Tao
- Department of General Surgery, Peking University Third Hospital, No. 49, Hua Yuan North Rd, Hai Dian District, Beijing 100191, China. and Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Lijun Zhong
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Yang Li
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - Deyu Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, No. 49, Hua Yuan North Rd, Hai Dian District, Beijing 100191, China.
| | - Juntuo Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, China.
| |
Collapse
|
20
|
Roman TS, Crowley SB, Roche MI, Foreman AKM, O'Daniel JM, Seifert BA, Lee K, Brandt A, Gustafson C, DeCristo DM, Strande NT, Ramkissoon L, Milko LV, Owen P, Roy S, Xiong M, Paquin RS, Butterfield RM, Lewis MA, Souris KJ, Bailey DB, Rini C, Booker JK, Powell BC, Weck KE, Powell CM, Berg JS. Genomic Sequencing for Newborn Screening: Results of the NC NEXUS Project. Am J Hum Genet 2020; 107:596-611. [PMID: 32853555 PMCID: PMC7536575 DOI: 10.1016/j.ajhg.2020.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Newborn screening (NBS) was established as a public health program in the 1960s and is crucial for facilitating detection of certain medical conditions in which early intervention can prevent serious, life-threatening health problems. Genomic sequencing can potentially expand the screening for rare hereditary disorders, but many questions surround its possible use for this purpose. We examined the use of exome sequencing (ES) for NBS in the North Carolina Newborn Exome Sequencing for Universal Screening (NC NEXUS) project, comparing the yield from ES used in a screening versus a diagnostic context. We enrolled healthy newborns and children with metabolic diseases or hearing loss (106 participants total). ES confirmed the participant's underlying diagnosis in 15 out of 17 (88%) children with metabolic disorders and in 5 out of 28 (∼18%) children with hearing loss. We discovered actionable findings in four participants that would not have been detected by standard NBS. A subset of parents was eligible to receive additional information for their child about childhood-onset conditions with low or no clinical actionability, clinically actionable adult-onset conditions, and carrier status for autosomal-recessive conditions. We found pathogenic variants associated with hereditary breast and/or ovarian cancer in two children, a likely pathogenic variant in the gene associated with Lowe syndrome in one child, and an average of 1.8 reportable variants per child for carrier results. These results highlight the benefits and limitations of using genomic sequencing for NBS and the challenges of using such technology in future precision medicine approaches.
Collapse
Affiliation(s)
- Tamara S Roman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie B Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Myra I Roche
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ann Katherine M Foreman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julianne M O'Daniel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryce A Seifert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristy Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alicia Brandt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chelsea Gustafson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniela M DeCristo
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natasha T Strande
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura V Milko
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Phillips Owen
- Renaissance Computing Institute, Chapel Hill, NC 27517, USA
| | - Sayanty Roy
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mai Xiong
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan S Paquin
- Center for Communication Science, RTI International, Research Triangle Park, NC 27709, USA
| | - Rita M Butterfield
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC 27705, USA
| | - Megan A Lewis
- Center for Communication Science, RTI International, Research Triangle Park, NC 27709, USA
| | - Katherine J Souris
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Donald B Bailey
- Genomics, Bioinformatics and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - Christine Rini
- Feinberg School of Medicine, Department of Medical Social Sciences, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K Booker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bradford C Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen E Weck
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cynthia M Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Weiss KJ, Röschinger W, Blessing H, Lotz-Havla AS, Schiergens KA, Maier EM. Diagnostic Challenges Using a 2-Tier Strategy for Methylmalonic Acidurias: Data from 1.2 Million Dried Blood Spots. ANNALS OF NUTRITION AND METABOLISM 2020; 76:268-276. [PMID: 32683363 DOI: 10.1159/000508838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/19/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The detection of methylmalonic acid (MMA) by second-tier analysis has been shown to reduce the number of false positives in newborn screening (NBS) for genetically determined methylmalonic acidurias (MMAuria). In addition to genetic conditions, MMA is an indicator of vitamin B12 status, thus applicable to detect maternal vitamin B12 deficiency in the newborns screened. METHODS Biochemical and clinical follow-up data of a 7.5-year pilot study with 1.2 million newborns screened were reviewed. RESULTS Among 1,195,850 NBS samples, 3,595 (0.3%) fulfilled criteria for second-tier analysis of MMA. In 37 (0.003%; 1/32,000) samples, elevated concentrations of MMA were detected, resulting in diagnostic workup at a metabolic center in 21 newborns. In 6 infants (1/199,000), genetic conditions were established, 1 infant with cobalamin C deficiency (CblC) showed only a moderate elevation of MMA. The remaining 15 newborns (1/79,000) displayed significantly lower concentrations of MMA and were evaluated for maternal vitamin B12 deficiency. In 9 mothers, vitamin B12 deficiency was verified, and 6 showed no indication for vitamin B12 deficiency. Treatment with vitamin B12 normalized biochemical parameters in all 15 infants. CONCLUSIONS Applying a 2-tier strategy measuring MMA in NBS identified genetic conditions of MMAuria. It was possible to separate severe, early-onset phenotypes from maternal vitamin B12 deficiency. However, the detection of CblC deficiency with mildly elevated MMA interferes with impaired vitamin B12 status of unknown relevance and thus burdens possibly healthy newborns. Regarding maternal vitamin B12 deficiency, testing and supplementing mothers-to-be is preferable. This might decrease straining follow-up of newborns and improve quality and overall perception of NBS.
Collapse
Affiliation(s)
- Katharina J Weiss
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Wulf Röschinger
- Newborn Screening Unit, Becker and Colleagues Laboratory, Munich, Germany
| | - Holger Blessing
- Department of Inborn Errors of Metabolism, Children's and Adolescents' Hospital, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Katharina A Schiergens
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany,
| |
Collapse
|
22
|
Wang T, Ma J, Zhang Q, Gao A, Wang Q, Li H, Xiang J, Wang B. Expanded Newborn Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry in Suzhou, China: Disease Spectrum, Prevalence, Genetic Characteristics in a Chinese Population. Front Genet 2019; 10:1052. [PMID: 31737040 PMCID: PMC6828960 DOI: 10.3389/fgene.2019.01052] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Expanded newborn screening for inborn errors of metabolism (IEMs) by tandem mass spectrometry (MS/MS) could simultaneously analyze more than 40 metabolites and identify about 50 kinds of IEMs. Next generation sequencing (NGS) targeting hundreds of IMEs-associated genes as a follow-up test in expanded newborn screening has been used for genetic analysis of patients. The spectrum, prevalence, and genetic characteristic of IEMs vary dramatically in different populations. To determine the spectrum, prevalence, and gene mutations of IEMs in newborns in Suzhou, China, 401,660 newborns were screened by MS/MS and 138 patients were referred to genetic analysis by NGS. The spectrum of 22 IEMs were observed in Suzhou population of newborns, and the overall incidence (excluding short chain acyl-CoA dehydrogenase deficiency (SCADD) and 3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCD)) was 1/3,163. The prevalence of each IEM ranged from 1/401,660 to 1/19,128, while phenylketonuria (PKU) (1/19,128) and Mild hyperphenylalaninemia (M-HPA) (1/19,128) were the most common IEMs, followed by primary carnitine uptake defect (PCUD) (1/26,777), SCADD (1/28,690), hypermethioninemia (H-MET) (1/30,893), 3-MCCD (1/33,412) and methylmalonic acidemia (MMA) (1/40,166). Moreover, 89 reported mutations and 51 novel mutations in 25 IMEs-associated genes were detected in 138 patients with one of 22 IEMs. Some hotspot mutations were observed for ten IEMs, including PAH gene c.728G > A, c.611A > G, and c.721C > T for Phenylketonuria, PAH gene c.158G > A, c.1238G > C, c.728G > A, and c.1315+6T > A for M-HPA, SLC22A5 gene c.1400C > G, c.51C > G, and c.760C > T for PCUD, ACADS gene c.1031A > G, c.164C > T, and c.1130C > T for SCAD deficiency, MAT1A gene c.791G > A for H-MET, MCCC1 gene c.639+2T > A and c.863A > G for 3-MCCD, MMUT gene c.1663G > A for MMA, SLC25A13 gene c.IVS16ins3Kb and c.852_855delTATG for cittrullinemia II, PTS gene c.259C > T and c.166G > A for Tetrahydrobiopterin deficiency, and ACAD8 gene c.1000C > T and c.286C > A for Isobutyryl coa dehydrogenase deficiency. All these hotspot mutations were reported to be pathogenic or likely pathogenic, except a novel mutation of ACAD8 gene c.286C > A. These mutational hotspots could be potential candidates for gene screening and these novel mutations expanded the mutational spectrum of IEMs. Therefore, our findings could be of value for genetic counseling and genetic diagnosis of IEMs.
