1
|
Stordal B, Farrelly AM, Hennessy BT. Chromosomal copy number and mutational status are required to authenticate ovarian cancer cell lines as appropriate cell models. Mol Biol Rep 2024; 51:784. [PMID: 38940864 PMCID: PMC11213756 DOI: 10.1007/s11033-024-09747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The mutational status of ovarian cancer cell line IGROV-1 is inconsistent across the literature, suggestive of multiple clonal populations of the cell line. IGROV-1 has previously been categorised as an inappropriate model for high-grade serous ovarian cancer. METHODS IGROV-1 cells were obtained from the Netherlands Cancer Institute (IGROV-1-NKI) and the MD Anderson Cancer Centre (IGROV-1-MDA). Cell lines were STR fingerprinted and had their chromosomal copy number analysed and BRCA1/2 genes sequenced. Mutation status of ovarian cancer-related genes were extracted from the literature. RESULTS The IGROV-1-NKI cell line has a tetraploid chromosomal profile. In contrast, the IGROV-1-MDA cell line has pseudo-normal chromosomes. The IGROV-1-NKI and IGROV-MDA are both STR matches (80.7% and 84.6%) to the original IGROV-1 cells isolated in 1985. However, IGROV-1-NKI and IGROV-1-MDA are not an STR match to each other (78.1%) indicating genetic drift. The BRCA1 and BRCA2 gene sequences are 100% identical between IGROV-1-MDA and IGROV-1-NKI, including a BRCA1 heterozygous deleterious mutation. The IGROV-1-MDA cells are more resistant to cisplatin and olaparib than IGROV-1-NKI. IGROV-1 has a mutational profile consistent with both Type I (PTEN, PIK3CA and ARID1A) and Type II ovarian cancer (BRCA1, TP53) and is likely to be a Type II high-grade serous carcinoma of the SET (Solid, pseudo-Endometroid and Transitional cell carcinoma-like morphology) subtype. CONCLUSIONS Routine testing of chromosomal copy number as well as the mutational status of ovarian cancer related genes should become the new standard alongside STR fingerprinting to ensure that ovarian cancer cell lines are appropriate models.
Collapse
Affiliation(s)
- Britta Stordal
- Department of Natural Sciences, Middlesex University London, The Burroughs, Hendon, London, NW4 4BT, UK.
| | - Angela M Farrelly
- Department of Medical Oncology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Bryan T Hennessy
- Department of Medical Oncology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
2
|
Marmion RA, Simpkins AG, Barrett LA, Denberg DW, Zusman S, Schottenfeld-Roames J, Schüpbach T, Shvartsman SY. Stochastic phenotypes in RAS-dependent developmental diseases. Curr Biol 2023; 33:807-816.e4. [PMID: 36706752 PMCID: PMC10026697 DOI: 10.1016/j.cub.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Germline mutations upregulating RAS signaling are associated with multiple developmental disorders. A hallmark of these conditions is that the same mutation may present vastly different phenotypes in different individuals, even in monozygotic twins. Here, we demonstrate how the origins of such largely unexplained phenotypic variations may be dissected using highly controlled studies in Drosophila that have been gene edited to carry activating variants of MEK, a core enzyme in the RAS pathway. This allowed us to measure the small but consistent increase in signaling output of such alleles in vivo. The fraction of mutation carriers reaching adulthood was strongly reduced, but most surviving animals had normal RAS-dependent structures. We rationalize these results using a stochastic signaling model and support it by quantifying cell fate specification errors in bilaterally symmetric larval trachea, a RAS-dependent structure that allows us to isolate the effects of mutations from potential contributions of genetic modifiers and environmental differences. We propose that the small increase in signaling output shifts the distribution of phenotypes into a regime, where stochastic variation causes defects in some individuals, but not in others. Our findings shed light on phenotypic heterogeneity of developmental disorders caused by deregulated RAS signaling and offer a framework for investigating causal effects of other pathogenic alleles and mild mutations in general.
