1
|
A Self-organizing Deep Auto-Encoder approach for Classification of Complex Diseases using SNP Genomics Data. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Zheng B, Chen Q, Wang C, Zhou W, Chen Y, Ding G, Jia Z, Zhang A, Huang S. Whole-genome sequencing revealed an interstitial deletion encompassing OCRL and SMARCA1 gene in a patient with Lowe syndrome. Mol Genet Genomic Med 2019; 7:e876. [PMID: 31376231 PMCID: PMC6732312 DOI: 10.1002/mgg3.876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lowe syndrome is a rare X‑linked syndrome that is characterized by involvement of the eyes, central nervous system, and kidneys. The aim of the present study was to determine the molecular basis of four patients with congenital cataract, infantile congenital hypotonia, and proximal renal tubular defect. Methods Four children who met the clinical manifestations of Lowe syndrome were enrolled in this study. Patients’ clinical information on eyes, central nervous system, kidneys, and family histories, etc., were reviewed and analyzed. After obtaining informed consent, we performed a mutation analysis of OCRL gene using direct sequencing. Because of failure of PCR amplification, low coverage shortread whole genome sequencing (CNVseq) analysis was performed on one proband. Real‐time PCR was subsequently performed to confirm the CNV that was detected from the CNVseq results. Results We identified three OCRL allelic variants, including two novel missense mutations (c.1423C>T/p.Pro475Ser, c.1502T>G/p.Ile501Ser) and one recurrent nonsense mutation (c.2464C>T/p.Arg822Ter). Various bioinformatic tools revealed scores associated with potential pathogenic effects for the two missense variants, and protein alignments revealed that both variants affected an amino acid highly conserved among species. Since deletion of the entire gene was suspected in a patient, CNVseq was used, identifying an interstitial deletion to approximately 190 kb, encompassing OCRL, and SMARCA1 gene. Moreover, the hemizygous CNV was confirmed by qPCR. Reviewing another case reported in the literature, we found that the deletion of OCRL and nearby genes may contribute to a more severe phenotype and premature death. Conclusions This is the first report of an interstitial deletion encompassing OCRL and SMARCA1 gene in Lowe syndrome. Our results expand the spectrum of mutations of the OCRL gene in Chinese population. Moreover, whole‐genome sequencing presents a comprehensive and reliable approach for detecting genomic copy number variation in patients or carriers in the family with rare inherited disorders.
Collapse
Affiliation(s)
- Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuxia Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - SongMing Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Lee CL, Lee CH, Chuang CK, Chiu HC, Chen YJ, Chou CL, Wu PS, Chen CP, Lin HY, Lin SP. Array-CGH increased the diagnostic rate of developmental delay or intellectual disability in Taiwan. Pediatr Neonatol 2019; 60:453-460. [PMID: 30581099 DOI: 10.1016/j.pedneo.2018.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/03/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Unexplained developmental delay or intellectual disability (DD/ID) has an estimated prevalence of about 3%-5% in the general population of Taiwan. Array comparative genomic hybridization (array-CGH) is a high-resolution tool that can detect about 50 Kb chromosome aberrations. A previous study has reported a detection rate of 10%-20% for this array.1 This study aimed to investigate and compare the diagnosis rate for DD/ID using array-CGH and conventional chromosome study in DD/ID patients in Taiwan. METHODS We enrolled 177 patients with DD/ID who underwent array-CGH examination at the MacKay Memory Hospital between June 2010 and September 2017. The copy number variants (CNV) were classified into the following three groups: pathogenic (potential pathologic variant), benign (normal genomic variant), and uncertain clinical significance (variance of uncertain significance, VOUS), according to the ACMG guideline.2 RESULTS: Of the 177 enrolled patients, 100 (56.5%) were men and 77 (43.5%) were women. Ages ranged from 3 months to 50 years, with a median age of 5.2 years. Total 32.0% (32/100) male patients had pathogenic CNV, and 32.5% (25/77) female patients had pathogenic CNV. The ratio of pathogenic CNV in male and female patients was not significantly different (p = 0.379). The proportions of pathogenic CNV at <3 years, 3-6 years, 6-12 years, 12-18 years, and >18 years of age were 32.3% (31/96), 19.4% (6/31), 34.8% (8/23), 16.7% (2/12), and 66.7% (10/15), respectively. The overall diagnosed rate of DD/ID with pathogenic CNV was 27.7% (49/177) using array-CGH in this study. There were 105 patients with conventional karyotyping and array-CGH data at the same time. Nineteen (18.1%) patients had visible chromosomal abnormality. Total 32/105 (30.5%) patients could find at least one pathogenic CNVs. The array-CGH had a higher diagnosed rate than the conventional karyotyping in clinical application. CONCLUSIONS Although array-CGH could not detect point mutation, balanced translocations, inversions, or low-level mosaicism, the diagnosis rate in clinical application was up to 46.3% and 2.5 times that of conventional karyotyping analysis (18.1%). This study demonstrated that array-CGH is a powerful diagnostic tool and should be the first genetic test instead of conventional karyotyping analysis for patients with unexplained DD/ID.
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Hao Lee
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung City, Taiwan
| | | | - Huei-Ching Chiu
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yen-Jiun Chen
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chao-Ling Chou
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | | | - Chih-Ping Chen
- Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Departments of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan; Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.
| | - Shuan-Pei Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan; Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.
| |
Collapse
|
4
|
Contribution of copy number variants (CNVs) to congenital, unexplained intellectual and developmental disabilities in Lebanese patients. Mol Cytogenet 2015; 8:26. [PMID: 25922617 PMCID: PMC4411788 DOI: 10.1186/s13039-015-0130-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Chromosomal microarray analysis (CMA) is currently the most widely adopted clinical test for patients with unexplained intellectual disability (ID), developmental delay (DD), and congenital anomalies. Its use has revealed the capacity to detect copy number variants (CNVs), as well as regions of homozygosity, that, based on their distribution on chromosomes, indicate uniparental disomy or parental consanguinity that is suggestive of an increased probability of recessive disease. Results We screened 149 Lebanese probands with ID/DD and 99 healthy controls using the Affymetrix Cyto 2.7 M and SNP6.0 arrays. We report all identified CNVs, which we divided into groups. Pathogenic CNVs were identified in 12.1% of the patients. We review the genotype/phenotype correlation in a patient with a 1q44 microdeletion and refine the minimal critical regions responsible for the 10q26 and 16q monosomy syndromes. Several likely causative CNVs were also detected, including new homozygous microdeletions (9p23p24.1, 10q25.2, and 8p23.1) in 3 patients born to consanguineous parents, involving potential candidate genes. However, the clinical interpretation of several other CNVs remains uncertain, including a microdeletion affecting ATRNL1. This CNV of unknown significance was inherited from the patient’s unaffected-mother; therefore, additional ethnically matched controls must be screened to obtain enough evidence for classification of this CNV. Conclusion This study has provided supporting evidence that whole-genome analysis is a powerful method for uncovering chromosomal imbalances, regardless of consanguinity in the parents of patients and despite the challenge presented by analyzing some CNVs. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0130-y) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
D'Amours G, Langlois M, Mathonnet G, Fetni R, Nizard S, Srour M, Tihy F, Phillips MS, Michaud JL, Lemyre E. SNP arrays: comparing diagnostic yields for four platforms in children with developmental delay. BMC Med Genomics 2014; 7:70. [PMID: 25539807 PMCID: PMC4299176 DOI: 10.1186/s12920-014-0070-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022] Open
Abstract
Background Molecular karyotyping is now the first-tier genetic test for patients affected with unexplained intellectual disability (ID) and/or multiple congenital anomalies (MCA), since it identifies a pathogenic copy number variation (CNV) in 10-14% of them. High-resolution microarrays combining molecular karyotyping and single nucleotide polymorphism (SNP) genotyping were recently introduced to the market. In addition to identifying CNVs, these platforms detect loss of heterozygosity (LOH), which can indicate the presence of a homozygous mutation or uniparental disomy. Since these abnormalities can be associated with ID and/or MCA, their detection is of particular interest for patients whose phenotype remains unexplained. However, the diagnostic yield obtained with these platforms is not confirmed, and the real clinical value of LOH detection has not been established. Methods We selected 21 children affected with ID, with or without congenital malformations, for whom standard genetic analyses failed to provide a diagnosis. We performed high-resolution SNP array analysis with four platforms (Affymetrix Genome-Wide Human SNP Array 6.0, Affymetrix Cytogenetics Whole-Genome 2.7 M array, Illumina HumanOmni1-Quad BeadChip, and Illumina HumanCytoSNP-12 DNA Analysis BeadChip) on whole-blood samples obtained from children and their parents to detect pathogenic CNVs and LOHs, and compared the results with those obtained on a moderate resolution array-based comparative genomic hybridization platform (NimbleGen CGX-12 Cytogenetics Array), already used in the clinical setting. Results We identified a total of four pathogenic CNVs in three patients, and all arrays successfully detected them. With the SNP arrays, we also identified a LOH containing a gene associated with a recessive disorder consistent with the patient’s phenotype (i.e., an informative LOH) in four children (including two siblings). A homozygous mutation within the informative LOH was found in three of these patients. Therefore, we were able to increase the diagnostic yield from 14.3% to 28.6% as a result of the information provided by LOHs. Conclusions This study shows the clinical usefulness of SNP arrays in children with ID, since they successfully detect pathogenic CNVs, identify informative LOHs that can lead to the diagnosis of a recessive disorder. It also highlights some challenges associated with the use of SNP arrays in a clinical laboratory. Electronic supplementary material The online version of this article (doi:10.1186/s12920-014-0070-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guylaine D'Amours
- Service de génétique médicale, CHU Sainte-Justine, Montréal, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada.