Collapse
Affiliation(s)
- Ting Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Ma
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Zhang
- Genetic Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ang Gao
- Genetic Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qi Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Li
- Infertility Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jingjing Xiang
- Genetic Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Benjing Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
23
|
Wang B, Zhang Q, Gao A, Wang Q, Ma J, Li H, Wang T. New Ratios for Performance Improvement for Identifying Acyl-CoA Dehydrogenase Deficiencies in Expanded Newborn Screening: A Retrospective Study. Front Genet 2019; 10:811. [PMID: 31620161 PMCID: PMC6759686 DOI: 10.3389/fgene.2019.00811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Some success in identifying acyl-CoA dehydrogenase (ACAD) deficiencies before they are symptomatic has been achieved through tandem mass spectrometry. However, there has been several challenges that need to be confronted, including excess false positives, the occasional false negatives and indicators selection. To select ideal indicators and evaluate their performance for identifying ACAD deficiencies, data from 352,119 newborn babies, containing 20 cases, were used in this retrospective study. A total of three new ratios, C4/C5DC+C6-OH, C8/C14:1, and C14:1/C16-OH, were selected from 43 metabolites. Around 903 ratios derived from pairwise combinations of all metabolites via multivariate logistic regression analysis were used. In the current study, the regression analysis was performed to identify short chain acyl-CoA dehydrogenase (SCAD) deficiency, medium chain acyl-CoA dehydrogenase (MCAD) deficiency, and very long chain acyl-CoA dehydrogenase (VLCAD) deficiency. In both model-building and testing data, the C4/C5DC+C6-OH, C8/C14:1 and C14:1/C16-OH were found to be better indicators for SCAD, MCAD and VLCAD deficiencies, respectively, compared to [C4, (C4, C4/C2)], [C8, (C6, C8, C8/C2, C4DC+C5-OH/C8:1)], and [C14:1, (C14:1, C14:1/C16, C14:1/C2)], respectively. In addition, 22 mutations, including 5 novel mutations and 17 reported mutations, in ACADS, ACADM, and ACADL genes were detected in 20 infants with ACAD deficiency by using high-thorough sequencing based on target capture. The pathogenic mutations of c.1031A > G in ACADS, c.449_452delCTGA in ACADM and c.1349G > A in ACADL were found to be hot spots in Suzhou patients with SCAD, MCAD, and VLCAD, respectively. In conclusion, we had identified three new ratios that could improve the performance for ACAD deficiencies compared to the used indicators. We considered to utilize C4/C5DC+C6-OH, C8/C14:1, and C14:1/C16-OH as primary indicators for SCAD, MCAD, and VLCAD deficiency, respectively, in further expanded newborn screening practice. In addition, the spectrum of mutations in Suzhou population enriches genetic data of Chinese patients with one of ACAD deficiencies.
Collapse
Affiliation(s)
- Benjing Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Zhang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ang Gao
- Genetic Clinic, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qi Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Ma
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Li
- Infertility Clinic, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ting Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
24
|
Li Y, Zhu R, Liu Y, Song J, Xu J, Yang Y. Medium-chain acyl-coenzyme A dehydrogenase deficiency: Six cases in the Chinese population. Pediatr Int 2019; 61:551-557. [PMID: 31033143 DOI: 10.1111/ped.13872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) is a rare autosomal recessive disorder that affects the degradation of medium-chain fatty acids. Few cases of MCADD have been documented to date in mainland China. METHODS Medium-chain acyl-coenzyme A dehydrogenase deficiency was diagnosed in six patients (three girls and three boys) from six unrelated Chinese families at ages ranging from 10 days to 3 years old. The diagnosis was confirmed by the identification of a primary biomarker of serum octanoyl-carnitine (C8) and genetic pathogenic mutations. RESULTS Only two patients were admitted because of vomiting, diarrhea, myasthenia, and coma; the other four patients were diagnosed via the newborn screening process. Six mutations were found in acyl-CoA dehydrogenase medium chain (ACADM). One mutation (c.727C>T) was novel and the others (c.158G>A, c.387+1delG, c.449_452del, c.1045C>T, and c.1085G>A) have been previously reported. CONCLUSIONS Six Chinese cases of MCADD were identified. One novel mutation was found. c.449_452del and c.1085G>A were common mutations in this study.
Collapse
Affiliation(s)
- Yanhan Li
- Department of Laboratory Animal Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ruoxin Zhu
- Department of Reproductive center, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Yi Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
25
|
Karaceper MD, Khangura SD, Wilson K, Coyle D, Brownell M, Davies C, Dodds L, Feigenbaum A, Fell DB, Grosse SD, Guttmann A, Hawken S, Hayeems RZ, Kronick JB, Laberge AM, Little J, Mhanni A, Mitchell JJ, Nakhla M, Potter M, Prasad C, Rockman-Greenberg C, Sparkes R, Stockler S, Ueda K, Vallance H, Wilson BJ, Chakraborty P, Potter BK. Health services use among children diagnosed with medium-chain acyl-CoA dehydrogenase deficiency through newborn screening: a cohort study in Ontario, Canada. Orphanet J Rare Dis 2019; 14:70. [PMID: 30902101 PMCID: PMC6431026 DOI: 10.1186/s13023-019-1001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We describe early health services utilization for children diagnosed with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency through newborn screening in Ontario, Canada, relative to a screen negative comparison cohort. METHODS Eligible children were identified via newborn screening between April 1, 2006 and March 31, 2010. Age-stratified rates of physician encounters, emergency department (ED) visits and inpatient hospitalizations to March 31, 2012 were compared using incidence rate ratios (IRR) and incidence rate differences (IRD). We used negative binomial regression to adjust IRRs for sex, gestational age, birth weight, socioeconomic status and rural/urban residence. RESULTS Throughout the first few years of life, children with MCAD deficiency (n = 40) experienced statistically significantly higher rates of physician encounters, ED visits, and hospital stays compared with the screen negative cohort. The highest rates of ED visits and hospitalizations in the MCAD deficiency cohort occurred from 6 months to 2 years of age (ED use: 2.1-2.5 visits per child per year; hospitalization: 0.5-0.6 visits per child per year), after which rates gradually declined. CONCLUSIONS This study confirms that young children with MCAD deficiency use health services more frequently than the general population throughout the first few years of life. Rates of service use in this population gradually diminish after 24 months of age.
Collapse
Affiliation(s)
- Maria D Karaceper
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada
| | - Sara D Khangura
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada
| | - Kumanan Wilson
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada.,Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada.,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Doug Coyle
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada
| | - Marni Brownell
- Manitoba Centre for Health Policy, Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Christine Davies
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Linda Dodds
- Departments of Obstetrics & Gynecology and Pediatrics, Dalhousie University, Halifax, Canada
| | - Annette Feigenbaum
- Department of Pediatrics, Division of Clinical & Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Deshayne B Fell
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada.,ICES, Toronto and Ottawa, Canada
| | - Scott D Grosse
- Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities, Atlanta, USA
| | - Astrid Guttmann
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada.,ICES, Toronto and Ottawa, Canada.,Department of Pediatrics, Division of Paediatric Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Steven Hawken
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada.,Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada.,ICES, Toronto and Ottawa, Canada
| | - Robin Z Hayeems
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Jonathan B Kronick
- Department of Pediatrics, Division of Clinical & Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Anne-Marie Laberge
- Medical Genetics, CHU Sainte-Justine and Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada
| | - Aizeddin Mhanni
- Department of Paediatrics and Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - John J Mitchell
- Montreal Children's Hospital, McGill University, Montreal, Canada
| | - Meranda Nakhla
- Montreal Children's Hospital, McGill University, Montreal, Canada
| | - Murray Potter
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada.,Clinical Genetics Program, McMaster University Medical Centre, Hamilton Health Sciences, Hamilton, Canada
| | - Chitra Prasad
- London Health Sciences Centre, Western University, London, Canada
| | - Cheryl Rockman-Greenberg
- Department of Paediatrics and Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Rebecca Sparkes
- Department of Paediatrics, Section of Clinical Genetics, Alberta Children's Hospital, Calgary, Canada
| | - Sylvia Stockler
- Children's & Women's Health Centre of British Columbia, Vancouver, Canada.,Biochemical Genetics Laboratory, Children's & Women's Health Centre of British Columbia, Vancouver, Canada
| | - Keiko Ueda
- Children's & Women's Health Centre of British Columbia, Vancouver, Canada
| | - Hilary Vallance
- Biochemical Genetics Laboratory, Children's & Women's Health Centre of British Columbia, Vancouver, Canada.,Department of Pathology, University of British Columbia, Vancouver, Canada
| | - Brenda J Wilson
- Division of Community Health and Humanities, Memorial University of Newfoundland, St. John's, Canada
| | - Pranesh Chakraborty
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Beth K Potter
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Cr, Ottawa, ON, K1G 5Z3, Canada. .,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada. .,ICES, Toronto and Ottawa, Canada.