Collapse
Affiliation(s)
- Robert A Marmion
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Alison G Simpkins
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Lena A Barrett
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - David W Denberg
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Susan Zusman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | | | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| |
Collapse
|
3
|
Thirumal Kumar D, Shaikh N, Bithia R, Karthick V, George Priya Doss C, Magesh R. Computational screening and structural analysis of Gly201Arg and Gly201Asp missense mutations in human cyclin-dependent kinase 4 protein. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:57-96. [PMID: 37061341 DOI: 10.1016/bs.apcsb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The regulatory proteins, cyclins, and cyclin-dependent kinases (CDKs) control the cell cycle progression. CDK4 gene mutations are associated with certain cancers such as melanoma, breast cancer, and rhabdomyosarcoma. Therefore, understanding the mechanisms of cell cycle control and cell proliferation is essential in developing cancer treatment regimens. In this study, we obtained cancer-causing CDK4 mutations from the COSMIC database and subjected them to a series of in silico analyses to identify the most significant mutations. An overall of 238 mutations (119 missense mutations) retrieved from the COSMIC database were investigated for the pathogenic and destabilizing properties using the PredictSNP and iStable algorithms. Further, the amino acid position of the most pathogenic and destabilizing mutations were analyzed to understand the nature of amino acid conservation across the species during the evolution. We observed that the missense mutations G201R and G201D were more significant and the Glycine at position 201 was found to highly conserved. These significant mutations were subjected to molecular dynamics simulation analysis to understand the protein's structural changes. The results from molecular dynamics simulations revealed that both G201R and G201D of CDK4 are capable of altering the protein's native form. On comparison among the most significant mutations, G201R disrupted the protein structure higher than the protein with G201D.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Nishaat Shaikh
- Mahimkar Lab [Tobacco Carcinogenesis Lab], Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer [ACTREC], TATA Memorial Centre, Navi Mumbai, Maharashtra, India
| | - R Bithia
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Karthick
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| | - R Magesh
- Department of Biotechnology, FBMS&T, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Rodriguez PD, Mariani M, Gay J, Hogan TC, Amiel E, Deming PB, Frietze S. A guided-inquiry investigation of genetic variants using Oxford nanopore sequencing for an undergraduate molecular biology laboratory course. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:588-597. [PMID: 33939256 PMCID: PMC8356555 DOI: 10.1002/bmb.21514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Next Generation Sequencing (NGS) has become an important tool in the biological sciences and has a growing number of applications across medical fields. Currently, few undergraduate programs provide training in the design and implementation of NGS applications. Here, we describe an inquiry-based laboratory exercise for a college-level molecular biology laboratory course that uses real-time MinION deep sequencing and bioinformatics to investigate characteristic genetic variants found in cancer cell-lines. The overall goal for students was to identify non-small cell lung cancer (NSCLC) cell-lines based on their unique genomic profiles. The units described in this laboratory highlight core principles in multiplex PCR primer design, real-time deep sequencing, and bioinformatics analysis for genetic variants. We found that the MinION device is an appropriate, feasible tool that provides a comprehensive, hands-on NGS experience for undergraduates. Student evaluations demonstrated increased confidence in using molecular techniques and enhanced understanding of NGS concepts. Overall, this exercise provides a pedagogical tool for incorporating NGS approaches in the teaching laboratory as way of enhancing students' comprehension of genomic sequence analysis. Further, this NGS lab module can easily be added to a variety of lab-based courses to help undergraduate students learn current DNA sequencing methods with limited effort and cost.
Collapse
Affiliation(s)
- Princess D. Rodriguez
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
- Cellular Molecular Biomedical Sciences ProgramUniversity of VermontBurlingtonVermontUSA
| | - Michael Mariani
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
- Cellular Molecular Biomedical Sciences ProgramUniversity of VermontBurlingtonVermontUSA
| | - Jamie Gay
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Tyler C. Hogan
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Eyal Amiel
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
- Cellular Molecular Biomedical Sciences ProgramUniversity of VermontBurlingtonVermontUSA
| | - Paula B. Deming
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
- Cellular Molecular Biomedical Sciences ProgramUniversity of VermontBurlingtonVermontUSA
- The University of Vermont Cancer CenterBurlingtonVermontUSA
| | - Seth Frietze
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
- Cellular Molecular Biomedical Sciences ProgramUniversity of VermontBurlingtonVermontUSA
- The University of Vermont Cancer CenterBurlingtonVermontUSA
| |
Collapse
|
5
|
Marmion RA, Yang L, Goyal Y, Jindal GA, Wetzel JL, Singh M, Schüpbach T, Shvartsman SY. Molecular mechanisms underlying cellular effects of human MEK1 mutations. Mol Biol Cell 2021; 32:974-983. [PMID: 33476180 PMCID: PMC8108529 DOI: 10.1091/mbc.e20-10-0625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Terminal regions of Drosophila embryos are patterned by signaling through ERK, which is genetically deregulated in multiple human diseases. Quantitative studies of terminal patterning have been recently used to investigate gain-of-function variants of human MEK1, encoding the MEK kinase that directly activates ERK by dual phosphorylation. Unexpectedly, several mutations reduced ERK activation by extracellular signals, possibly through a negative feedback triggered by signal-independent activity of the mutant variants. Here we present experimental evidence supporting this model. Using a MEK variant that combines a mutation within the negative regulatory region with alanine substitutions in the activation loop, we prove that pathogenic variants indeed acquire signal-independent kinase activity. We also demonstrate that signal-dependent activation of these variants is independent of kinase suppressor of Ras, a conserved adaptor that is indispensable for activation of normal MEK. Finally, we show that attenuation of ERK activation by extracellular signals stems from transcriptional induction of Mkp3, a dual specificity phosphatase that deactivates ERK by dephosphorylation. These findings in the Drosophila embryo highlight its power for investigating diverse effects of human disease mutations.