| | - Mathieu Langlois
- Centre de pharmacogénomique, Institut de cardiologie de Montréal, Montréal, QC, Canada.
| | | | - Raouf Fetni
- Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada. .,Département de pathologie, CHU Sainte-Justine, Montréal, QC, Canada. .,Pathologie et biologie cellulaire, Université de Montréal, Montréal, QC, Canada.
| | - Sonia Nizard
- Service de génétique médicale, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada. .,Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| | - Myriam Srour
- Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada.
| | - Frédérique Tihy
- Service de génétique médicale, CHU Sainte-Justine, Montréal, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada. .,Pathologie et biologie cellulaire, Université de Montréal, Montréal, QC, Canada.
| | - Michael S Phillips
- Centre de pharmacogénomique, Institut de cardiologie de Montréal, Montréal, QC, Canada.
| | - Jacques L Michaud
- Service de génétique médicale, CHU Sainte-Justine, Montréal, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada. .,Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| | - Emmanuelle Lemyre
- Service de génétique médicale, CHU Sainte-Justine, Montréal, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada. .,Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Dufke A, Riess O. Präkonzeptionelle und vorgeburtliche klinische Genomsequenzierung. MED GENET-BERLIN 2014. [DOI: 10.1007/s11825-014-0023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Zusammenfassung
Hintergrund
Innerhalb kürzester Zeit haben Hochdurchsatzanalysen von Exomen und Genomen Eingang in die postnatale klinisch-diagnostische Anwendung gefunden. Bei hoher technischer Analysezuverlässigkeit, sinkenden Kosten und kurzen Analysezeiten ist das Potenzial, welches sich für diese Anwendung auch für das präkonzeptionelle Screening und die Pränataldiagnostik ergeben könnte, offensichtlich. Insbesondere diese beiden Anwendungsgebiete erfordern eine sehr hohe Sicherheit in der klinischen Befundinterpretation. Eine weitere Herausforderung gegenüber der postnatalen diagnostischen Anwendung wird die Beurteilung des klinischen Manifestationsspektrums präklinisch oder pränatal erhobener genomischer Sequenzdaten sein.
Material und Methoden
Abgeleitet von den Erfahrungen mit NGS-Analysen im postnatalen diagnostischen Ansatz erfolgen eine Übertragung und ein Ausblick auf die Anwendung der Methode im Kontext der Familienplanung.
Diskussion und Ergebnisse
Der Beitrag beschränkt sich auf die technische und klinische Anwendbarkeit. Diskutiert werden der Einsatz von NGS als umfassende Screeningmethode von Populationen, Niedrigrisikokollektiven und die Beschränkung auf ausgewählte, dem individuellen Risikoprofil angepasste Analysen. Letztere könnten kurz- bis mittelfristig Eingang in die präkonzeptionelle und auch vorgeburtliche Diagnostik finden.
Collapse
Affiliation(s)
- Andreas Dufke
- Aff1 grid.411544.1 0000000101968249 Institut für Medizinische Genetik und Angewandte Genomik Universitätsklinikum Tübingen Calwerstr. 7 72076 Tübingen Deutschland
| | - Olaf Riess
- Aff1 grid.411544.1 0000000101968249 Institut für Medizinische Genetik und Angewandte Genomik Universitätsklinikum Tübingen Calwerstr. 7 72076 Tübingen Deutschland
| |
Collapse
|
7
|
Appelqvist F, Yhr M, Erlandson A, Martinsson T, Enerbäck C. Deletion of the MGMT gene in familial melanoma. Genes Chromosomes Cancer 2014; 53:703-11. [PMID: 24801985 DOI: 10.1002/gcc.22180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/08/2014] [Indexed: 11/09/2022] Open
Abstract
The DNA repair gene MGMT (O-6-methylguanine-DNA methyltransferase) is important for maintaining normal cell physiology and genomic stability. Alterations in MGMT play a critical role in the development of several types of cancer, including glioblastoma, lung cancer, and colorectal cancer. The purpose of this study was to explore the function of genetic alterations in MGMT and their connection with familial melanoma (FM). Using multiplex ligation-dependent probe amplification, we identified a deletion that included the MGMT gene in one of 64 families with a melanoma predisposition living in western Sweden. The mutation segregated with the disease as a heterozygous deletion in blood-derived DNA, but a homozygous deletion including the promoter region and exon 1 was seen in tumor tissue based on Affymetrix 500K and 6.0 arrays. By sequence analysis of the MGMT gene in the other 63 families with FM from western Sweden, we identified four common polymorphisms, nonfunctional, as predominantly described in previous studies. We conclude that inherited alterations in the MGMT gene might be a rare cause of FM, and we suggest that MGMT contributes to melanoma predisposition.
Collapse
Affiliation(s)
- Frida Appelqvist
- Department of Dermatology, Institute of Clinical Sciences, Sahlgrenska University Hospital, SE-413 45, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
8
|
Watson CM, Crinnion LA, Tzika A, Mills A, Coates A, Pendlebury M, Hewitt S, Harrison SM, Daly C, Roberts P, Carr IM, Sheridan EG, Bonthron DT. Diagnostic whole genome sequencing and split-read mapping for nucleotide resolution breakpoint identification in CNTNAP2 deficiency syndrome. Am J Med Genet A 2014; 164A:2649-55. [PMID: 25045150 DOI: 10.1002/ajmg.a.36679] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/16/2014] [Indexed: 11/08/2022]
Abstract
Whole genome sequencing (WGS) has the potential to report on all types of genetic abnormality, thus converging diagnostic testing on a single methodology. Although WGS at sufficient depth for robust detection of point mutations is still some way from being affordable for diagnostic purposes, low-coverage WGS is already an excellent method for detecting copy number variants ("CNVseq"). We report on a family in which individuals presented with a presumed autosomal recessive syndrome of severe intellectual disability and epilepsy. Array comparative genomic hybridization (CGH) analysis had revealed a homozygous deletion apparently lying within intron 3 of CNTNAP2. Since this was too small for confirmation by FISH, CNVseq was used, refining the extent of this mutation to approximately 76.8 kb, encompassing CNTNAP2 exon 3 (an out-of-frame deletion). To characterize the precise breakpoints and provide a rapid molecular diagnostic test, we resequenced the CNVseq library at medium coverage and performed split read mapping. This yielded information for a multiplex polymerase chain reaction (PCR) assay, used for cascade screening and/or prenatal diagnosis in this family. This example demonstrates a rapid, low-cost approach to converting molecular cytogenetic findings into robust PCR-based tests.