| | | |
Collapse
|
26
|
Multitarget Effects of Danqi Pill on Global Gene Expression Changes in Myocardial Ischemia. Int J Genomics 2018; 2018:9469670. [PMID: 29487863 PMCID: PMC5816862 DOI: 10.1155/2018/9469670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/27/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Danqi pill (DQP) is a widely prescribed traditional Chinese medicine (TCM) in the treatment of cardiovascular diseases. The objective of this study is to systematically characterize altered gene expression pattern induced by myocardial ischemia (MI) in a rat model and to investigate the effects of DQP on global gene expression. Global mRNA expression was measured. Differentially expressed genes among the sham group, model group, and DQP group were analyzed. The gene ontology enrichment analysis and pathway analysis of differentially expressed genes were carried out. We quantified 10,813 genes. Compared with the sham group, expressions of 339 genes were upregulated and 177 genes were downregulated in the model group. The upregulated genes were enriched in extracellular matrix organization, response to wounding, and defense response pathways. Downregulated genes were enriched in fatty acid metabolism, pyruvate metabolism, PPAR signaling pathways, and so forth. This indicated that energy metabolic disorders occurred in rats with MI. In the DQP group, expressions of genes in the altered pathways were regulated back towards normal levels. DQP reversed expression of 313 of the 516 differentially expressed genes in the model group. This study provides insight into the multitarget mechanism of TCM in the treatment of complex diseases.
Collapse
|
27
|
Janzen N, Hofmann AD, Schmidt G, Das AM, Illsinger S. Non-invasive test using palmitate in patients with suspected fatty acid oxidation defects: disease-specific acylcarnitine patterns can help to establish the diagnosis. Orphanet J Rare Dis 2017; 12:187. [PMID: 29268767 PMCID: PMC5740567 DOI: 10.1186/s13023-017-0737-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim of the present study was to establish a non-invasive, fast and robust enzymatic assay to confirm fatty acid oxidation defects (FAOD) in humans following informative newborn-screening or for selective screening of patients suspected to suffer from FAOD. MATERIAL/METHODS The reliability of this method was tested in whole blood from FAOD patients with specific enzymatic defects. Whole blood samples were assayed in 30 medium chain- (MCADD, age 0 to 17 years), 6 very long chain- (VLCADD, age 0 to 4 years), 6 long chain hydroxy- (LCHAD, age 1 to 6 years), 3 short chain- (SCADD, age 10 to 13 years) acyl-CoA-dehydrogenase- and 2 primary carnitine transporter deficiencies (CTD, age 3 to 5 years). Additionally, 26 healthy children (age 0 to 17 years) served as controls. Whole blood samples were incubated with stable end-labeled palmitate; labeled acylcarnitines were analyzed by tandem mass spectrometry and compared with controls and between patient groups (Mann-Whitney Rank Sum Test). Concentrations of specific labeled acylcarnitine metabolites were compared between particular underlying MCADD- (ANOVA), VLCADD- and LCHADD- genetic variants (descriptive data analysis). RESULTS 11 different acylcarnitines were analyzed. MCADD- (C8-, C10-carnitine, C8/C10- and C8/C4-carnitine), VLCADD- (C12-, C14:1-, C14:2-carnitine, C14:1/C12- and C14:2/C12-carnitine), LCHADD (C16-OH-carnitine) as well as CTD- deficiency (sum of all acylcarnitines) samples could be clearly identified and separated from control values as well as other FAOD, whereas the sum of all acylcarnitines was not conclusive between FAOD samples. Furthermore, C4- (SCADD), C14- (VLCADD) and C14-OH-carnitines (LCHADD) were discriminating between the FAOD groups. Metabolic parameters did not differ significantly between underlying MCADD variants; similar results could be observed for VLCADD- and LCHADD- variants. CONCLUSION This functional method in whole blood samples is relatively simple, non-invasive and little time consuming. It allows to identify MCADD-, VLCADD-, LCHADD- and carnitine transporter deficiencies. The genetic phenotypes of one enzyme defect did not result in differing acylcarnitine patterns in MCADD, VLCADD or LCHADD in vitro.
Collapse
Affiliation(s)
- Nils Janzen
- Screening Laboratory Hannover, Hannover, Germany.,Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Alejandro D Hofmann
- Center of Pediatric Surgery, Hannover Medical School and Bult Children's Hospital, Hannover, Germany
| | - Gunnar Schmidt
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anibh M Das
- Clinic for Pediatric Kidney-, Liver- and Metabolic Diseases, Hannover Medical School, Hannover, Germany. .,Centre for Systems Neurosciences at Veterinary School Hannover, Hannover, Germany.
| | - Sabine Illsinger
- Clinic for Pediatric Kidney-, Liver- and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Tajima G, Hara K, Tsumura M, Kagawa R, Okada S, Sakura N, Hata I, Shigematsu Y, Kobayashi M. Screening of MCAD deficiency in Japan: 16years' experience of enzymatic and genetic evaluation. Mol Genet Metab 2016; 119:322-328. [PMID: 27856190 DOI: 10.1016/j.ymgme.2016.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a representative disorder of fatty acid oxidation and is one of the most prevalent inborn errors of metabolism among Caucasian populations. In Japan, however, it was as late as 2000 when the first patient was found, and enzymatic and genetic evaluation of MCAD deficiency began. METHODS We measured octanoyl-CoA dehydrogenase activity in lymphocytes of symptomatic children and newborn screening (NBS)-positive subjects who showed elevated levels of C8-acylcarnitine in blood. The results were further confirmed by direct sequencing of the ACADM gene. RESULTS The disease was diagnosed in 9 out of 18 symptomatic children. The affected patients showed residual activities from 0% to 3% of the normal average value, except for one patient with 10% activity. Concerning 50 NBS-positive subjects, 18 with enzymatic activities around 10% or lower and 14 with activities ranging from 13% to 30% were judged to be affected patients, and biallelic variants were detected in most of the cases tested. Newborns with higher enzymatic activities were estimated to be heterozygous carriers or healthy subjects, though biallelic variants were detected in 5 of them. Genetic analysis detected 22 kinds of variant alleles. The most prevalent was c.449_452delCTGA (p.T150Rfs), which was followed by c.50G>A (p.R17H), c.1085G>A (p.G362E), c.157C>T (p.R53C), and c.843A>T (p.R281S); these five variants accounted for approximately 60% of all the alleles examined. CONCLUSION Our study has revealed the unique genetic backgrounds of MCAD deficiency among Japanese, based on the largest series of non-Caucasian cases. A continuous spectrum of severity was also observed in our series of NBS-positive cases, suggesting that it is essential for every nation and ethnic group to accumulate its own information on gene variants, together with their enzymatic evaluation, in order to establish an efficient NBS system for MCAD deficiency.
Collapse
Affiliation(s)
- Go Tajima
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Keiichi Hara
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Department of Pediatrics, National Hospital Organization Kure Medical Center, 3-1 Aoyama-cho, Kure 737-0023, Japan.
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Nobuo Sakura
- Nursing House for Severe Motor and Intellectual Severities, Suzugamine, 104-27 Minaga, Itsukaichi-cho, Saeki-ku, Hiroshima 731-5122, Japan.
| | - Ikue Hata
- Department of Pediatrics, School of Medical Sciences, University of Fukui, 23 Shimogogetsu, Matsuoka, Eiheiji-cho, Fukui 910-1193, Japan.
| | - Yosuke Shigematsu
- Department of Pediatrics, School of Medical Sciences, University of Fukui, 23 Shimogogetsu, Matsuoka, Eiheiji-cho, Fukui 910-1193, Japan.
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
29
|
Villoria JG, Pajares S, López RM, Marin JL, Ribes A. Neonatal Screening for Inherited Metabolic Diseases in 2016. Semin Pediatr Neurol 2016; 23:257-272. [PMID: 28284388 DOI: 10.1016/j.spen.2016.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The scope of newborn screening (NBS) programs is continuously expanding. NBS programs are secondary prevention interventions widely recognized internationally in the "field of Public Health." These interventions are aimed at early detection of asymptomatic children affected by certain diseases, with the objective to establish a definitive diagnosis and apply the proper treatment to prevent further complications and sequelae and ensure a better quality of life. The most significant event in the history of neonatal screening was the discovery of phenylketonuria in 1934. This disease has been the paradigm of inherited metabolic diseases. The next paradigm was the introduction of tandem mass spectrometry in the NBS programs that make possible the simultaneous measurement of several metabolites and consequently, the detection of several diseases in one blood spot and in an unique analysis. We aim to review the current situation of neonatal screening in 2016 worldwide and show scientific evidence of the benefits for some diseases. We will also discuss future challenges. It should be taken into account that any consideration to expand an NBS panel should involve a rigorous process of decision-making that balances benefits against the risks of harm.