Collapse
Affiliation(s)
- Robert A Marmion
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Liu Yang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Yogesh Goyal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Granton A Jindal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Joshua L Wetzel
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Computer Science, Princeton University, Princeton, NJ 08540
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Computer Science, Princeton University, Princeton, NJ 08540
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544.,Flatiron Institute, Simons Foundation, New York, NY 10010
| |
Collapse
|
6
|
Yeung E, McFann S, Marsh L, Dufresne E, Filippi S, Harrington HA, Shvartsman SY, Wühr M. Inference of Multisite Phosphorylation Rate Constants and Their Modulation by Pathogenic Mutations. Curr Biol 2020; 30:877-882.e6. [PMID: 32059766 PMCID: PMC7085240 DOI: 10.1016/j.cub.2019.12.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/03/2019] [Accepted: 12/16/2019] [Indexed: 01/03/2023]
Abstract
Multisite protein phosphorylation plays a critical role in cell regulation [1-3]. It is widely appreciated that the functional capabilities of multisite phosphorylation depend on the order and kinetics of phosphorylation steps, but kinetic aspects of multisite phosphorylation remain poorly understood [4-6]. Here, we focus on what appears to be the simplest scenario, when a protein is phosphorylated on only two sites in a strict, well-defined order. This scenario describes the activation of ERK, a highly conserved cell-signaling enzyme. We use Bayesian parameter inference in a structurally identifiable kinetic model to dissect dual phosphorylation of ERK by MEK, a kinase that is mutated in a large number of human diseases [7-12]. Our results reveal how enzyme processivity and efficiencies of individual phosphorylation steps are altered by pathogenic mutations. The presented approach, which connects specific mutations to kinetic parameters of multisite phosphorylation mechanisms, provides a systematic framework for closing the gap between studies with purified enzymes and their effects in the living organism.
Collapse
Affiliation(s)
- Eyan Yeung
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Washington Road, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Sarah McFann
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Washington Road, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Engineering Quad, Princeton University, Princeton, NJ 08544, USA
| | - Lewis Marsh
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, UK
| | - Emilie Dufresne
- Department of Mathematics, James College, Campus West, University of York, York YO10 5DD, UK
| | - Sarah Filippi
- Department of Epidemiology and Biostatistics, Imperial College London, Medical School Building, St Mary's Campus, Norfolk Place, London W2 1PG, UK; Department of Mathematics, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Heather A Harrington
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, UK
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Washington Road, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA; Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Washington Road, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
Eisenhardt AE, Sprenger A, Röring M, Herr R, Weinberg F, Köhler M, Braun S, Orth J, Diedrich B, Lanner U, Tscherwinski N, Schuster S, Dumaz N, Schmidt E, Baumeister R, Schlosser A, Dengjel J, Brummer T. Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles. Oncotarget 2018; 7:26628-52. [PMID: 27034005 PMCID: PMC5042004 DOI: 10.18632/oncotarget.8427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/07/2016] [Indexed: 12/19/2022] Open
Abstract
B-Raf represents a critical physiological regulator of the Ras/RAF/MEK/ERK-pathway and a pharmacological target of growing clinical relevance, in particular in oncology. To understand how B-Raf itself is regulated, we combined mass spectrometry with genetic approaches to map its interactome in MCF-10A cells as well as in B-Raf deficient murine embryonic fibroblasts (MEFs) and B-Raf/Raf-1 double deficient DT40 lymphoma cells complemented with wildtype or mutant B-Raf expression vectors. Using a multi-protease digestion approach, we identified a novel ubiquitination site and provide a detailed B-Raf phospho-map. Importantly, we identify two evolutionary conserved phosphorylation clusters around T401 and S419 in the B-Raf hinge region. SILAC labelling and genetic/biochemical follow-up revealed that these clusters are phosphorylated in the contexts of oncogenic Ras, sorafenib induced Raf dimerization and in the background of the V600E mutation. We further show that the vemurafenib sensitive phosphorylation of the T401 cluster occurs in trans within a Raf dimer. Substitution of the Ser/Thr-residues of this cluster by alanine residues enhances the transforming potential of B-Raf, indicating that these phosphorylation sites suppress its signaling output. Moreover, several B-Raf phosphorylation sites, including T401 and S419, are somatically mutated in tumors, further illustrating the importance of phosphorylation for the regulation of this kinase.