Collapse
Affiliation(s)
- Christopher M Watson
- Yorkshire Regional Genetics Service, St. James's University Hospital, Leeds, United Kingdom; School of Medicine, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bug S, Solfrank B, Schmitz F, Pricelius J, Stecher M, Craig A, Botcherby M, Nevinny-Stickel-Hinzpeter C. Diagnostic utility of novel combined arrays for genome-wide simultaneous detection of aneuploidy and uniparental isodisomy in losses of pregnancy. Mol Cytogenet 2014; 7:43. [PMID: 25013457 PMCID: PMC4090657 DOI: 10.1186/1755-8166-7-43] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This proof-of-principle study demonstrates the usefulness and robustness of a novel array based method for the elucidation of genetic causes underlying early pregnancy loss. A combined microarray utilizing comparative genomic hybridization and single nucleotide polymorphism detection (CGH + SNP) was used for parallel genome-wide identification of copy number and heterozygosity status of 70 products of conception. Results of samples with previously determined aneuploidies were juxtaposed to those of a second cohort appearing normal after routine genetic diagnostics. RESULTS All chromosomal imbalances were confirmed, in one sample of the aneuploid panel additional monosomy X was discovered. Genome-wide uniparental disomy causing a complete hydatidiform mole was identified in another sample. No specimen featured microaberrations of obvious clinical relevance. Among cases with presumable euploidy, one microdeletion and a single region of homozygosity were assigned unclear clinical significance. CONCLUSIONS The results prove the utility of combined imbalance and homozygosity mapping for routine workup of these challenging specimens. Moreover parallel screening at submicroscopic resolution facilitates the detection of novel genetic alterations underlying spontaneous abortion.
Collapse
Affiliation(s)
- Stefanie Bug
- synlab Medizinisches Versorgungszentrum Humane Genetik München, Lindwurmstraße 23, D-80337 Munich, Germany
| | - Beate Solfrank
- synlab Medizinisches Versorgungszentrum Humane Genetik München, Lindwurmstraße 23, D-80337 Munich, Germany
| | - Felizitas Schmitz
- synlab Medizinisches Versorgungszentrum Humane Genetik München, Lindwurmstraße 23, D-80337 Munich, Germany
| | - Jana Pricelius
- synlab Medizinisches Versorgungszentrum Humane Genetik München, Lindwurmstraße 23, D-80337 Munich, Germany
| | - Mona Stecher
- synlab Medizinisches Versorgungszentrum Humane Genetik München, Lindwurmstraße 23, D-80337 Munich, Germany
| | - Andrew Craig
- BlueGnome Ltd, An Illumina Company, Cambridge, UK
| | | | | |
Collapse
|
10
|
Chong WWS, Lo IFM, Lam STS, Wang CC, Luk HM, Leung TY, Choy KW. Performance of chromosomal microarray for patients with intellectual disabilities/developmental delay, autism, and multiple congenital anomalies in a Chinese cohort. Mol Cytogenet 2014; 7:34. [PMID: 24926319 PMCID: PMC4055236 DOI: 10.1186/1755-8166-7-34] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/06/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Chromosomal microarray (CMA) is currently the first-tier genetic test for patients with idiopathic neuropsychiatric diseases in many countries. Its improved diagnostic yield over karyotyping and other molecular testing facilitates the identification of the underlying causes of neuropsychiatric diseases. In this study, we applied oligonucleotide array comparative genomic hybridization as the molecular genetic test in a Chinese cohort of children with DD/ID, autism or MCA. RESULTS CMA identified 7 clinically significant microduplications and 17 microdeletions in 19.0% (20/105) patients, with size of aberrant regions ranging from 11 kb to 10.7 Mb. Fourteen of the pathogenic copy number variant (CNV) detected corresponded to well known microdeletion or microduplication syndromes. Four overlapped with critical regions of recently identified genomic syndromes. We also identified a rare de novo 2.3 Mb deletion at 8p21.3-21.2 as a pathogenic submicroscopic CNV. We also identified two novel CNVs, one at Xq28 and the other at 12q21.31-q21.33, in two patients (1.9%) with unclear clinical significance. Overall, the detection rate of CMA is comparable to figures previously reported for accurately detect submicroscopic chromosomal imbalances and pathogenic CNVs except mosaicism, balanced translocation and inversion. CONCLUSIONS This study provided further evidence of an increased diagnostic yield of CMA and supported its use as a first line diagnostic tool for Chinese individuals with DD/ID, ASD, and MCA.
Collapse
Affiliation(s)
- Wilson Wai Sing Chong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China ; Prenatal genetic diagnosis laboratory, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, Hong Kong SAR, China
| | - Ivan Fai Man Lo
- Clinical Genetic Service, Department of Health, Hong Kong SAR, China
| | | | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China ; Prenatal genetic diagnosis laboratory, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, Hong Kong SAR, China
| | - Ho Ming Luk
- Clinical Genetic Service, Department of Health, Hong Kong SAR, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China ; Prenatal genetic diagnosis laboratory, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China ; Prenatal genetic diagnosis laboratory, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, Hong Kong SAR, China ; CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China ; Joint Centre with Utrecht University-Genetic Core, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Schroeder C, Ekici AB, Moog U, Grasshoff U, Mau-Holzmann U, Sturm M, Vosseler V, Poths S, Rappold G, Riess A, Riess O, Dufke A, Bonin M. Genome-wide UPD screening in patients with intellectual disability. Eur J Hum Genet 2014; 22:1233-5. [PMID: 24801762 DOI: 10.1038/ejhg.2014.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/28/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022] Open
Abstract
Uniparental disomy (UPD) describes the inheritance of a pair of chromosomes from only one parent. It may occur as isodisomy, heterodisomy or a combination of both and may involve only chromosome segments. UPD can affect each chromosome. The incidence is estimated to be around 1:3500 in live births. Some parts of chromosomes are subject to 'parent-of-origin imprinting' and the phenotypic effect in UPD syndromes is mainly due to functional imbalance of imprinted genes. Isodisomy can result in mutation homozygosity in autosomal-recessive inherited diseases. UPD causes several well-defined imprinting syndromes associated with intellectual disability (ID). Although knowledge on frequency and size of UPDs in patients with unexplained ID remains largely unknown as no efficient genome-wide screening technique was available for detection of both isodisomic and heterodisomic UPDs. SNP microarrays have been proven to be capable to detect UPDs through Mendelian errors. The correct subclassification of UPD requires child-parent trio experiments. To further elucidate the role of UPD in patients with unexplained ID, we analyzed a total of 322 child-parent trios. We were not able to detect UPDs (isodisomies and heterodisomies) within our cohort spanning whole chromosomes or chromosomal segments. We conclude that UPD is rare in patients with unexplained ID.
Collapse
Affiliation(s)
- Christopher Schroeder
- 1] Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany [2] Rare Disease Center, University of Tübingen, Tübingen, Germany
| | - Arif Bülent Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ute Grasshoff
- 1] Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany [2] Rare Disease Center, University of Tübingen, Tübingen, Germany
| | - Ulrike Mau-Holzmann
- 1] Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany [2] Rare Disease Center, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- 1] Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany [2] Rare Disease Center, University of Tübingen, Tübingen, Germany
| | - Vanessa Vosseler
- 1] Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany [2] Rare Disease Center, University of Tübingen, Tübingen, Germany
| | - Sven Poths
- 1] Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany [2] Rare Disease Center, University of Tübingen, Tübingen, Germany
| | - Gudrun Rappold
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika Riess
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Olaf Riess
- 1] Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany [2] Rare Disease Center, University of Tübingen, Tübingen, Germany
| | - Andreas Dufke
- 1] Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany [2] Rare Disease Center, University of Tübingen, Tübingen, Germany
| | - Michael Bonin
- 1] Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany [2] Rare Disease Center, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Vandeweyer G, Kooy RF. Detection and interpretation of genomic structural variation in health and disease. Expert Rev Mol Diagn 2014; 13:61-82. [DOI: 10.1586/erm.12.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Connor JA, Hinton RB, Miller EM, Sund KL, Ruschman JG, Ware SM. Genetic Testing Practices in Infants with Congenital Heart Disease. CONGENIT HEART DIS 2013; 9:158-67. [DOI: 10.1111/chd.12112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica A. Connor
- Division of Human Genetics; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio USA
| | - Robert B. Hinton
- Heart Institute; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio USA
| | - Erin M. Miller
- Heart Institute; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio USA
| | - Kristen L. Sund
- Division of Human Genetics; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio USA
| | - Jennifer G. Ruschman
- Division of Human Genetics; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio USA
| | - Stephanie M. Ware
- Division of Human Genetics; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio USA
- Heart Institute; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio USA
| |
Collapse
|
14
|
McDonnell SK, Riska SM, Klee EW, Thorland EC, Kay NE, Thibodeau SN, Parker AS, Eckel-Passow JE. Experimental designs for array comparative genomic hybridization technology. Cytogenet Genome Res 2013; 139:250-7. [PMID: 23548696 DOI: 10.1159/000348815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2012] [Indexed: 01/31/2023] Open
Abstract
Array comparative genomic hybridization (aCGH) technology is commonly used to estimate genome-wide copy-number variation and to evaluate associations between copy number and disease. Although aCGH technology is well developed and there are numerous algorithms available for estimating copy number, little attention has been paid to the important issue of the statistical experimental design. Herein, we review classical statistical experimental designs and discuss their relevance to aCGH technology as well as their importance for downstream statistical analyses. Furthermore, we provide experimental design guidance for various study objectives.