Collapse
Affiliation(s)
- Judit Garcia Villoria
- From the Seccción de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital ClinicHospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - Sonia Pajares
- From the Seccción de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital ClinicHospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - Rosa María López
- From the Seccción de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital ClinicHospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - José Luis Marin
- From the Seccción de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital ClinicHospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain
| | - Antonia Ribes
- From the Seccción de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital ClinicHospital Clínic, CIBERER, IDIBAPS, Barcelona, Spain.
| |
Collapse
|
30
|
Bentler K, Zhai S, Elsbecker SA, Arnold GL, Burton BK, Vockley J, Cameron CA, Hiner SJ, Edick MJ, Berry SA. 221 newborn-screened neonates with medium-chain acyl-coenzyme A dehydrogenase deficiency: Findings from the Inborn Errors of Metabolism Collaborative. Mol Genet Metab 2016; 119:75-82. [PMID: 27477829 PMCID: PMC5031545 DOI: 10.1016/j.ymgme.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 11/16/2022]
Abstract
INTRODUCTION There is limited understanding of relationships between genotype, phenotype and other conditions contributing to health in neonates with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) identified through newborn screening. METHODS Retrospective analysis of comprehensive data from a cohort of 221 newborn-screened subjects identified as affected with MCADD in the Inborn Errors of Metabolism - Information System (IBEM-IS), a long term follow-up database of the Inborn Errors of Metabolism Collaborative, was performed. RESULTS The average age at notification of first newborn screen results to primary care or metabolic providers was 7.45days. The average octanoylcarnitine (C8) value on first newborn screen was 11.2μmol/L (median 8.6, range 0.36-43.91). A higher C8 level correlated with an earlier first subspecialty visit. Subjects with low birth weight had significantly lower C8 values. Significantly higher C8 values were found in symptomatic newborns, in newborns with abnormal lab testing in addition to newborn screening and/or diagnostic tests, and in subjects homozygous for the c.985A>G ACADM gene mutation or compound heterozygous for the c.985A>G mutation and deletions or other known highly deleterious mutations. Subjects with neonatal symptoms, or neonatal abnormal labs, or neonatal triggers were more likely to have at least one copy of the severe c.985A>G ACADM gene mutation. C8 and genotype category were significant predictors of the likelihood of having neonatal symptoms. Neonates with select triggers were more likely to have symptoms and laboratory abnormalities. CONCLUSIONS This collaborative study is the first in the United States to describe health associations of a large cohort of newborn-screened neonates identified as affected with MCADD. The IBEM-IS has utility as a platform to better understand the characteristics of individuals with newborn-screened conditions and their follow-up interactions with the health system.
Collapse
Affiliation(s)
- Kristi Bentler
- Minnesota Department of Health, St. Paul, MN, United States
| | - Shaohui Zhai
- Michigan Public Health Institute, Okemos, MI, United States
| | - Sara A Elsbecker
- University of Minnesota, Department of Pediatrics, Minneapolis, MN, United States
| | - Georgianne L Arnold
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Barbara K Burton
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Sally J Hiner
- Michigan Public Health Institute, Okemos, MI, United States
| | - Mathew J Edick
- Michigan Public Health Institute, Okemos, MI, United States
| | - Susan A Berry
- University of Minnesota, Department of Pediatrics, Minneapolis, MN, United States.
| |
Collapse
|
31
|
Salice S, Esposito R, Ciavardelli D, delli Pizzi S, di Bastiano R, Tartaro A. Combined 3 Tesla MRI Biomarkers Improve the Differentiation between Benign vs Malignant Single Ring Enhancing Brain Masses. PLoS One 2016; 11:e0159047. [PMID: 27410226 PMCID: PMC4943588 DOI: 10.1371/journal.pone.0159047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 06/27/2016] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To evaluate whether the combination of imaging biomarkers obtained by means of different 3 Tesla (3T) Magnetic Resonance Imaging (MRI) advanced techniques can improve the diagnostic accuracy in the differentiation between benign and malignant single ring-enhancing brain masses. MATERIALS AND METHODS 14 patients presenting at conventional 3T MRI single brain mass with similar appearance as regard ring enhancement, presence of peri-lesional edema and absence of hemorrhage signs were included in the study. All lesions were histologically proven: 5 pyogenic abscesses, 6 glioblastomas, and 3 metastases. MRI was performed at 3 Tesla and included Diffusion Weighted Imaging (DWI), Dynamic Susceptibility Contrast -Perfusion Weighted Imaging (DSC-PWI), Magnetic Resonance Spectroscopy (MRS), and Diffusion Tensor Imaging (DTI). Imaging biomarkers derived by those advanced techniques [Cerebral Blood Flow (CBF), relative Cerebral Blood Volume (rCBV), relative Main Transit Time (rMTT), Choline (Cho), Creatine (Cr), Succinate, N-Acetyl Aspartate (NAA), Lactate (Lac), Lipids, relative Apparent Diffusion Coefficient (rADC), and Fractional Anisotropy (FA)] were detected by two experienced neuroradiologists in joint session in 4 areas: Internal Cavity (IC), Ring Enhancement (RE), Peri-Lesional edema (PL), and Contralateral Normal Appearing White Matter (CNAWM). Significant differences between benign (n = 5) and malignant (n = 9) ring enhancing lesions were tested with Mann-Withney U test. The diagnostic accuracy of MRI biomarkers taken alone and MRI biomarkers ratios were tested with Receiver Operating Characteristic (ROC) analysis with an Area Under the Curve (AUC) ≥ 0.9 indicating a very good diagnostic accuracy of the variable. RESULTS Five MRI biomarker ratios achieved excellent accuracy: IC-rADC/PL-NAA (AUC = 1), IC-rADC/IC-FA (AUC = 0.978), RE-rCBV/RE-FA (AUC = 0.933), IC-rADC/RE-FA (AUC = 0.911), and IC-rADC/PL-FA (AUC = 0.911). Only IC-rADC achieved a very good diagnostic accuracy (AUC = 0.909) among MRI biomarkers taken alone. CONCLUSION Although the major limitation of the study was the small sample size, preliminary results seem to suggest that combination of multiple 3T MRI biomarkers is a feasible approach to MRI biomarkers in order to improve diagnostic accuracy in the differentiation between benign and malignant single ring enhancing brain masses. Further studies in larger cohorts are needed to reach definitive conclusions.
Collapse
Affiliation(s)
- Simone Salice
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Roberto Esposito
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- AO Ospedali Riuniti Marche Nord, Pesaro, Italy
| | - Domenico Ciavardelli
- School of Human and Social Science, “Kore” University of Enna, Enna, Italy
- Molecular Neurology Unit, Center of Excellence on Aging and Translational Medicine (Ce.S.I.-MeT), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Stefano delli Pizzi
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Rossella di Bastiano
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Armando Tartaro
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
32
|
Chen MC, Chang JP, Lin YS, Pan KL, Ho WC, Liu WH, Chang TH, Huang YK, Fang CY, Chen CJ. Deciphering the gene expression profile of peroxisome proliferator-activated receptor signaling pathway in the left atria of patients with mitral regurgitation. J Transl Med 2016; 14:157. [PMID: 27250500 PMCID: PMC4890244 DOI: 10.1186/s12967-016-0871-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/19/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Differentially expressed genes in the left atria of mitral regurgitation (MR) pigs have been linked to peroxisome proliferator-activated receptor (PPAR) signaling pathway in the KEGG pathway. However, specific genes of the PPAR signaling pathway in the left atria of MR patients have never been explored. METHODS This study enrolled 15 MR patients with heart failure, 7 patients with aortic valve disease and heart failure, and 6 normal controls. We used PCR assay (84 genes) for PPAR pathway and quantitative RT-PCR to study specific genes of the PPAR pathway in the left atria. RESULTS Gene expression profiling analysis through PCR assay identified 23 genes to be differentially expressed in the left atria of MR patients compared to normal controls. The expressions of APOA1, ACADM, FABP3, ETFDH, ECH1, CPT1B, CPT2, SLC27A6, ACAA2, SMARCD3, SORBS1, EHHADH, SLC27A1, PPARGC1B, PPARA and CPT1A were significantly up-regulated, whereas the expression of PLTP was significantly down-regulated in the MR patients compared to normal controls. The expressions of HMGCS2, ACADM, FABP3, MLYCD, ECH1, ACAA2, EHHADH, CPT1A and PLTP were significantly up-regulated in the MR patients compared to patients with aortic valve disease. Notably, only ACADM, FABP3, ECH1, ACAA2, EHHADH, CPT1A and PLTP of the PPAR pathway were significantly differentially expressed in the MR patients compared to patients with aortic valve disease and normal controls. CONCLUSIONS Differentially expressed genes of the PPAR pathway have been identified in the left atria of MR patients compared with patients with aortic valve disease and normal controls.