Collapse
Affiliation(s)
- Anja E Eisenhardt
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Adrian Sprenger
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, ALU, Freiburg, Germany.,INSERM U976 and Universitéi Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Michael Röring
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Ricarda Herr
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Florian Weinberg
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Martin Köhler
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Joachim Orth
- Institute for Experimental and Clinical Pharmacology and Toxicology, ALU, Freiburg, Germany
| | - Britta Diedrich
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Department of Dermatology, University Medical Centre, ALU, Freiburg, Germany
| | - Ulrike Lanner
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Natalja Tscherwinski
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Simon Schuster
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Nicolas Dumaz
- INSERM U976 and Universitéi Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Enrico Schmidt
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Ralf Baumeister
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany
| | - Andreas Schlosser
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Jörn Dengjel
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Department of Dermatology, University Medical Centre, ALU, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
8
|
Choudhury NJ, Campanile A, Antic T, Yap KL, Fitzpatrick CA, Wade JL, Karrison T, Stadler WM, Nakamura Y, O'Donnell PH. Afatinib Activity in Platinum-Refractory Metastatic Urothelial Carcinoma in Patients With ERBB Alterations. J Clin Oncol 2016; 34:2165-71. [PMID: 27044931 DOI: 10.1200/jco.2015.66.3047] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Somatic mutations and copy number variation in the ERBB family are frequent in urothelial carcinoma (UC) and may represent viable therapeutic targets. We studied whether afatinib (an oral, irreversible inhibitor of the ErbB family) has activity in UC and if specific ERBB molecular alterations are associated with clinical response. PATIENTS AND METHODS In this phase II trial, patients with metastatic platinum-refractory UC received afatinib 40 mg/day continuously until progression or intolerance. The primary end point was 3-month progression-free survival (PFS3). Prespecified tumor analysis for alterations in EGFR, HER2, ERBB3, and ERBB4 was conducted. RESULTS The first-stage enrollment goal of 23 patients was met. Patient demographic data included: 78% male, median age 67 years (range, 36 to 82 years), hemoglobin < 10 g/dL in 17%, liver metastases in 30%, median time from prior chemotherapy of 3.6 months, and Eastern Cooperative Oncology Group performance status ≤ 1 in 100%. No unexpected toxicities were observed; two patients required dose reduction for grade 3 fatigue and rash. Overall, five of 23 patients (21.7%) met PFS3 (two partial response, three stable disease). Notably, among the 21 tumors analyzed, five of six patients (83.3%) with HER2 and/or ERBB3 alterations achieved PFS3 (PFS = 10.3, 7.0, 6.9, 6.3, and 5.0 months, respectively) versus none of 15 patients without alterations (P < .001). Three of four patients with HER2 amplification and three of three patients with ERBB3 somatic mutations (G284R, V104M, and R103G) met PFS3. One patient with both HER2 amplification and ERBB3 mutation never progressed on therapy, but treatment was discontinued after 10.3 months as a result of depressed ejection fraction. The median time to progression/discontinuation was 6.6 months in patients with HER2/ERBB3 alterations versus 1.4 months in patients without alterations (P < .001). CONCLUSION Afatinib demonstrated significant activity in patients with platinum-refractory UC with HER2 or ERBB3 alterations. The potential contribution of ERBB3 to afatinib sensitivity is novel. Afatinib deserves further investigation in molecularly selected UC.
Collapse
Affiliation(s)
- Noura J Choudhury
- Noura J. Choudhury, Alexa Campanile, Tatjana Antic, Kai Lee Yap, Carrie A. Fitzpatrick, Theodore Karrison, Walter M. Stadler, Yusuke Nakamura, and Peter H. O'Donnell, University of Chicago, Chicago; and James L. Wade III, Decatur Memorial Hospital, Decatur, IL