Collapse
Affiliation(s)
- S K McDonnell
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minn 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ku CS, Polychronakos C, Tan EK, Naidoo N, Pawitan Y, Roukos DH, Mort M, Cooper DN. A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Mol Psychiatry 2013; 18:141-53. [PMID: 22641181 DOI: 10.1038/mp.2012.58] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study of de novo point mutations (new germline mutations arising from the gametes of the parents) remained largely static until the arrival of next-generation sequencing technologies, which made both whole-exome sequencing (WES) and whole-genome sequencing (WGS) feasible in practical terms. Single nucleotide polymorphism genotyping arrays have been used to identify de novo copy-number variants in a number of common neurodevelopmental conditions such as schizophrenia and autism. By contrast, as point mutations and microlesions occurring de novo are refractory to analysis by these microarray-based methods, little was known about either their frequency or impact upon neurodevelopmental disease, until the advent of WES. De novo point mutations have recently been implicated in schizophrenia, autism and mental retardation through the WES of case-parent trios. Taken together, these findings strengthen the hypothesis that the occurrence of de novo mutations could account for the high prevalence of such diseases that are associated with a marked reduction in fecundity. De novo point mutations are also known to be responsible for many sporadic cases of rare dominant mendelian disorders such as Kabuki syndrome, Schinzel-Giedion syndrome and Bohring-Opitz syndrome. These disorders share a common feature in that they are all characterized by intellectual disability. In summary, recent WES studies of neurodevelopmental and neuropsychiatric disease have provided new insights into the role of de novo mutations in these disorders. Our knowledge of de novo mutations is likely to be further accelerated by WGS. However, the collection of case-parent trios will be a prerequisite for such studies. This review aims to discuss recent developments in the study of de novo mutations made possible by technological advances in DNA sequencing.
Collapse
Affiliation(s)
- C S Ku
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
MacLeod AK, Davies G, Payton A, Tenesa A, Harris SE, Liewald D, Ke X, Luciano M, Lopez LM, Gow AJ, Corley J, Redmond P, McNeill G, Pickles A, Ollier W, Horan M, Starr JM, Pendleton N, Thomson PA, Porteous DJ, Deary IJ. Genetic copy number variation and general cognitive ability. PLoS One 2012; 7:e37385. [PMID: 23300510 PMCID: PMC3530597 DOI: 10.1371/journal.pone.0037385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 04/18/2012] [Indexed: 01/06/2023] Open
Abstract
Differences in genomic structure between individuals are ubiquitous features of human genetic variation. Specific copy number variants (CNVs) have been associated with susceptibility to numerous complex psychiatric disorders, including attention-deficit-hyperactivity disorder, autism-spectrum disorders and schizophrenia. These disorders often display co-morbidity with low intelligence. Rare chromosomal deletions and duplications are associated with these disorders, so it has been suggested that these deletions or duplications may be associated with differences in intelligence. Here we investigate associations between large (≥500kb), rare (<1% population frequency) CNVs and both fluid and crystallized intelligence in community-dwelling older people. We observe no significant associations between intelligence and total CNV load. Examining individual CNV regions previously implicated in neuropsychological disorders, we find suggestive evidence that CNV regions around SHANK3 are associated with fluid intelligence as derived from a battery of cognitive tests. This is the first study to examine the effects of rare CNVs as called by multiple algorithms on cognition in a large non-clinical sample, and finds no effects of such variants on general cognitive ability.
Collapse
Affiliation(s)
- Andrew K. MacLeod
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Medical Genetics Section, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Antony Payton
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, United Kingdom
| | - Albert Tenesa
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Medical Genetics Section, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Xiayi Ke
- Medical Research Council Centre of Epidemiology for Child Health, University College London Institute of Child Health, London, United Kingdom
| | - Michelle Luciano
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Lorna M. Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan J. Gow
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Redmond
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Geraldine McNeill
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew Pickles
- School of Epidemiology and Health Science, Department of Medicine, University of Manchester, Manchester, United Kingdom
| | - William Ollier
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, United Kingdom
| | - Michael Horan
- School of Community-Based Medicine, Neurodegeneration Research Group, University of Manchester, Manchester, United Kingdom
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Geriatric Medicine Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Pendleton
- School of Community-Based Medicine, Neurodegeneration Research Group, University of Manchester, Manchester, United Kingdom
| | - Pippa A. Thomson
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Medical Genetics Section, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Porteous
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Medical Genetics Section, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Schanze I, Schanze D, Bacino CA, Douzgou S, Kerr B, Zenker M. Haploinsufficiency of SOX5, a member of the SOX (SRY-related HMG-box) family of transcription factors is a cause of intellectual disability. Eur J Med Genet 2012; 56:108-13. [PMID: 23220431 DOI: 10.1016/j.ejmg.2012.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/15/2012] [Indexed: 01/13/2023]
Abstract
Intellectual disability (ID) is a clinically and genetically heterogeneous condition; the cause is unknown in most non-specific and sporadic cases. To establish an etiological basis in those patients represents a difficult challenge. Over the last years it has become apparent that chromosomal rearrangements below the detection level of conventional karyotyping contribute significantly to the cause of ID. We present three patients with non-specific intellectual disability who all have overlapping microdeletions in the chromosomal region 12p12.1. De novo occurrence of the deletion could be proven in the two cases from which parental samples were available. All three identified deletions have different breakpoints and range in size from 120 kb to 4.9 Mb. The smallest deletion helps to narrow down the critical region to a genomic segment (chr12:23,924,800-24,041,698, build 37/hg19) encompassing only one gene, SOX5. SOX5 is a member of the SOX (SRY-related HMG-box) family of transcription factors shown to play roles in chondroblast function, oligodendrocyte differentiation and migration, as well as ensuring proper development of specific neuronal cell types. Because of these biological functions, mutations in SOX5 are predicted to cause complex disease syndromes, as it is the case for other SOX genes, but such mutations have not yet been identified. Our findings indicate that haploinsufficiency of SOX5 is a cause of intellectual disability without any striking physical anomalies.
Collapse
Affiliation(s)
- Ina Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Willemsen MH, de Leeuw N, de Brouwer AP, Pfundt R, Hehir-Kwa JY, Yntema HG, Nillesen WM, de Vries BB, van Bokhoven H, Kleefstra T. Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies. Eur J Med Genet 2012; 55:586-98. [DOI: 10.1016/j.ejmg.2012.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 05/05/2012] [Accepted: 05/05/2012] [Indexed: 01/01/2023]
|
19
|
Siggberg L, Ala-Mello S, Sirpa AM, Linnankivi T, Tarja L, Avela K, Kristiina A, Scheinin I, Ilari S, Kristiansson K, Kati K, Lahermo P, Päivi L, Hietala M, Marja H, Metsähonkala L, Liisa M, Kuusinen E, Esa K, Laaksonen M, Maarit L, Saarela J, Janna S, Khuutila S, Sakari K. High-resolution SNP array analysis of patients with developmental disorder and normal array CGH results. BMC MEDICAL GENETICS 2012; 13:84. [PMID: 22984989 PMCID: PMC3523000 DOI: 10.1186/1471-2350-13-84] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 09/05/2012] [Indexed: 12/02/2022]
Abstract
Background Diagnostic analysis of patients with developmental disorders has improved over recent years largely due to the use of microarray technology. Array methods that facilitate copy number analysis have enabled the diagnosis of up to 20% more patients with previously normal karyotyping results. A substantial number of patients remain undiagnosed, however. Methods and Results Using the Genome-Wide Human SNP array 6.0, we analyzed 35 patients with a developmental disorder of unknown cause and normal array comparative genomic hybridization (array CGH) results, in order to characterize previously undefined genomic aberrations. We detected no seemingly pathogenic copy number aberrations. Most of the vast amount of data produced by the array was polymorphic and non-informative. Filtering of this data, based on copy number variant (CNV) population frequencies as well as phenotypically relevant genes, enabled pinpointing regions of allelic homozygosity that included candidate genes correlating to the phenotypic features in four patients, but results could not be confirmed. Conclusions In this study, the use of an ultra high-resolution SNP array did not contribute to further diagnose patients with developmental disorders of unknown cause. The statistical power of these results is limited by the small size of the patient cohort, and interpretation of these negative results can only be applied to the patients studied here. We present the results of our study and the recurrence of clustered allelic homozygosity present in this material, as detected by the SNP 6.0 array.