Collapse
Affiliation(s)
- Mien-Cheng Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan.
| | - Jen-Ping Chang
- Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Sheng Lin
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Kuo-Li Pan
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wan-Chun Ho
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| | - Wen-Hao Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Yao-Kuang Huang
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Yuan Fang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| | - Chien-Jen Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| |
Collapse
|
33
|
Tsagkogeorga G, McGowen MR, Davies KTJ, Jarman S, Polanowski A, Bertelsen MF, Rossiter SJ. A phylogenomic analysis of the role and timing of molecular adaptation in the aquatic transition of cetartiodactyl mammals. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150156. [PMID: 26473040 PMCID: PMC4593674 DOI: 10.1098/rsos.150156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/02/2015] [Indexed: 05/30/2023]
Abstract
Recent studies have reported multiple cases of molecular adaptation in cetaceans related to their aquatic abilities. However, none of these has included the hippopotamus, precluding an understanding of whether molecular adaptations in cetaceans occurred before or after they split from their semi-aquatic sister taxa. Here, we obtained new transcriptomes from the hippopotamus and humpback whale, and analysed these together with available data from eight other cetaceans. We identified more than 11 000 orthologous genes and compiled a genome-wide dataset of 6845 coding DNA sequences among 23 mammals, to our knowledge the largest phylogenomic dataset to date for cetaceans. We found positive selection in nine genes on the branch leading to the common ancestor of hippopotamus and whales, and 461 genes in cetaceans compared to 64 in hippopotamus. Functional annotation revealed adaptations in diverse processes, including lipid metabolism, hypoxia, muscle and brain function. By combining these findings with data on protein-protein interactions, we found evidence suggesting clustering among gene products relating to nervous and muscular systems in cetaceans. We found little support for shared ancestral adaptations in the two taxa; most molecular adaptations in extant cetaceans occurred after their split with hippopotamids.
Collapse
Affiliation(s)
- Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Michael R. McGowen
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Kalina T. J. Davies
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Simon Jarman
- Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia
| | - Andrea Polanowski
- Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, Frederiksberg 2000, Denmark
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
34
|
Grünert SC, Wehrle A, Villavicencio-Lorini P, Lausch E, Vetter B, Schwab KO, Tucci S, Spiekerkoetter U. Medium-chain acyl-CoA dehydrogenase deficiency associated with a novel splice mutation in the ACADM gene missed by newborn screening. BMC MEDICAL GENETICS 2015. [PMID: 26223887 PMCID: PMC4557819 DOI: 10.1186/s12881-015-0199-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common disorder of mitochondrial fatty acid β-oxidation and a target disease of newborn screening in many countries. Case presentation We report on two siblings with mild MCAD deficiency associated with a novel splice site mutation in the ACADM gene. The younger sibling was detected by newborn screening, while the older sister was missed, but diagnosed later on by genetic family testing. Both children were found to be compound heterozygous for the common c.985A > G (p.K329E) mutation and a novel splice site mutation, c.600-18G > A, in the ACADM gene. To determine the biological consequence of the c.600-18G > A mutation putative missplicing was investigated at RNA level in granulocytes and monocytes of one of the patients. The splice site mutation was shown to lead to partial missplicing of the ACADM pre-mRNA. Of three detected transcripts two result in truncated, non-functional MCAD proteins as reflected by the reduced octanoyl-CoA oxidation rate in both patients. In one patient a decrease of the octanoyl-CoA oxidation rate was found during a febrile infection indicating that missplicing may be temperature-sensitive. Conclusions Our data indicate that the c.600-18G > A variant activates a cryptic splice site, which competes with the natural splice site. Due to only partial missplicing sufficient functional MCAD protein remains to result in mild MCADD that may be missed by newborn screening. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0199-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah C Grünert
- Center of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstraße 1, 79106, Freiburg, Germany.
| | - A Wehrle
- Center of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstraße 1, 79106, Freiburg, Germany.
| | - P Villavicencio-Lorini
- Center of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstraße 1, 79106, Freiburg, Germany. .,Present address: Department of Human Genetics, Halle University Hospital, Ernst-Grube-Str. 30, 06097, Halle, Germany.
| | - E Lausch
- Center of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstraße 1, 79106, Freiburg, Germany.
| | - B Vetter
- , Römerstrasse 38, 79423, Heitersheim, Germany.
| | - K O Schwab
- Center of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstraße 1, 79106, Freiburg, Germany.
| | - S Tucci
- Center of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstraße 1, 79106, Freiburg, Germany.
| | - U Spiekerkoetter
- Center of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstraße 1, 79106, Freiburg, Germany.
| |
Collapse
|
35
|
Gramer G, Haege G, Fang-Hoffmann J, Hoffmann GF, Bartram CR, Hinderhofer K, Burgard P, Lindner M. Medium-Chain Acyl-CoA Dehydrogenase Deficiency: Evaluation of Genotype-Phenotype Correlation in Patients Detected by Newborn Screening. JIMD Rep 2015; 23:101-12. [PMID: 25940036 DOI: 10.1007/8904_2015_439] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is included in many newborn screening programmes worldwide. In addition to the prevalent mutation c.985A>G in the ACADM gene, potentially mild mutations like c.199T>C are frequently found in screening cohorts. There is ongoing discussion whether this mutation is associated with a clinical phenotype. METHODS In 37 MCADD patients detected by newborn screening, biochemical phenotype (octanoylcarnitine (C8), ratios of C8 to acetylcarnitine (C2), decanoylcarnitine (C10) and dodecanoylcarnitine (C12) at screening and confirmation) and clinical phenotype (inpatient emergency treatment, metabolic decompensations, clinical assessments, psychometric tests) were assessed in relation to genotype. RESULTS 16 patients were homozygous for c.985A>G (group 1), 11 compound heterozygous for c.199T>C and c.985A>G/another mutation (group 2) and 7 compound heterozygous for c.985A>G and mutations other than c.199T>C (group 3) and 3 carried neither c.985A>G nor c.199T>C but other known homozygous mutations (group 4). At screening C8/C2 and C8/C10, at confirmation C8/C2, C8/C10 and C8/C12 differed significantly between patients compound heterozygous for c.199T>C (group 2) and other genotypes. C8, C10 and C8/C2 at screening were strongly associated with time of sampling in groups 1 + 3 + 4, but not in group 2. Clinical phenotype did not differ between genotypes. Two patients compound heterozygous for c.199T>C and a severe mutation showed neonatal decompensation with hypoglycaemia. CONCLUSION Biochemical phenotype differs between MCADD patients compound heterozygous for c.199T>C with a severe mutation and other genotypes. In patients detected by newborn screening, clinical phenotype does not differ between genotypes following uniform treatment recommendations. Neonatal decompensation can also occur in patients with the presumably mild mutation c.199T>C prior to diagnosis.
Collapse
Affiliation(s)
- Gwendolyn Gramer
- Department of General Paediatrics, Division for Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Aksglaede L, Christensen M, Olesen JH, Duno M, Olsen RKJ, Andresen BS, Hougaard DM, Lund AM. Abnormal Newborn Screening in a Healthy Infant of a Mother with Undiagnosed Medium-Chain Acyl-CoA Dehydrogenase Deficiency. JIMD Rep 2015; 23:67-70. [PMID: 25763512 DOI: 10.1007/8904_2015_428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/05/2015] [Accepted: 02/18/2015] [Indexed: 05/08/2023] Open
Abstract
A neonate with low blood free carnitine level on newborn tandem mass spectrometry screening was evaluated for possible carnitine transporter defect (CTD). The plasma concentration of free carnitine was marginally reduced, and the concentrations of acylcarnitines (including C6, C8, and C10:1) were normal on confirmatory tests. Organic acids in urine were normal. In addition, none of the frequent Faroese SLC22A5 mutations (p.N32S, c.825-52G>A) which are common in the Danish population were identified. Evaluation of the mother showed low-normal free carnitine, but highly elevated medium-chain acylcarnitines (C6, C8, and C10:1) consistent with medium-chain acyl-CoA dehydrogenase deficiency (MCADD). The diagnosis was confirmed by the finding of homozygous presence of the c.985A>G mutation in ACADM.
Collapse
Affiliation(s)
- Lise Aksglaede
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kumar G, Mattke AC, Bowling F, McWhinney A, Alphonso N, Karl TR. Resuscitation of a neonate with medium chain acyl-coenzyme a dehydrogenase deficiency using extracorporeal life support. World J Pediatr Congenit Heart Surg 2014; 5:118-20. [PMID: 24403369 DOI: 10.1177/2150135113501900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report a neonate with medium chain acyl-coenzyme A dehydrogenase deficiency (MCAD) who had a cardiac arrest due to ventricular tachycardia and fibrillation. Extracorporeal life support (ECLS) was deployed, from which the baby was subsequently separated and discharged from hospital. This case was a rare neonatal presentation of MCAD and an uncommon indication for ECLS. We discuss the presentations of patients with MCAD and the use of ECLS for patients with possible inborn errors of metabolism and other unknown primary diagnoses.