| | - Alexa Campanile
- Noura J. Choudhury, Alexa Campanile, Tatjana Antic, Kai Lee Yap, Carrie A. Fitzpatrick, Theodore Karrison, Walter M. Stadler, Yusuke Nakamura, and Peter H. O'Donnell, University of Chicago, Chicago; and James L. Wade III, Decatur Memorial Hospital, Decatur, IL
| | - Tatjana Antic
- Noura J. Choudhury, Alexa Campanile, Tatjana Antic, Kai Lee Yap, Carrie A. Fitzpatrick, Theodore Karrison, Walter M. Stadler, Yusuke Nakamura, and Peter H. O'Donnell, University of Chicago, Chicago; and James L. Wade III, Decatur Memorial Hospital, Decatur, IL
| | - Kai Lee Yap
- Noura J. Choudhury, Alexa Campanile, Tatjana Antic, Kai Lee Yap, Carrie A. Fitzpatrick, Theodore Karrison, Walter M. Stadler, Yusuke Nakamura, and Peter H. O'Donnell, University of Chicago, Chicago; and James L. Wade III, Decatur Memorial Hospital, Decatur, IL
| | - Carrie A Fitzpatrick
- Noura J. Choudhury, Alexa Campanile, Tatjana Antic, Kai Lee Yap, Carrie A. Fitzpatrick, Theodore Karrison, Walter M. Stadler, Yusuke Nakamura, and Peter H. O'Donnell, University of Chicago, Chicago; and James L. Wade III, Decatur Memorial Hospital, Decatur, IL
| | - James L Wade
- Noura J. Choudhury, Alexa Campanile, Tatjana Antic, Kai Lee Yap, Carrie A. Fitzpatrick, Theodore Karrison, Walter M. Stadler, Yusuke Nakamura, and Peter H. O'Donnell, University of Chicago, Chicago; and James L. Wade III, Decatur Memorial Hospital, Decatur, IL
| | - Theodore Karrison
- Noura J. Choudhury, Alexa Campanile, Tatjana Antic, Kai Lee Yap, Carrie A. Fitzpatrick, Theodore Karrison, Walter M. Stadler, Yusuke Nakamura, and Peter H. O'Donnell, University of Chicago, Chicago; and James L. Wade III, Decatur Memorial Hospital, Decatur, IL
| | - Walter M Stadler
- Noura J. Choudhury, Alexa Campanile, Tatjana Antic, Kai Lee Yap, Carrie A. Fitzpatrick, Theodore Karrison, Walter M. Stadler, Yusuke Nakamura, and Peter H. O'Donnell, University of Chicago, Chicago; and James L. Wade III, Decatur Memorial Hospital, Decatur, IL
| | - Yusuke Nakamura
- Noura J. Choudhury, Alexa Campanile, Tatjana Antic, Kai Lee Yap, Carrie A. Fitzpatrick, Theodore Karrison, Walter M. Stadler, Yusuke Nakamura, and Peter H. O'Donnell, University of Chicago, Chicago; and James L. Wade III, Decatur Memorial Hospital, Decatur, IL
| | - Peter H O'Donnell
- Noura J. Choudhury, Alexa Campanile, Tatjana Antic, Kai Lee Yap, Carrie A. Fitzpatrick, Theodore Karrison, Walter M. Stadler, Yusuke Nakamura, and Peter H. O'Donnell, University of Chicago, Chicago; and James L. Wade III, Decatur Memorial Hospital, Decatur, IL.
| |
Collapse
|
9
|
Mizukami T, Togashi Y, Sogabe S, Banno E, Terashima M, De Velasco MA, Sakai K, Fujita Y, Tomida S, Nakajima TE, Boku N, Nishio K. EGFR and HER2 signals play a salvage role in MEK1-mutated gastric cancer after MEK inhibition. Int J Oncol 2015; 47:499-505. [PMID: 26081723 DOI: 10.3892/ijo.2015.3050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/02/2015] [Indexed: 11/05/2022] Open
Abstract
Since the prognosis of unresectable advanced gastric cancer remains poor, novel therapeutic strategies are needed. Somatic MEK1 gene mutations have been reported as oncogenic activating mutations in gastric cancer, and MEK inhibitors can be effective against such gastric cancers. In the present study, however, activated EGFR and HER2 signals after treatment with a MEK inhibitor (trametinib) were found in a MEK1-mutated gastric cancer cell line (OCUM-1 cell line) using a phospho-receptor tyrosine kinase array. The phosphorylation of EGFR and HER2 reactivated ERK1/2, which had been inhibited by trametinib, and EGF stimulation led to resistance to trametinib in this cell line. Lapatinib, an EGFR and an HER2 inhibitor, reversed the activation of ERK1/2 by inhibiting the phosphorylation of EGFR and HER2 and cancelled the resistance. The combination of trametinib and lapatinib synergistically inhibited the cell growth of the OCUM-1 cell line and strongly induced apoptosis by inhibiting the activated EGFR and HER2 signals. These results suggest that the EGFR and HER2 signals play a salvage role and are related to resistance to MEK inhibitors in MEK1‑mutated gastric cancer. Moreover, combination therapy with trametinib and lapatinib can exhibit a synergistic effect and may contribute to overcoming the resistance to MEK inhibitors.