Collapse
Affiliation(s)
- Linda Siggberg
- Department of Pathology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Roscioli T, Kamsteeg EJ, Buysse K, Maystadt I, van Reeuwijk J, van den Elzen C, van Beusekom E, Riemersma M, Pfundt R, Vissers LE, Schraders M, Altunoglu U, Buckley MF, Brunner HG, Grisart B, Zhou H, Veltman JA, Gilissen C, Mancini GM, Delrée P, Willemsen MA, Ramadža DP, Chitayat D, Bennett C, Sheridan E, Peeters EA, Tan-Sindhunata GM, de Die-Smulders CE, Devriendt K, Kayserili H, El-Hashash OAEF, Stemple DL, Lefeber DJ, Lin YY, van Bokhoven H. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat Genet 2012; 44:581-5. [PMID: 22522421 PMCID: PMC3378661 DOI: 10.1038/ng.2253] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/21/2012] [Indexed: 11/30/2022]
Abstract
Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant a-dystroglycan glycosylation. Here we report mutations in the ISPD gene (encoding isoprenoid synthase domain containing) as the second most common cause of WWS. Bacterial IspD is a nucleotidyl transferase belonging to a large glycosyltransferase family, but the role of the orthologous protein in chordates is obscure to date, as this phylum does not have the corresponding non-mevalonate isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated a-dystroglycan. These results implicate ISPD in a-dystroglycan glycosylation in maintaining sarcolemma integrity in vertebrates.
Collapse
Affiliation(s)
- Tony Roscioli
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- School of Women’s and Children’s Health, Sydney Children’s hospital and the University of New South Wales, Sydney, Australia
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Karen Buysse
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Jeroen van Reeuwijk
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Christa van den Elzen
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ellen van Beusekom
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Moniek Riemersma
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lisenka E.L.M. Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Margit Schraders
- Department of Otorhinolaryngology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Michael F. Buckley
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- School of Women’s and Children’s Health, Sydney Children’s hospital and the University of New South Wales, Sydney, Australia
| | - Han G. Brunner
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bernard Grisart
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joris A. Veltman
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Paul Delrée
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Michèl A. Willemsen
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - David Chitayat
- Mount Sinai Hospital, The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
- The Hospital for Sick Children, Division of Clinical and Metabolic Genetics, Toronto, Canada
| | - Christopher Bennett
- Department of Clinical Genetics, St James’s University Hospital, Leeds, United Kingdom
| | - Eamonn Sheridan
- Department of Clinical Genetics, St James’s University Hospital, Leeds, United Kingdom
| | | | | | | | - Koenraad Devriendt
- Center for Human Genetics, Clinical Genetics, Catholic University Leuven, Leuven, Belgium
| | - Hülya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | - Derek L. Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Dirk J. Lefeber
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Yung-Yao Lin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Hans van Bokhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Verloes A, Héron D, Billette de Villemeur T, Afenjar A, Baumann C, Bahi-Buisson N, Charles P, Faudet A, Jacquette A, Mignot C, Moutard ML, Passemard S, Rio M, Robel L, Rougeot C, Ville D, Burglen L, des Portes V. Stratégie d’exploration d’une déficience intellectuelle inexpliquée. Arch Pediatr 2012; 19:194-207. [DOI: 10.1016/j.arcped.2011.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 02/07/2023]
|
22
|
O'Callaghan ME, Maclennan AH, Gibson CS, McMichael GL, Haan EA, Broadbent JL, Goldwater PN, Painter JN, Montgomery GW, Dekker GA. Fetal and maternal candidate single nucleotide polymorphism associations with cerebral palsy: a case-control study. Pediatrics 2012; 129:e414-23. [PMID: 22291124 DOI: 10.1542/peds.2011-0739] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Previous studies have suggested associations between certain genetic variants and susceptibility to cerebral palsy (CP). This study was designed to assess established and novel maternal and child genetic and epidemiologic risk factors for CP along with their interactions. METHODS DNA from 587 case and 1154 control mother-child pairs was analyzed. A panel of 35 candidate single nucleotide polymorphisms (SNPs) were examined and included SNPs in genes associated with (1) thrombophilia, (2) inflammation, and (3) risk factors for CP (eg, preterm birth). Comparisons were specified a priori and made by using a χ(2) test. RESULTS There were 40 fetal and 28 maternal associations with CP when analyzed by CP subtype, gestational age, genotypes of apolipoprotein E, and haplotypes of mannose-binding-lectin. After Bonferroni correction for multiple testing, no fetal or maternal candidate SNP was associated with CP or its subtypes. Only fetal carriage of prothrombin gene mutation remained marginally associated with hemiplegia in term infants born to mothers with a reported infection during pregnancy. Odds ratio directions of fetal SNP associations were compared with previously reported studies and confirmed no trend toward association. CONCLUSIONS Except for the prothrombin gene mutation, individual maternal and fetal SNPs in our candidate panel were not found to be associated with CP outcome. Past reported SNP associations with CP were not confirmed, possibly reflecting type I error from small numbers and multiple testing in the original reports.
Collapse
Affiliation(s)
- Michael E O'Callaghan
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, The Robinson Institute, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
During the past decade, widespread use of microarray-based technologies, including oligonucleotide array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) genotyping arrays have dramatically changed our perspective on genome-wide structural variation. Submicroscopic genomic rearrangements or copy-number variation (CNV) have proven to be an important factor responsible for primate evolution, phenotypic differences between individuals and populations, and susceptibility to many diseases. The number of diseases caused by chromosomal microdeletions and microduplications, also referred to as genomic disorders, has been increasing at a rapid pace. Microdeletions and microduplications are found in patients with a wide variety of phenotypes, including Mendelian diseases as well as common complex traits, such as developmental delay/intellectual disability, autism, schizophrenia, obesity, and epilepsy. This chapter provides an overview of common microdeletion and microduplication syndromes and their clinical phenotypes, and discusses the genomic structures and molecular mechanisms of formation. In addition, an explanation for how these genomic rearrangements convey abnormal phenotypes is provided.
Collapse
Affiliation(s)
- Lisenka E L M Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
24
|
Abstract
The genetic causes of mental retardation are highly heterogeneous and for a large proportion unknown. Mutations as well as large chromosomal abnormalities are known to contribute to mental retardation, and recently more subtle structural genomic variations have been shown to contribute significantly to this common and complex disorder. Genomic microarrays with increasing resolution levels have revealed the presence of rare de novo CNVs in approximately 15% of all mentally retarded patients. Microarray-based CNV screening is rapidly replacing conventional karyotyping in the diagnostic workflow, resulting in an increased diagnostic yield as well as biological insight into this disorder. In this chapter, an overview is given of the detection and interpretation of copy number variations in mental retardation, with a focus on diagnostic applications. In addition, a detailed protocol is provided for the diagnostic interpretation of copy-number variations in mental retardation.
Collapse
Affiliation(s)
- Rolph Pfundt
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
25
|
Disruption of teashirt zinc finger homeobox 1 is associated with congenital aural atresia in humans. Am J Hum Genet 2011; 89:813-9. [PMID: 22152683 DOI: 10.1016/j.ajhg.2011.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/01/2011] [Accepted: 11/09/2011] [Indexed: 11/22/2022] Open
Abstract
Congenital aural atresia (CAA) can occur as an isolated congenital malformation or in the context of a number of monogenic and chromosomal syndromes. CAA is frequently seen in individuals with an 18q deletion, which is characterized by intellectual disability, reduced white-matter myelination, foot deformities, and distinctive facial features. Previous work has indicated that a critical region for CAA is located in 18q22.3. We studied four individuals (from two families) with CAA and other features suggestive of an 18q deletion, and we detected overlapping microdeletions in 18q22.3 in both families. The minimal region of deletion overlap (72.9-73.4 Mb) contained only one known gene, TSHZ1, which was recently shown to be important for murine middle-ear development. Sequence analysis of the coding exons in TSHZ1 in a cohort of 11 individuals with isolated, nonsyndromic bilateral CAA revealed two mutations, c.723G>A (p.Trp241X) and c.946_947delinsA (p.Pro316ThrfsX16), and both mutations predicted a loss of function. Together, these results demonstrate that hemizygosity of TSHZ1 leads to congenital aural atresia as a result of haploinsufficiency.