Collapse
Affiliation(s)
- Gaurav Kumar
- Queensland Paediatric Cardiac Service, Mater Children's Hospital, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Jank JM, Maier EM, Reiß DD, Haslbeck M, Kemter KF, Truger MS, Sommerhoff CP, Ferdinandusse S, Wanders RJ, Gersting SW, Muntau AC. The domain-specific and temperature-dependent protein misfolding phenotype of variant medium-chain acyl-CoA dehydrogenase. PLoS One 2014; 9:e93852. [PMID: 24718418 PMCID: PMC3981736 DOI: 10.1371/journal.pone.0093852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/12/2014] [Indexed: 12/30/2022] Open
Abstract
The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a molecular loss-of-function phenotype. Here we established a comprehensive experimental setup to analyze the structural consequences of eight ACADM missense mutations (p.Ala52Val, p.Tyr67His, p.Tyr158His, p.Arg206Cys, p.Asp266Gly, p.Lys329Glu, p.Arg334Lys, p.Arg413Ser) identified after newborn screening and linked the corresponding protein misfolding phenotype to the site of side-chain replacement with respect to the domain. With fever being the crucial risk factor for metabolic decompensation of patients with MCADD, special emphasis was put on the analysis of structural and functional derangements related to thermal stress. Based on protein conformation, thermal stability and kinetic stability, the molecular phenotype in MCADD depends on the structural region that is affected by missense-induced conformational changes with the central β-domain being particularly prone to structural derangement and destabilization. Since systematic classification of conformational derangements induced by ACADM mutations may be a helpful tool in assessing the clinical risk of patients, we scored the misfolding phenotype of the variants in comparison to p.Lys329Glu (K304E), the classical severe mutation, and p.Tyr67His (Y42H), discussed to be mild. Experiments assessing the impact of thermal stress revealed that mutations in the ACADM gene lower the temperature threshold at which MCAD loss-of-function occurs. Consequently, increased temperature as it occurs during intercurrent infections, significantly increases the risk of further conformational derangement and loss of function of the MCAD enzyme explaining the life-threatening clinical courses observed during fever episodes. Early and aggressive antipyretic treatment thus may be life-saving in patients suffering from MCADD.
Collapse
Affiliation(s)
- Johanna M. Jank
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Esther M. Maier
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dunja D. Reiß
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University Munich, Garching, Germany
| | - Kristina F. Kemter
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Marietta S. Truger
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Sacha Ferdinandusse
- Departments of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J. Wanders
- Departments of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Søren W. Gersting
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ania C. Muntau
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|
39
|
Medium-chain acyl-CoA deficiency: outlines from newborn screening, in silico predictions, and molecular studies. ScientificWorldJournal 2013; 2013:625824. [PMID: 24294134 PMCID: PMC3833120 DOI: 10.1155/2013/625824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/12/2013] [Indexed: 12/30/2022] Open
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is a disorder of fatty acid oxidation characterized by hypoglycemic crisis under fasting or during stress conditions, leading to lethargy, seizures, brain damage, or even death. Biochemical acylcarnitines data obtained through newborn screening by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were confirmed by molecular analysis of the medium-chain acyl-CoA dehydrogenase (ACADM) gene. Out of 324.000 newborns screened, we identified 14 MCADD patients, in whom, by molecular analysis, we found a new nonsense c.823G>T (p.Gly275∗) and two new missense mutations: c.253G>C (p.Gly85Arg) and c.356T>A (p.Val119Asp). Bioinformatics predictions based on both phylogenetic conservation and functional/structural software were used to characterize the new identified variants. Our findings confirm the rising incidence of MCADD whose existence is increasingly recognized due to the efficacy of an expanded newborn screening panel by LC-MS/MS making possible early specific therapies that can prevent possible crises in at-risk infants. We noticed that the “common” p.Lys329Glu mutation only accounted for 32% of the defective alleles, while, in clinically diagnosed patients, this mutation accounted for 90% of defective alleles. Unclassified variants (UVs or VUSs) are especially critical when considering screening programs. The functional and pathogenic characterization of genetic variants presented here is required to predict their medical consequences in newborns.
Collapse
|
40
|
Couce ML, Sánchez-Pintos P, Diogo L, Leão-Teles E, Martins E, Santos H, Bueno MA, Delgado-Pecellín C, Castiñeiras DE, Cocho JA, García-Villoria J, Ribes A, Fraga JM, Rocha H. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: regional experience and high incidence of carnitine deficiency. Orphanet J Rare Dis 2013; 8:102. [PMID: 23842438 PMCID: PMC3718718 DOI: 10.1186/1750-1172-8-102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/05/2013] [Indexed: 12/30/2022] Open
Abstract
Background Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited defect in the mitochondrial fatty acid oxidation pathway, resulting in significant morbidity and mortality in undiagnosed patients. Newborn screening (NBS) has considerably improved MCADD outcome, but the risk of complication remains in some patients. The aim of this study was to evaluate the relationship between genotype, biochemical parameters and clinical data at diagnosis and during follow-up, in order to optimize monitoring of these patients. Methods We carried out a multicenter study in southwest Europe, of MCADD patients detected by NBS. Evaluated NBS data included free carnitine (C0) and the acylcarnitines C8, C10, C10:1 together with C8/C2 and C8/C10 ratios, clinical presentation parameters and genotype, in 45 patients. Follow-up data included C0 levels, duration of carnitine supplementation and occurrence of metabolic crises. Results C8/C2 ratio and C8 were the most accurate biomarkers of MCADD in NBS. We found a high number of patients homozygous for the prevalent c.985A > G mutation (75%). Moreover, in these patients C8, C8/C10 and C8/C2 were higher than in patients with other genotypes, while median value of C0 was significantly lower (23 μmol/L vs 36 μmol/L). The average follow-up period was 43 months. To keep carnitine levels within the normal range, carnitine supplementation was required in 82% of patients, and for a longer period in patients homozygotes for the c.985A>G mutation than in patients with other genotypes (average 31 vs 18 months). Even with treatment, median C0 levels remained lower in homozygous patients than in those with other genotypes (14 μmol/L vs 22 μmol/L). Two patients died and another three suffered a metabolic crisis, all of whom were homozygous for the c.985 A>G mutation. Conclusions Our data show a direct association between homozygosity for c.985A>G and lower carnitine values at diagnosis, and a higher dose of carnitine supplementation for maintenance within the normal range. This study contributes to a better understanding of the relationship between genotype and phenotype in newborn patients with MCADD detected through screening which could be useful in improving follow-up strategies and clinical outcome.
Collapse
Affiliation(s)
- Maria Luz Couce
- Unidad de Diagnóstico y Tratamiento de Enfermedades Congénitas del Metabolismo, Departamento de Pediatría, Hospital Clínico Universitario, Universidad de Santiago, Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
McCandless SE, Chandrasekar R, Linard S, Kikano S, Rice L. Sequencing from dried blood spots in infants with "false positive" newborn screen for MCAD deficiency. Mol Genet Metab 2013; 108:51-5. [PMID: 23151387 PMCID: PMC3676896 DOI: 10.1016/j.ymgme.2012.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Newborn screening (NBS) for medium chain acyl-CoA dehydrogenase deficiency (MCADD), one of the most common disorders identified, uses measurement of octanoylcarnitine (C8) from dried blood spots. In the state of Ohio, as in many places, primary care providers, with or without consultation from a metabolic specialist, may perform "confirmatory testing", with the final diagnostic decision returned to the state. Confirmatory testing may involve measurement of metabolites, enzyme analysis, mutation screening, or sequencing. We now report sequencing results for infants said to have "false positive" NBS results for MCAD deficiency, or who died before confirmatory testing could be performed. METHODS Dried blood spots (DBS) were obtained from all 18 available NBS cards identified as "false positive" by NBS for the 3 year period after screening began in Ohio in 2003 (N=20, thus 2 had no DBS available), and from all 6 infants with abnormal screens who died before confirmatory testing could be obtained. DNA extracted from DBS was screened for the common c.985A>G mutation in exon 11 of the ACADM gene, using a specific restriction digest method, followed by sequencing of the 12 exons, intron-exon junctions, and several hundred base pairs of the 5' untranslated region. RESULTS The NBS cut-off value for C8 used was 0.7 μmol/L. Sequencing of ACADM in six neonates with elevated C8 on NBS who died before confirmatory testing was obtained did not identify any significant variants in the coding region of the gene, suggesting that MCADD was not a contributing factor in these deaths. The mean C8 for the 18 surviving infants labeled as "False Positives" was 0.90 (95%CI 0.77-1.15), much lower than the mean value for confirmed cases. Ten of the 18 were premature births weighing <1200 g, the rest were normal sized and full term. Eight infants, mostly full term with appropriate birth weight, were heterozygous for the common c.985A>G mutation; one of those also has a novel sequence change identified in exon 9 that predicts a PRO to LEU change at residue 258 of the protein. Both the phase and any possible clinical significance of the variant are unknown, but several lines of evidence suggest that it could lead to protein malfunction. That child had an NBS C8 of 2.2, more than double the mean for the False Positive group. Unfortunately, the study design did not provide clinical outcome data, but the child is not known to have presented clinically by age 7 years. CONCLUSIONS These results suggest that sequencing of ACADM from dried blood spots can be one useful follow-up tool to provide accurate genetic counseling in the situation of an infant with elevated C8 on NBS who dies before confirmatory testing is obtained. Of surviving neonates, there appear to be two populations of infants with false positive NBS C8 values: 1) term AGA infants who are heterozygous for the common c.985A>G mutation, and, 2) premature infants, regardless of carrier status. The finding of two sequence variants in an infant reported to the state as not affected suggests the possibility that some infants with two mutations may be reported as normal at follow-up. State registries may wish to consider asking that metabolic specialists, who are most familiar with the variability of these rare disorders, be involved in the final diagnostic evaluation. Finally, providers may wish to consider ACADM sequencing, or other diagnostic testing, as part of the confirmatory evaluation for infants with NBS C8 concentrations that are significantly above the cut-off value, even if plasma and urine metabolites are not strikingly increased.