Collapse
Affiliation(s)
- Takuro Mizukami
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shunsuke Sogabe
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Eri Banno
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masato Terashima
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Marco A De Velasco
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yoshihiko Fujita
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shuta Tomida
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Takako Eguchi Nakajima
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Narikazu Boku
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
10
|
Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta Rev Cancer 2014; 1855:104-21. [PMID: 25450577 DOI: 10.1016/j.bbcan.2014.09.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
PI3K/AKT signaling leads to reduced apoptosis, stimulates cell growth and increases proliferation. Under normal conditions, PI3K/AKT activation is tightly controlled and dependent on both extracellular growth signals and the availability of amino acids and glucose. Genetic aberrations leading to PI3K/AKT hyper-activation are observed at considerable frequency in all major nodes in most tumors. In colorectal cancer the most commonly observed pathway changes are IGF2 overexpression, PIK3CA mutations and PTEN mutations and deletions. Combined, these alterations are found in about 40% of large bowel tumors. In addition, but not mutually exclusive to these, KRAS mutations are observed at a similar frequency. There are however additional, less frequent and more poorly understood events that may also push the PI3K/AKT pathway into overdrive and thus promote malignant growth. Here we discuss aberrations of components at the genetic, epigenetic, transcriptional, post-transcriptional, translational and post-translational level where perturbations may drive excessive PI3K/AKT signaling. Integrating multiple molecular levels will advance our understanding of this cancer critical circuit and more importantly, improve our ability to pharmacologically target the pathway in view of clonal development, tumor heterogeneity and drug resistance mechanisms. In this review, we revisit the PI3K/AKT pathway cancer susceptibility syndromes, summarize the known aberrations at the different regulatory levels and the prognostic and predictive values of these alterations in colorectal cancer.
Collapse
Affiliation(s)
- Stine Aske Danielsen
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter Wold Eide
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Tormod Guren
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
11
|
Yao YL, Shao J, Zhang C, Wu JH, Zhang QH, Wang JJ, Zhu W. Proliferation of colorectal cancer is promoted by two signaling transduction expression patterns: ErbB2/ErbB3/AKT and MET/ErbB3/MAPK. PLoS One 2013; 8:e78086. [PMID: 24205104 PMCID: PMC3813539 DOI: 10.1371/journal.pone.0078086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/07/2013] [Indexed: 02/04/2023] Open
Abstract
One of the recent breakthroughs in cancer research is the identification of activating mutations in various receptor tyrosine kinase(RTK) pathways in many cancers including colorectal cancer(CRC). We hypothesize that, alternative to mutations, overexpression of various oncogenic RTKs may also underpin CRC pathogenesis, and different RTK may couple with distinct downstream signaling pathways in different subtypes of human CRC. By immunohistochemistry, we show here that RTK members ErbB2, ErbB3 and c-Met were in deed differentially overexpressed in colorectal cancer patient samples leading to constitutive activation of RTK signaling pathways. Using ErbB2 specific inhibitor Lapatinib and c-Met specific inhibitor PHA-665752, we further demonstrated that this constitutive activation of RTK signaling is necessary for the survival of colorectal cancer cells. Furthermore, we show that RTK overexpression pattern dictates the use of downstream AKT and/or MAPK pathways. Our data are important additions to current oncogenic mutation models, and further explain the clinical variation in therapeutic responses of colorectal cancer. Our findings advocate for more personalized therapy tailored to individual patients based on their type of RTK expression in addition to their mutation status.
Collapse
Affiliation(s)
- Yong-Liang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Yin H, Liang Y, Yan Z, Liu B, Su Q. Mutation spectrum in human colorectal cancers and potential functional relevance. BMC MEDICAL GENETICS 2013; 14:32. [PMID: 23497483 PMCID: PMC3599340 DOI: 10.1186/1471-2350-14-32] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022]
Abstract
Background Somatic variants, which occur in the genome of all cells, are well accepted to play a critical role in cancer development, as their accumulation in genes could affect cell proliferations and cell cycle. Methods In order to understand the role of somatic mutations in human colorectal cancers, we characterized the mutation spectrum in two colorectal tumor tissues and their matched normal tissues, by analyzing deep-sequenced transcriptome data. Results We found a higher mutation rate of somatic variants in tumor tissues in comparison with normal tissues, but no trend was observed for mutation properties. By applying a series of stringent filters, we identified 418 genes with tumor specific disruptive somatic variants. Of these genes, three genes in mucin protein family (MUC2, MUC4, and MU12) are of particular interests. It has been reported that the expression of mucin proteins was correlated with the progression of colorectal cancer therefore somatic variants within those genes can interrupt their normal expression and thus contribute to the tumorigenesis. Conclusions Our findings provide evidence of the utility of RNA-Seq in mutation screening in cancer studies, and suggest a list of candidate genes for future colorectal cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, No, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | | | | | | | | |
Collapse
|
13
|
Bromberg-White JL, Andersen NJ, Duesbery NS. MEK genomics in development and disease. Brief Funct Genomics 2012; 11:300-10. [PMID: 22753777 PMCID: PMC3398258 DOI: 10.1093/bfgp/els022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mitogen-activated protein kinase kinases (the MAPK/ERK kinases; MKKs or MEKs) and their downstream substrates, the extracellular-regulated kinases have been intensively studied for their roles in development and disease. Until recently, it had been assumed any mutation affecting their function would have lethal consequences. However, the identification of MEK1 and MEK2 mutations in developmental syndromes as well as chemotherapy-resistant tumors, and the discovery of genomic variants in MEK1 and MEK2 have led to the realization the extent of genomic variation associated with MEKs is much greater than had been appreciated. In this review, we will discuss these recent advances, relating them to what is currently understood about the structure and function of MEKs, and describe how they change our understanding of the role of MEKs in development and disease.