Collapse
|
26
|
|
27
|
Hochstenbach R, Buizer-Voskamp JE, Vorstman JAS, Ophoff RA. Genome arrays for the detection of copy number variations in idiopathic mental retardation, idiopathic generalized epilepsy and neuropsychiatric disorders: lessons for diagnostic workflow and research. Cytogenet Genome Res 2011; 135:174-202. [PMID: 22056632 DOI: 10.1159/000332928] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
We review the contributions and limitations of genome-wide array-based identification of copy number variants (CNVs) in the clinical diagnostic evaluation of patients with mental retardation (MR) and other brain-related disorders. In unselected MR referrals a causative genomic gain or loss is detected in 14-18% of cases. Usually, such CNVs arise de novo, are not found in healthy subjects, and have a major impact on the phenotype by altering the dosage of multiple genes. This high diagnostic yield justifies array-based segmental aneuploidy screening as the initial genetic test in these patients. This also pertains to patients with autism (expected yield about 5-10% in nonsyndromic and 10-20% in syndromic patients) and schizophrenia (at least 5% yield). CNV studies in idiopathic generalized epilepsy, attention-deficit hyperactivity disorder, major depressive disorder and Tourette syndrome indicate that patients have, on average, a larger CNV burden as compared to controls. Collectively, the CNV studies suggest that a wide spectrum of disease-susceptibility variants exists, most of which are rare (<0.1%) and of variable and usually small effect. Notwithstanding, a rare CNV can have a major impact on the phenotype. Exome sequencing in MR and autism patients revealed de novo mutations in protein coding genes in 60 and 20% of cases, respectively. Therefore, it is likely that arrays will be supplanted by next-generation sequencing methods as the initial and perhaps ultimate diagnostic tool in patients with brain-related disorders, revealing both CNVs and mutations in a single test.
Collapse
Affiliation(s)
- R Hochstenbach
- Division of Biomedical Genetics, Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Simons A, Stevens-Kroef M, Idrissi-Zaynoun NE, van Gessel S, Weghuis DO, van den Berg E, Waanders E, Hoogerbrugge P, Kuiper R, van Kessel AG. Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia. Genes Chromosomes Cancer 2011; 50:969-81. [DOI: 10.1002/gcc.20919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/14/2011] [Indexed: 01/12/2023] Open
|
29
|
Dukes-Rimsky L, Guzauskas GF, Holden KR, Griggs R, Ladd S, Montoya MDC, DuPont BR, Srivastava AK. Microdeletion at 4q21.3 is associated with intellectual disability, dysmorphic facies, hypotonia, and short stature. Am J Med Genet A 2011; 155A:2146-53. [PMID: 21834054 DOI: 10.1002/ajmg.a.34137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 04/22/2011] [Indexed: 11/05/2022]
Abstract
Chromosomal imbalances are a major cause of intellectual disability (ID) and multiple congenital anomalies. We have clinically and molecularly characterized two patients with chromosome translocations and ID. Using whole genome array CGH analysis, we identified a microdeletion involving 4q21.3, unrelated to the translocations in both patients. We confirmed the 4q21.3 microdeletions using fluorescence in situ hybridization and quantitative genomic PCR. The corresponding deletion boundaries in the patients were further mapped and compared to previously reported 4q21 deletions and the associated clinical features. We determined a common region of deletion overlap that appears unique to ID, short stature, hypotonia, and dysmorphic facial features.
Collapse
Affiliation(s)
- Lynn Dukes-Rimsky
- J C Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Balanced into array: genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a meta-analysis. Eur J Hum Genet 2011; 19:1152-60. [PMID: 21712853 DOI: 10.1038/ejhg.2011.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
High-resolution genome-wide array analysis enables detailed screening for cryptic and submicroscopic imbalances of microscopically balanced de novo rearrangements in patients with developmental delay and/or congenital abnormalities. In this report, we added the results of genome-wide array analysis in 54 patients to data on 117 patients from seven other studies. A chromosome imbalance was detected in 37% of all patients with two-breakpoint rearrangements. In 49% of these patients, the imbalances were located in one or both breakpoint regions. Imbalances were more frequently (90%) found in complex rearrangements, with the majority (81%) having deletions in the breakpoint regions. The size of our own cohort enabled us to relate the presence of an imbalance to the clinical features of the patients by using a scoring system, the De Vries criteria, that indicates the complexity of the phenotype. The median De Vries score was significantly higher (P=0.002) in those patients with an imbalance (5, range 1-9) than in patients with a normal array result (3, range 0-7). This study provides accurate percentages of cryptic imbalances that can be detected by genome-wide array analysis in simple and complex de novo microscopically balanced chromosome rearrangements and confirms that these imbalances are more likely to occur in patients with a complex phenotype.
Collapse
|
31
|
Joober R. The 1000 Genomes Project: deep genomic sequencing waiting for deep psychiatric phenotyping. J Psychiatry Neurosci 2011; 36:147-9. [PMID: 21496442 PMCID: PMC3080510 DOI: 10.1503/jpn.110026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Ridha Joober
- Correspondence to: Dr. R. Joober, Douglas Hospital Research Centre, Frank B. Common Pavilion, 6875 blvd. LaSalle, Verdun QC H4H 1R3;
| |
Collapse
|
32
|
Smits P, Saada A, Wortmann SB, Heister AJ, Brink M, Pfundt R, Miller C, Haas D, Hantschmann R, Rodenburg RJT, Smeitink JAM, van den Heuvel LP. Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. Eur J Hum Genet 2011; 19:394-9. [PMID: 21189481 PMCID: PMC3060326 DOI: 10.1038/ejhg.2010.214] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 10/06/2010] [Accepted: 11/10/2010] [Indexed: 11/08/2022] Open
Abstract
The oxidative phosphorylation (OXPHOS) system is under control of both the mitochondrial and the nuclear genomes; 13 subunits are synthesized by the mitochondrial translation machinery. We report a patient with Cornelia de Lange-like dysmorphic features, brain abnormalities and hypertrophic cardiomyopathy, and studied the genetic defect responsible for the combined OXPHOS complex I, III and IV deficiency observed in fibroblasts. The combination of deficiencies suggested a primary defect associated with the synthesis of mitochondrially encoded OXPHOS subunits. Analysis of mitochondrial protein synthesis revealed a marked impairment in mitochondrial translation. Homozygosity mapping and sequence analysis of candidate genes revealed a homozygous mutation in MRPS22, a gene encoding a mitochondrial ribosomal small subunit protein. The mutation predicts a Leu215Pro substitution at an evolutionary conserved site. Mutations in genes implicated in Cornelia de Lange syndrome or copy number variations were not found. Transfection of patient fibroblasts, in which MRPS22 was undetectable, with the wild-type MRPS22 cDNA restored the amount and activity of OXPHOS complex IV, as well as the 12S rRNA transcript level to normal values. These findings demonstrate the pathogenicity of the MRPS22 mutation and stress the significance of mutations in nuclear genes, including genes that have no counterparts in lower species like bacteria and yeast, for mitochondrial translation defects.
Collapse
Affiliation(s)
- Paulien Smits
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Ann Saada
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Saskia B Wortmann
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Angelien J Heister
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Maaike Brink
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Chaya Miller
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dorothea Haas
- University Hospital for Pediatric and Adolescent Medicine, Division of Inborn Metabolic Diseases, Heidelberg, Germany
| | - Ralph Hantschmann
- Kinderneurologisches Zentrum SPZ, Allgemeinen Krankenhaus Hagen, Hagen, Germany
| | - Richard J T Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Lambert P van den Heuvel
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Academic Hospital Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Papenhausen P, Schwartz S, Risheg H, Keitges E, Gadi I, Burnside RD, Jaswaney V, Pappas J, Pasion R, Friedman K, Tepperberg J. UPD detection using homozygosity profiling with a SNP genotyping microarray. Am J Med Genet A 2011; 155A:757-68. [PMID: 21594998 DOI: 10.1002/ajmg.a.33939] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 01/06/2011] [Indexed: 12/21/2022]
Abstract
Single nucleotide polymorphism (SNP) based chromosome microarrays provide both a high-density whole genome analysis of copy number and genotype. In the past 21 months we have analyzed over 13,000 samples primarily referred for developmental delay using the Affymetrix SNP/CN 6.0 version array platform. In addition to copy number, we have focused on the relative distribution of allele homozygosity (HZ) throughout the genome to confirm a strong association of uniparental disomy (UPD) with regions of isoallelism found in most confirmed cases of UPD. We sought to determine whether a long contiguous stretch of HZ (LCSH) greater than a threshold value found only in a single chromosome would correlate with UPD of that chromosome. Nine confirmed UPD cases were retrospectively analyzed with the array in the study, each showing the anticipated LCSH with the smallest 13.5 Mb in length. This length is well above the average longest run of HZ in a set of control patients and was then set as the prospective threshold for reporting possible UPD correlation. Ninety-two cases qualified at that threshold, 46 of those had molecular UPD testing and 29 were positive. Including retrospective cases, 16 showed complete HZ across the chromosome, consistent with total isoUPD. The average size LCSH in the 19 cases that were not completely HZ was 46.3 Mb with a range of 13.5-127.8 Mb. Three patients showed only segmental UPD. Both the size and location of the LCSH are relevant to correlation with UPD. Further studies will continue to delineate an optimal threshold for LCSH/UPD correlation.