Collapse
Affiliation(s)
- Shawn E McCandless
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
42
|
Cribado neonatal ampliado en la Región de Murcia. Experiencia de tres años. Med Clin (Barc) 2012; 139:566-71. [DOI: 10.1016/j.medcli.2011.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022]
|
43
|
Lovera C, Porta F, Caciotti A, Catarzi S, Cassanello M, Caruso U, Gallina MR, Morrone A, Spada M. Sudden unexpected infant death (SUDI) in a newborn due to medium chain acyl CoA dehydrogenase (MCAD) deficiency with an unusual severe genotype. Ital J Pediatr 2012; 38:59. [PMID: 23095120 PMCID: PMC3502270 DOI: 10.1186/1824-7288-38-59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/20/2012] [Indexed: 11/10/2022] Open
Abstract
Medium chain acyl CoA dehydrogenase deficiency (MCAD) is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23) mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI) and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death.
Collapse
Affiliation(s)
- Cristina Lovera
- Department of Pediatrics, University of Torino, Regina Margherita Children's Hospital, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sturm M, Herebian D, Mueller M, Laryea MD, Spiekerkoetter U. Functional effects of different medium-chain acyl-CoA dehydrogenase genotypes and identification of asymptomatic variants. PLoS One 2012; 7:e45110. [PMID: 23028790 PMCID: PMC3444485 DOI: 10.1371/journal.pone.0045110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/17/2012] [Indexed: 12/30/2022] Open
Abstract
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (OMIM 201450) is the most common inherited disorder of fatty acid metabolism presenting with hypoglycaemia, hepatopathy and Reye-like symptoms during catabolism. In the past, the majority of patients carried the prevalent c.985A>G mutation in the ACADM gene. Since the introduction of newborn screening many other mutations with unknown clinical relevance have been identified in asymptomatic newborns. In order to identify functional effects of these mutant genotypes we correlated residual MCAD (OMIM 607008) activities as measured by octanoyl-CoA oxidation in lymphocytes with both genotype and relevant medical reports in 65 newborns harbouring mutant alleles. We identified true disease-causing mutations with residual activities of 0 to 20%. In individuals carrying the c.199T>C or c.127G>A mutation on one allele, residual activities were much higher and in the range of heterozygotes (31%-60%). Therefore, both mutations cannot clearly be associated with a clinical phenotype. This demonstrates a correlation between the octanoyl-CoA oxidation rate in lymphocytes and the clinical outcome. With newborn screening, the natural course of disease is difficult to assess. The octanoyl-CoA oxidation rate, therefore, allows a risk assessment at birth and the identification of new ACADM genotypes associated with asymptomatic disease variants.
Collapse
Affiliation(s)
- Marga Sturm
- Department of General Pediatrics, University Childreńs Hospital, Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
45
|
Hamers FF, Rumeau-Pichon C. Cost-effectiveness analysis of universal newborn screening for medium chain acyl-CoA dehydrogenase deficiency in France. BMC Pediatr 2012; 12:60. [PMID: 22681855 PMCID: PMC3464722 DOI: 10.1186/1471-2431-12-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/08/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Five diseases are currently screened on dried blood spots in France through the national newborn screening programme. Tandem mass spectrometry (MS/MS) is a technology that is increasingly used to screen newborns for an increasing number of hereditary metabolic diseases. Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is among these diseases. We sought to evaluate the cost-effectiveness of introducing MCADD screening in France. METHODS We developed a decision model to evaluate, from a societal perspective and a lifetime horizon, the cost-effectiveness of expanding the French newborn screening programme to include MCADD. Published and, where available, routine data sources were used. Both costs and health consequences were discounted at an annual rate of 4%. The model was applied to a French birth cohort. One-way sensitivity analyses and worst-case scenario simulation were performed. RESULTS We estimate that MCADD newborn screening in France would prevent each year five deaths and the occurrence of neurological sequelae in two children under 5 years, resulting in a gain of 128 life years or 138 quality-adjusted life years (QALY). The incremental cost per year is estimated at €2.5 million, down to €1 million if this expansion is combined with a replacement of the technology currently used for phenylketonuria screening by MS/MS. The resulting incremental cost-effectiveness ratio (ICER) is estimated at €7 580/QALY. Sensitivity analyses indicate that while the results are robust to variations in the parameters, the model is most sensitive to the cost of neurological sequelae, MCADD prevalence, screening effectiveness and screening test cost. The worst-case scenario suggests an ICER of €72 000/QALY gained. CONCLUSIONS Although France has not defined any threshold for judging whether the implementation of a health intervention is an efficient allocation of public resources, we conclude that the expansion of the French newborn screening programme to MCADD would appear to be cost-effective. The results of this analysis have been used to produce recommendations for the introduction of universal newborn screening for MCADD in France.
Collapse
Affiliation(s)
- Françoise F Hamers
- Department of Economic and Public Health Evaluation, Haute Autorité de Santé (HAS), 2 avenue du Stade de France, Saint-Denis, France
| | - Catherine Rumeau-Pichon
- Department of Economic and Public Health Evaluation, Haute Autorité de Santé (HAS), 2 avenue du Stade de France, Saint-Denis, France
| |
Collapse
|
46
|
Petersen AK, Krumsiek J, Wägele B, Theis FJ, Wichmann HE, Gieger C, Suhre K. On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies. BMC Bioinformatics 2012; 13:120. [PMID: 22672667 PMCID: PMC3537592 DOI: 10.1186/1471-2105-13-120] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/17/2012] [Indexed: 11/11/2022] Open
Abstract
Background Genome-wide association studies (GWAS) with metabolic traits and metabolome-wide association studies (MWAS) with traits of biomedical relevance are powerful tools to identify the contribution of genetic, environmental and lifestyle factors to the etiology of complex diseases. Hypothesis-free testing of ratios between all possible metabolite pairs in GWAS and MWAS has proven to be an innovative approach in the discovery of new biologically meaningful associations. The p-gain statistic was introduced as an ad-hoc measure to determine whether a ratio between two metabolite concentrations carries more information than the two corresponding metabolite concentrations alone. So far, only a rule of thumb was applied to determine the significance of the p-gain. Results Here we explore the statistical properties of the p-gain through simulation of its density and by sampling of experimental data. We derive critical values of the p-gain for different levels of correlation between metabolite pairs and show that B/(2*α) is a conservative critical value for the p-gain, where α is the level of significance and B the number of tested metabolite pairs. Conclusions We show that the p-gain is a well defined measure that can be used to identify statistically significant metabolite ratios in association studies and provide a conservative significance cut-off for the p-gain for use in future association studies with metabolic traits.