Collapse
Affiliation(s)
- Jennifer L Bromberg-White
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | | | | |
Collapse
|
14
|
LV XIUPENG, TAN GUANG, YAO YIQUN, LV LI, DENG XIAOQIN, DONG LEI, LI SHUANG, LI LINLIN, XU YINGHUI. Somatic mutations in myeloid cell leukemia-1 contribute to the pathogenesis of glioma by prolonging its half-life. Mol Med Rep 2012; 12:1265-71. [DOI: 10.3892/mmr.2015.3493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/21/2015] [Indexed: 11/05/2022] Open
|
15
|
Choi YL, Soda M, Ueno T, Hamada T, Haruta H, Yamato A, Fukumura K, Ando M, Kawazu M, Yamashita Y, Mano H. Oncogenic MAP2K1 mutations in human epithelial tumors. Carcinogenesis 2012; 33:956-61. [PMID: 22327936 DOI: 10.1093/carcin/bgs099] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The scirrhous subtype of gastric cancer is a highly infiltrative tumor with a poor outcome. To identify a transforming gene in this intractable disorder, we constructed a retroviral complementary DNA (cDNA) expression library from a cell line (OCUM-1) of scirrhous gastric cancer. A focus formation assay with the library and mouse 3T3 fibroblasts led to the discovery of a transforming cDNA, encoding for MAP2K1 with a glutamine-to-proline substitution at amino acid position 56. Interestingly, treatment with a MAP2K1-specific inhibitor clearly induced cell death of OCUM-1 but not of other two cells lines of scirrhous gastric cancer that do not carry MAP2K1 mutations, revealing the essential role of MAP2K1(Q56P) in the transformation mechanism of OCUM-1 cells. By using a next-generation sequencer, we further conducted deep sequencing of the MAP2K1 cDNA among 171 human cancer specimens or cell lines, resulting in the identification of one known (D67N) and four novel (R47Q, R49L, I204T and P306H) mutations within MAP2K1. The latter four changes were further shown to confer transforming potential to MAP2K1. In our experiments, a total of six (3.5%) activating mutations in MAP2K1 were thus identified among 172 of specimens or cell lines for human epithelial tumors. Given the addiction of cancer cells to the elevated MAP2K1 activity for proliferation, human cancers with such MAP2K1 mutations are suitable targets for the treatment with MAP2K1 inhibitors.
Collapse
Affiliation(s)
- Young Lim Choi
- Division of Functional Genomics, Jichi Medical University, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xiang Y, Payne PR, Huang K. Transactional database transformation and its application in prioritizing human disease genes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:294-304. [PMID: 21422495 PMCID: PMC4047992 DOI: 10.1109/tcbb.2011.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Binary (0,1) matrices, commonly known as transactional databases, can represent many application data, including genephenotype data where “1” represents a confirmed gene-phenotype relation and “0” represents an unknown relation. It is natural to ask what information is hidden behind these “0”s and “1”s. Unfortunately, recent matrix completion methods, though very effective in many cases, are less likely to infer something interesting from these (0,1)-matrices. To answer this challenge, we propose INDEVI, a very succinct and effective algorithm to perform independent-evidence-based transactional database transformation. Each entry of a (0,1)-matrix is evaluated by “independent evidence” (maximal supporting patterns) extracted from the whole matrix for this entry. The value of an entry, regardless of its value as 0 or 1, has completely no effect for its independent evidence. The experiment on a genephenotype database shows that our method is highly promising in ranking candidate genes and predicting unknown disease genes.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Biomedical Informatics, The Ohio State University,
3190 Graves Hall, 333 W. Tenth Ave., Columbus, OH 43210.
| | - Philip R.O. Payne
- Department of Biomedical Informatics and OSUCCC Biomedical
Informatics Shared Resource, The Ohio State University, 3190 Graves Hall,
333 W. Tenth Ave., Columbus, OH 43210.
| | - Kun Huang
- Department of Biomedical Informatics and OSUCCC Biomedical
Informatics Shared Resource, The Ohio State University, 3190 Graves Hall,
333 W. Tenth Ave., Columbus, OH 43210.
| |
Collapse
|
17
|
Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V, Michielin O, Muehlethaler K, Speiser D, Beckmann JS, Xenarios I, Halazonetis TD, Jongeneel CV, Stevenson BJ, Antonarakis SE. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 2011; 44:133-9. [PMID: 22197931 DOI: 10.1038/ng.1026] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 11/04/2011] [Indexed: 12/14/2022]
Abstract
We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample-specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1.