Collapse
Affiliation(s)
- Peter Papenhausen
- Laboratory Corporation of Cytogenetics Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Grasshoff U, Bonin M, Goehring I, Ekici A, Dufke A, Cremer K, Wagner N, Rossier E, Jauch A, Walter M, Bauer C, Bauer P, Horber K, Beck-Woedl S, Wieczorek D. De novo MECP2 duplication in two females with random X-inactivation and moderate mental retardation. Eur J Hum Genet 2011; 19:507-12. [PMID: 21326285 DOI: 10.1038/ejhg.2010.226] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Xq28 duplications including MECP2 are a well-known cause of severe mental retardation in males with seizures, muscular hypotonia, progressive spasticity, poor speech and recurrent infections that often lead to early death. Female carriers usually show a normal intellectual performance due to skewed X-inactivation (XCI). We report on two female patients with a de novo MECP2 duplication associated with moderate mental retardation. In both patients, the de novo duplication occurred on the paternal allele, and both patients show a random XCI, which can be assumed as the triggering factor for the phenotype. Furthermore, we describe the phenotype that might be restricted to unspecific mild-to -moderate mental retardation with neurological features in early adulthood.
Collapse
Affiliation(s)
- Ute Grasshoff
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vandeweyer G, Reyniers E, Wuyts W, Rooms L, Kooy RF. CNV-WebStore: online CNV analysis, storage and interpretation. BMC Bioinformatics 2011; 12:4. [PMID: 21208430 PMCID: PMC3024943 DOI: 10.1186/1471-2105-12-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 01/05/2011] [Indexed: 02/02/2023] Open
Abstract
Background Microarray technology allows the analysis of genomic aberrations at an ever increasing resolution, making functional interpretation of these vast amounts of data the main bottleneck in routine implementation of high resolution array platforms, and emphasising the need for a centralised and easy to use CNV data management and interpretation system. Results We present CNV-WebStore, an online platform to streamline the processing and downstream interpretation of microarray data in a clinical context, tailored towards but not limited to the Illumina BeadArray platform. Provided analysis tools include CNV analsyis, parent of origin and uniparental disomy detection. Interpretation tools include data visualisation, gene prioritisation, automated PubMed searching, linking data to several genome browsers and annotation of CNVs based on several public databases. Finally a module is provided for uniform reporting of results. Conclusion CNV-WebStore is able to present copy number data in an intuitive way to both lab technicians and clinicians, making it a useful tool in daily clinical practice.
Collapse
Affiliation(s)
- Geert Vandeweyer
- Department of Medical Genetics, University Hospital Antwerp, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
36
|
de Leeuw N, Hehir-Kwa JY, Simons A, Geurts van Kessel A, Smeets DF, Faas BHW, Pfundt R. SNP Array Analysis in Constitutional and Cancer Genome Diagnostics – Copy Number Variants, Genotyping and Quality Control. Cytogenet Genome Res 2011; 135:212-21. [PMID: 21934286 DOI: 10.1159/000331273] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- N de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 2010; 1380:42-77. [PMID: 21129364 DOI: 10.1016/j.brainres.2010.11.078] [Citation(s) in RCA: 586] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that autism spectrum disorders (ASDs) can arise from rare highly penetrant mutations and genomic imbalances. The rare nature of these variants, and the often differing orbits of clinical and research geneticists, can make it difficult to fully appreciate the extent to which we have made progress in understanding the genetic etiology of autism. In fact, there is a persistent view in the autism research community that there are only a modest number of autism loci known. We carried out an exhaustive review of the clinical genetics and research genetics literature in an attempt to collate all genes and recurrent genomic imbalances that have been implicated in the etiology of ASD. We provide data on 103 disease genes and 44 genomic loci reported in subjects with ASD or autistic behavior. These genes and loci have all been causally implicated in intellectual disability, indicating that these two neurodevelopmental disorders share common genetic bases. A genetic overlap between ASD and epilepsy is also apparent in many cases. Taken together, these findings clearly show that autism is not a single clinical entity but a behavioral manifestation of tens or perhaps hundreds of genetic and genomic disorders. Increased recognition of the etiological heterogeneity of ASD will greatly expand the number of target genes for neurobiological investigations and thereby provide additional avenues for the development of pathway-based pharmacotherapy. Finally, the data provide strong support for high-resolution DNA microarrays as well as whole-exome and whole-genome sequencing as critical approaches for identifying the genetic causes of ASDs.
Collapse
|
38
|
A parallel SNP array study of genomic aberrations associated with mental retardation in patients and general population in Estonia. Eur J Med Genet 2010; 54:136-43. [PMID: 21112420 DOI: 10.1016/j.ejmg.2010.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/04/2010] [Indexed: 11/21/2022]
Abstract
The increasing use of whole-genome array screening has revealed the important role of DNA copy-number variations in the pathogenesis of neurodevelopmental disorders and several recurrent genomic disorders have been defined during recent years. However, some variants considered to be pathogenic have also been observed in phenotypically normal individuals. This underlines the importance of further characterization of genomic variants with potentially variable expressivity in both patient and general population cohorts to clarify their phenotypic consequence. In this study whole-genome SNP arrays were used to investigate genomic rearrangements in 77 Estonian families with idiopathic mental retardation. In addition to this family-based approach, phenotype and genotype data from a cohort of 1000 individuals in the general population were used for accurate interpretation of aberrations found in mental retardation patients. Relevant structural aberrations were detected in 18 of the families analyzed (23%). Fifteen of those were in genomic regions where clinical significance has previously been established. In 3 families, 4 novel aberrations associated with intellectual disability were detected in chromosome regions 2p25.1-p24.3, 3p12.1-p11.2, 7p21.2-p21.1 and Xq28. Carriers of imbalances in 15q13.3, 16p11.2 and Xp22.31 were identified among reference individuals, affirming the variable phenotypic consequence of rare variants in some genomic regions considered as pathogenic.
Collapse
|
39
|
Hayashi S, Imoto I, Aizu Y, Okamoto N, Mizuno S, Kurosawa K, Okamoto N, Honda S, Araki S, Mizutani S, Numabe H, Saitoh S, Kosho T, Fukushima Y, Mitsubuchi H, Endo F, Chinen Y, Kosaki R, Okuyama T, Ohki H, Yoshihashi H, Ono M, Takada F, Ono H, Yagi M, Matsumoto H, Makita Y, Hata A, Inazawa J. Clinical application of array-based comparative genomic hybridization by two-stage screening for 536 patients with mental retardation and multiple congenital anomalies. J Hum Genet 2010; 56:110-24. [DOI: 10.1038/jhg.2010.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Kaufman L, Ayub M, Vincent JB. The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord 2010; 2:182-209. [PMID: 21124998 PMCID: PMC2974911 DOI: 10.1007/s11689-010-9055-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/25/2010] [Indexed: 11/06/2022] Open
Abstract
Intellectual disability (ID), also referred to as mental retardation (MR), is frequently the result of genetic mutation. Where ID is present together with additional clinical symptoms or physical anomalies, there is often sufficient information available for the diagnosing physician to identify a known syndrome, which may then educe the identification of the causative defect. However, where co-morbid features are absent, narrowing down a specific gene can only be done by ‘brute force’ using the latest molecular genetic techniques. Here we attempt to provide a systematic review of genetic causes of cases of ID where no other symptoms or co-morbid features are present, or non-syndromic ID. We attempt to summarize commonalities between the genes and the molecular pathways of their encoded proteins. Since ID is a common feature of autism, and conversely autistic features are frequently present in individuals with ID, we also look at possible overlaps in genetic etiology with non-syndromic ID.