Collapse
Affiliation(s)
- Ann-Kristin Petersen
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Andresen BS, Lund AM, Hougaard DM, Christensen E, Gahrn B, Christensen M, Bross P, Vested A, Simonsen H, Skogstrand K, Olpin S, Brandt NJ, Skovby F, Nørgaard-Pedersen B, Gregersen N. MCAD deficiency in Denmark. Mol Genet Metab 2012; 106:175-88. [PMID: 22542437 DOI: 10.1016/j.ymgme.2012.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/24/2012] [Accepted: 03/24/2012] [Indexed: 11/18/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common defect of fatty acid oxidation. Many countries have introduced newborn screening for MCADD, because characteristic acylcarnitines can easily be identified in filter paper blood spot samples by tandem mass spectrometry (MS/MS), because MCADD is a frequent disease, and because of the success of early treatment initiated before clinical symptoms have emerged. In Denmark we have screened 519,350 newborns for MCADD by MS/MS and identified 58 affected babies. The diagnosis of MCADD was confirmed in all 58 newborns by mutation analysis. This gives an incidence of MCADD detected by newborn screening in Denmark of 1/8954. In sharp contrast to this we found that the incidence of clinically presenting MCADD in Denmark in the 10 year period preceding introduction of MS/MS-based screening was only 1 in 39,691. This means that four times more newborns with MCADD are detected by screening than what is expected based on the number of children presenting clinically in an unscreened population. The mutation spectrum in the newborns detected by screening is different from that observed in clinically presenting patients with a much lower proportion of newborns being homozygous for the prevalent disease-causing c.985A>G mutation. A significant number of the newborns have genotypes with mutations that have not been observed in patients detected clinically. Some of these mutations, like c.199T>C and c.127G>A, are always associated with a milder biochemical phenotype and may cause a milder form of MCADD with a relatively low risk of disease manifestation, thereby explaining part of the discrepancy between the frequency of clinically manifested MCADD and the frequency of MCADD determined by screening. In addition, our data suggest that some of this discrepancy can be explained by a reduced penetrance of the c.985A>G mutation, with perhaps only 50% of c.985A>G homozygotes presenting with disease manifestations. Interestingly, we also report that the observed number of newborns identified by screening who are homozygous for the c.985A>G mutation is twice that predicted from the estimated carrier frequency. We therefore redetermined the carrier frequency in a new sample of 1946 blood spots using a new assay, but this only confirmed that the c.985A>G carrier frequency in Denmark is approximately 1/105. We conclude that MCADD is much more frequent than expected, has a reduced penetrance and that rapid genotyping using the initial blood spot sample is important for correct diagnosis and counseling.
Collapse
Affiliation(s)
- Brage Storstein Andresen
- Research Unit for Molecular Medicine, Aarhus University Hospital and Faculty of Health Science, Skejby Sygehus, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Grünert SC, Stucki M, Morscher RJ, Suormala T, Bürer C, Burda P, Christensen E, Ficicioglu C, Herwig J, Kölker S, Möslinger D, Pasquini E, Santer R, Schwab KO, Wilcken B, Fowler B, Yue WW, Baumgartner MR. 3-methylcrotonyl-CoA carboxylase deficiency: clinical, biochemical, enzymatic and molecular studies in 88 individuals. Orphanet J Rare Dis 2012; 7:31. [PMID: 22642865 PMCID: PMC3495011 DOI: 10.1186/1750-1172-7-31] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/10/2012] [Indexed: 12/05/2022] Open
Abstract
Background Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive disorder of leucine metabolism caused by mutations in MCCC1 or MCCC2 encoding the α and β subunit of MCC, respectively. The phenotype is highly variable ranging from acute neonatal onset with fatal outcome to asymptomatic adults. Methods We report clinical, biochemical, enzymatic and mutation data of 88 MCC deficient individuals, 53 identified by newborn screening, 26 diagnosed due to clinical symptoms or positive family history and 9 mothers, identified following the positive newborn screening result of their baby. Results Fifty-seven percent of patients were asymptomatic while 43% showed clinical symptoms, many of which were probably not related to MCC deficiency but due to ascertainment bias. However, 12 patients (5 of 53 identified by newborn screening) presented with acute metabolic decompensations. We identified 15 novel MCCC1 and 16 novel MCCC2 mutant alleles. Additionally, we report expression studies on 3 MCCC1 and 8 MCCC2 mutations and show an overview of all 132 MCCC1 and MCCC2 variants known to date. Conclusions Our data confirm that MCC deficiency, despite low penetrance, may lead to a severe clinical phenotype resembling classical organic acidurias. However, neither the genotype nor the biochemical phenotype is helpful in predicting the clinical course.
Collapse
Affiliation(s)
- Sarah C Grünert
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, and Zürich Center for Integrative Human Physiology (ZHIP), University of Zürich, Steinwiesstraße 75, 8032, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Touw CML, Smit GPA, de Vries M, de Klerk JBC, Bosch AM, Visser G, Mulder MF, Rubio-Gozalbo ME, Elvers B, Niezen-Koning KE, Wanders RJA, Waterham HR, Reijngoud DJ, Derks TGJ. Risk stratification by residual enzyme activity after newborn screening for medium-chain acyl-CoA dehyrogenase deficiency: data from a cohort study. Orphanet J Rare Dis 2012; 7:30. [PMID: 22630369 PMCID: PMC3543239 DOI: 10.1186/1750-1172-7-30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/25/2012] [Indexed: 12/30/2022] Open
Abstract
Background Since the introduction of medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency in population newborn bloodspot screening (NBS) programs, subjects have been identified with variant ACADM (gene encoding MCAD enzyme) genotypes that have never been identified in clinically ascertained patients. It could be hypothesised that residual MCAD enzyme activity can contribute in risk stratification of subjects with variant ACADM genotypes. Methods We performed a retrospective cohort study of all patients identified upon population NBS for MCAD deficiency in the Netherlands between 2007–2010. Clinical, molecular, and enzymatic data were integrated. Results Eighty-four patients from 76 families were identified. Twenty-two percent of the subjects had a variant ACADM genotype. In patients with classical ACADM genotypes, residual MCAD enzyme activity was significantly lower (median 0%, range 0-8%) when compared to subjects with variant ACADM genotypes (range 0-63%; 4 cases with 0%, remainder 20-63%). Patients with (fatal) neonatal presentations before diagnosis displayed residual MCAD enzyme activities <1%. After diagnosis and initiation of treatment, residual MCAD enzyme activities <10% were associated with an increased risk of hypoglycaemia and carnitine supplementation. The prevalence of MCAD deficiency upon screening was 1/8,750 (95% CI 1/7,210–1/11,130). Conclusions Determination of residual MCAD enzyme activity improves our understanding of variant ACADM genotypes and may contribute to risk stratification. Subjects with variant ACADM genotypes and residual MCAD enzyme activities <10% should be considered to have the same risks as patients with classical ACADM genotypes. Parental instructions and an emergency regimen will remain principles of the treatment in any type of MCAD deficiency, as the effect of intercurrent illness on residual MCAD enzyme activity remains uncertain. There are, however, arguments in favour of abandoning the general advice to avoid prolonged fasting in subjects with variant ACADM genotypes and >10% residual MCAD enzyme activity.
Collapse
Affiliation(s)
- Catharina M L Touw
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Centre of Groningen, PO Box 30 001, CA84, 9700 RB, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Prasad C, Speechley KN, Dyack S, Rupar CA, Chakraborty P, Kronick JB. Incidence of medium-chain acyl-CoA dehydrogenase deficiency in Canada using the Canadian Paediatric Surveillance Program: Role of newborn screening. Paediatr Child Health 2012; 17:185-9. [PMID: 23543005 PMCID: PMC3381659 DOI: 10.1093/pch/17.4.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The incidence of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) was estimated using the Canadian Paediatric Surveillance Program (CPSP) in Canada over a three-year period. Data regarding mutations associated with MCADD cases were collected wherever available. METHODS Data were collected over a 36-month period using a monthly mailed questionnaire distributed through the CPSP to more than 2500 Canadian paediatricians, medical geneticists and paediatric pathologists. RESULTS AND CONCLUSIONS During the three years of MCADD surveillance, 46 confirmed cases out of a total of 71 reported cases were found - an average of approximately 15 cases per year. This rate is lower than the initial estimate of approximately 30 cases per year of MCADD in Canada, based on the reported incidence of MCADD in the literature of approximately one in 10,000 to one in 20,000. All cases ascertained by newborn screening were asymptomatic. There were two deaths, both in jurisdictions without newborn screening for MCADD. The data support population-based newborn screening for MCADD.
Collapse
Affiliation(s)
- Chitra Prasad
- Department of Paediatrics
- Children’s Health Research Institute
| | - Kathy N Speechley
- Department of Paediatrics
- Children’s Health Research Institute
- Department of Epidemiology & Biostatistics, The University of Western Ontario, London, Ontario
| | - Sarah Dyack
- Department of Paediatrics, Dalhousie University, Halifax, Nova Scotia
| | - Charles A Rupar
- Department of Paediatrics
- Children’s Health Research Institute
- Biochemistry, The University of Western Ontario, London
| | - Pranesh Chakraborty
- Newborn Screening Ontario, Children’s Hospital of Eastern Ontario
- Department of Paediatrics, University of Ottawa, Ottawa
| | - Jonathan B Kronick
- Department of Paediatrics, Dalhousie University, Halifax, Nova Scotia
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario
| |
Collapse
|