Collapse
Affiliation(s)
- Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lea A, Allingham-Hawkins D, Levine S. BRAF p.Val600Glu (V600E) Testing for Assessment of Treatment Options in Metastatic Colorectal Cancer. PLOS CURRENTS 2010; 2:RRN1187. [PMID: 20972475 PMCID: PMC2957244 DOI: 10.1371/currents.rrn1187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2010] [Indexed: 12/14/2022]
Abstract
Colon and rectal cancer (CRC) are the third most common cancer in the United States and cause approximately 50,000 deaths per year. The anti-epidermal growth factor receptor (EGFR) monoclonal antibodies cetuximab (Erbitux®) and panitumumab (Vectibix®) have been recently introduced to treat CRC. However, the response rate with these agents is low and they are associated with serious adverse effects. Accordingly biomarkers that can predict those patients that will respond to treatment may have clinical utility. The p.Val600Glu sequence variant (often called V600E) in the BRAF gene has been investigated as a biomarker to predict patients that will not respond to treatment with the anti-EGFR monoclonal antibodies.
Collapse
|
19
|
Clinical relevance of KRAS in human cancers. J Biomed Biotechnol 2010; 2010:150960. [PMID: 20617134 PMCID: PMC2896632 DOI: 10.1155/2010/150960] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 02/22/2010] [Accepted: 03/09/2010] [Indexed: 12/18/2022] Open
Abstract
The KRAS gene (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is an oncogene that encodes a small GTPase transductor protein called KRAS. KRAS is involved in the regulation of cell division as a result of its ability to relay external signals to the cell nucleus. Activating mutations in the KRAS gene impair the ability of the KRAS protein to switch between active and inactive states, leading to cell transformation and increased resistance to chemotherapy and biological therapies targeting epidermal growth factor receptors. This review highlights some of the features of the KRAS gene and the KRAS protein and summarizes current knowledge of the mechanism of KRAS gene regulation. It also underlines the importance of activating mutations in the KRAS gene in relation to carcinogenesis and their importance as diagnostic biomarkers, providing clues regarding human cancer patients' prognosis and indicating potential therapeutic approaches.
Collapse
|
20
|
Abstract
Although genomewide association studies have successfully identified associations of many common single-nucleotide polymorphisms (SNPs) with common diseases, the SNPs implicated so far account for only a small proportion of the genetic variability of tested diseases. It has been suggested that common diseases may often be caused by rare alleles missed by genomewide association studies. To identify these rare alleles we need high-throughput, high-accuracy resequencing technologies. Although array-based genotyping has allowed genomewide association studies of common SNPs in tens of thousands of samples, array-based resequencing has been limited for 2 main reasons: the lack of a fully multiplexed pipeline for high-throughput sample processing, and failure to achieve sufficient performance. We have recently solved both of these problems and created a fully multiplexed high-throughput pipeline that results in high-quality data. The pipeline consists of target amplification from genomic DNA, followed by allele enrichment to generate pools of purified variant (or nonvariant) DNA and ends with interrogation of purified DNA on resequencing arrays. We have used this pipeline to resequence approximately 5 Mb of DNA (on 3 arrays) corresponding to the exons of 1,500 genes in >473 samples; in total >2,350 Mb were sequenced. In the context of this large-scale study we obtained a false positive rate of approximately 1 in 500,000 bp and a false negative rate of approximately 10%.
Collapse
|
21
|
A comprehensive assay for targeted multiplex amplification of human DNA sequences. Proc Natl Acad Sci U S A 2008; 105:9296-301. [PMID: 18599465 DOI: 10.1073/pnas.0803240105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed a robust and reproducible methodology to amplify human sequences in parallel for use in downstream multiplexed sequence analyses. We call the methodology SMART (Spacer Multiplex Amplification Reaction), and it is based, in part, on padlock probe technology. As a proof of principle, we used SMART technology to simultaneously amplify 485 human exons ranging from 100 to 500 bp from human genomic DNA. In multiple repetitions, >90% of the targets were successfully amplified with a high degree of uniformity, with 70% of targets falling within a 10-fold range and all products falling within a 100-fold range of each other in abundance. We used long padlock probes (LPPs) >300 bases in length for the assay, and the increased length of these probes allowed for the capture of human sequences up to 500 bp in length, which is optimal for capturing most human exons. To engineer the LPPs, we developed a method that generates ssDNA molecules with precise ends, using an appropriately designed dsDNA template. The template has appropriate restriction sites engineered into it that can be digested to generate nucleotide overhangs that are suitable for lambda exonuclease digestion, producing a single-stranded probe from dsDNA. The SMART technology is flexible and can be easily adapted to multiplex tens of thousands of target sequences in a single reaction.
Collapse
|