Collapse
|
41
|
Verkerk AJMH, Schot R, van Waterschoot L, Douben H, Poddighe PJ, Lequin MH, de Vries LS, Terhal P, Hahnemann JMD, de Coo IFM, de Wit MCY, Wafelman LS, Garavelli L, Dobyns WB, Van der Spek PJ, de Klein A, Mancini GMS. Unbalanced der(5)t(5;20) translocation associated with megalencephaly, perisylvian polymicrogyria, polydactyly and hydrocephalus. Am J Med Genet A 2010; 152A:1488-97. [PMID: 20503325 DOI: 10.1002/ajmg.a.33408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The combination of megalencephaly, perisylvian polymicrogyria, polydactyly and hydrocephalus (MPPH) is a rare syndrome of unknown cause. We observed two first cousins affected by an MPPH-like phenotype with a submicroscopic chromosome 5q35 deletion as a result of an unbalanced der(5)t(5;20)(q35.2;q13.3) translocation, including the NSD1 Sotos syndrome locus. We describe the phenotype and the deletion breakpoints of the two MPPH-like patients and compare these with five unrelated MPPH and Sotos patients harboring a 5q35 microdeletion. Mapping of the breakpoints in the two cousins was performed by MLPA, FISH, high density SNP-arrays and Q-PCR for the 5q35 deletion and 20q13 duplication. The 5q35 deletion area of the two cousins almost completely overlaps with earlier described patients with an atypical Sotos microdeletion, except for the DRD1 gene. The five unrelated MPPH patients neither showed submicroscopic chromosomal aberrations nor DRD1 mutations. We reviewed the brain MRI of 10 Sotos patients and did not detect polymicrogyria in any of them. In our two cousins, the MPPH-like phenotype is probably caused by the contribution of genes on both chromosome 5q35 and 20q13. Some patients with MPPH may harbor a submicroscopic chromosomal aberration and therefore high-resolution array analysis should be part of the diagnostic workup.
Collapse
|
42
|
Hehir-Kwa JY, Wieskamp N, Webber C, Pfundt R, Brunner HG, Gilissen C, de Vries BBA, Ponting CP, Veltman JA. Accurate distinction of pathogenic from benign CNVs in mental retardation. PLoS Comput Biol 2010; 6:e1000752. [PMID: 20421931 PMCID: PMC2858682 DOI: 10.1371/journal.pcbi.1000752] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/19/2010] [Indexed: 11/18/2022] Open
Abstract
Copy number variants (CNVs) have recently been recognized as a common form of genomic variation in humans. Hundreds of CNVs can be detected in any individual genome using genomic microarrays or whole genome sequencing technology, but their phenotypic consequences are still poorly understood. Rare CNVs have been reported as a frequent cause of neurological disorders such as mental retardation (MR), schizophrenia and autism, prompting widespread implementation of CNV screening in diagnostics. In previous studies we have shown that, in contrast to benign CNVs, MR-associated CNVs are significantly enriched in genes whose mouse orthologues, when disrupted, result in a nervous system phenotype. In this study we developed and validated a novel computational method for differentiating between benign and MR-associated CNVs using structural and functional genomic features to annotate each CNV. In total 13 genomic features were included in the final version of a Naïve Bayesian Tree classifier, with LINE density and mouse knock-out phenotypes contributing most to the classifier's accuracy. After demonstrating that our method (called GECCO) perfectly classifies CNVs causing known MR-associated syndromes, we show that it achieves high accuracy (94%) and negative predictive value (99%) on a blinded test set of more than 1,200 CNVs from a large cohort of individuals with MR. These results indicate that this classification method will be of value for objectively prioritizing CNVs in clinical research and diagnostics. Rare copy number variants (CNVs) are a frequent cause of neurological disorders such as mental retardation (MR). However CNVs are also commonly identified in healthy individuals. It is therefore crucial for both diagnostic and research applications to be able to distinguish between disease-causing CNVs and “benign” CNVs occurring as normal genomic variation. Separating these two types can take advantage of significant differences in their genomic contents. For example, benign CNVs are enriched in repetitive sequences. By contrast, CNVs associated with MR tend to have high densities of functional elements, including genes whose mouse orthologues, when knocked-out, lead to specific nervous system abnormalities. We have developed a novel objective approach that is effective in distinguishing MR-associated CNVs from benign CNVs based on the presence of 13 genomic attributes. This method is able to achieve high accuracies in a cohort of CNVs known to cause MR and in a cohort of individuals with unexplained MR. The development of this technique promises to substantially improve the methodology for determining the pathogenicity of CNVs.
Collapse
Affiliation(s)
- Jayne Y. Hehir-Kwa
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Nienke Wieskamp
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Caleb Webber
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| | - Rolph Pfundt
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Han G. Brunner
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Christian Gilissen
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Bert B. A. de Vries
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Chris P. Ponting
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| | - Joris A. Veltman
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
43
|
Kuiper RP, Ligtenberg MJL, Hoogerbrugge N, Geurts van Kessel A. Germline copy number variation and cancer risk. Curr Opin Genet Dev 2010; 20:282-9. [PMID: 20381334 DOI: 10.1016/j.gde.2010.03.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/05/2010] [Accepted: 03/15/2010] [Indexed: 01/13/2023]
Abstract
The human genome is subject to substantial structural variation, including copy number variation (CNV). Constitutional CNVs may either represent benign polymorphic variants or be associated with disease, including cancer predisposition. Rare nonpolymorphic CNVs, that is DNA lesions that result in gene deletions, inversions, and/or fusions, may be responsible for a high cancer risk. In addition, we previously elucidated a mechanism by which CNV-based transcriptional read-through mediates inactivation of a neighboring gene through in cis hypermethylation of its promoter. This novel mechanism explains the etiology of a recurrent and strongly inherited tissue-restricted epimutation. Recently, we obtained supporting evidence for such a CNV-associated scenario, suggesting that it may be more prevalent than previously thought. We expect that copy number profiling in unexplained high-risk families will lead to the discovery of additional cancer-predisposing genes and/or mechanisms.
Collapse
Affiliation(s)
- Roland P Kuiper
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Hebebrand J, Scherag A, Schimmelmann BG, Hinney A. Child and adolescent psychiatric genetics. Eur Child Adolesc Psychiatry 2010; 19:259-79. [PMID: 20140632 DOI: 10.1007/s00787-010-0091-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/08/2010] [Indexed: 01/22/2023]
Abstract
The current status of child and adolescent psychiatric genetics appears promising in light of the initiation of genome-wide association studies (GWAS) for diverse polygenic disorders and the molecular elucidation of monogenic Rett syndrome, for which recent functional studies provide hope for pharmacological treatment strategies. Within the last 50 years, tremendous progress has been made in linking genetic variation to behavioral phenotypes and psychiatric disorders. We summarize the major findings of the Human Genome Project and dwell on largely unsuccessful candidate gene and linkage studies. GWAS for the first time offer the possibility to detect single nucleotide polymorphisms and copy number variants without a priori hypotheses as to their molecular etiology. At the same time it is becoming increasingly clear that very large sample sizes are required in order to enable genome wide significant findings, thus necessitating further large-scaled ascertainment schemes for the successful elucidation of the molecular genetics of childhood and adolescent psychiatric disorders. We conclude by reflecting on different scenarios for future research into the molecular basis of early onset psychiatric disorders. This review represents the introductory article of this special issue of the European Child and Adolescent Psychiatry.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, LVR-Klinikum Essen, University of Duisburg-Essen, Virchowstrasse 174, Essen, Germany.
| | | | | | | |
Collapse
|
45
|
Buysse K, Delle Chiaie B, Van Coster R, Loeys B, De Paepe A, Mortier G, Speleman F, Menten B. Challenges for CNV interpretation in clinical molecular karyotyping: Lessons learned from a 1001 sample experience. Eur J Med Genet 2009; 52:398-403. [DOI: 10.1016/j.ejmg.2009.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/09/2009] [Indexed: 12/11/2022]
|
46
|
Chao YL, Chien WH, Liao HM, Fang JS, Chen CH. Copy Number Variations and Psychiatric Disorders. Tzu Chi Med J 2009. [DOI: 10.1016/s1016-3190(09)60039-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|