1
|
Myszkowska J, Klotz K, Leandro P, Kruger WD, Froese DS, Baumgartner MR, Spiekerkoetter U, Hannibal L. Real-time detection of enzymatically formed hydrogen sulfide by pathogenic variants of cystathionine beta-synthase using hemoglobin I of Lucina pectinata as a biosensor. Free Radic Biol Med 2024; 223:281-295. [PMID: 39067625 DOI: 10.1016/j.freeradbiomed.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Classical homocystinuria is a rare disease caused by mutations in cystathionine β-synthase (CBS) gene (OMIM 613381). CBS catalyzes the first step of the transsulfuration pathway that converts homocysteine (Hcy) into cystathionine (Cysta) via a number of co-substrates and mechanisms. Formation of Cysta by condensation of Hcy and cysteine (Cys) produces a molar equivalent of hydrogen sulfide (H2S). H2S plays important roles in cognitive and vascular functions. Clinically, patients with CBS deficiency present with vascular, ocular, neurological and skeletal impairments. Biochemically, CBS deficiency manifests with elevated Hcy and reduced concentration of Cysta in plasma and urine. A number of pathogenic variants of human CBS have been characterized by their residual enzymatic activity, but very few studies have examined H2S production by pathogenic CBS variants, possibly due to technical hurdles in H2S detection and quantification. We describe a method for the real-time, continuous quantification of H2S formed by wild-type and pathogenic variants of human recombinant CBS, as well as by fibroblast extracts from healthy controls and patients diagnosed with CBS deficiency. The method takes advantage of the specificity and high affinity of hemoglobin I of the clam Lucina pectinata toward H2S and is based on UV-visible spectrophotometry. Comparison with the gold-standard, end-point H2S quantification method employing monobromobimane, as well as correlations with CBS enzymatic activity determined by LC-MS/MS showed agreement and correlation, and permitted the direct, time-resolved determination of H2S production rates by purified human recombinant CBS and by CBS present in fibroblast extracts. Rates of H2S production were highest for wild-type CBS, and lower for pathogenic variants. This method enables the examination of structural determinants of CBS that are important for H2S production and its possible relevance to the clinical outcome of patients.
Collapse
Affiliation(s)
- Joanna Myszkowska
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Katharina Klotz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Paula Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Warren D Kruger
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Integrated genomic sequencing in myeloid blast crisis chronic myeloid leukemia (MBC-CML), identified potentially important findings in the context of leukemogenesis model. Sci Rep 2022; 12:12816. [PMID: 35896598 PMCID: PMC9329277 DOI: 10.1038/s41598-022-17232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/21/2022] [Indexed: 01/17/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a model of leukemogenesis in which the exact molecular mechanisms underlying blast crisis still remained unexplored. The current study identified multiple common and rare important findings in myeloid blast crisis CML (MBC-CML) using integrated genomic sequencing, covering all classes of genes implicated in the leukemogenesis model. Integrated genomic sequencing via Whole Exome Sequencing (WES), Chromosome-seq and RNA-sequencing were conducted on the peripheral blood samples of three CML patients in the myeloid blast crisis. An in-house filtering pipeline was applied to assess important variants in cancer-related genes. Standard variant interpretation guidelines were used for the interpretation of potentially important findings (PIFs) and potentially actionable findings (PAFs). Single nucleotide variation (SNV) and small InDel analysis by WES detected sixteen PIFs affecting all five known classes of leukemogenic genes in myeloid malignancies including signaling pathway components (ABL1, PIK3CB, PTPN11), transcription factors (GATA2, PHF6, IKZF1, WT1), epigenetic regulators (ASXL1), tumor suppressor and DNA repair genes (BRCA2, ATM, CHEK2) and components of spliceosome (PRPF8). These variants affect genes involved in leukemia stem cell proliferation, self-renewal, and differentiation. Both patients No.1 and No.2 had actionable known missense variants on ABL1 (p.Y272H, p.F359V) and frameshift variants on ASXL1 (p.A627Gfs*8, p.G646Wfs*12). The GATA2-L359S in patient No.1, PTPN11-G503V and IKZF1-R208Q variants in the patient No.3 were also PAFs. RNA-sequencing was used to confirm all of the identified variants. In the patient No. 3, chromosome sequencing revealed multiple pathogenic deletions in the short and long arms of chromosome 7, affecting at least three critical leukemogenic genes (IKZF1, EZH2, and CUX1). The large deletion discovered on the short arm of chromosome 17 in patient No. 2 resulted in the deletion of TP53 gene as well. Integrated genomic sequencing combined with RNA-sequencing can successfully discover and confirm a wide range of variants, from SNVs to CNVs. This strategy may be an effective method for identifying actionable findings and understanding the pathophysiological mechanisms underlying MBC-CML, as well as providing further insights into the genetic basis of MBC-CML and its management in the future.
Collapse
|
3
|
Roos D, de Boer M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166166. [PMID: 33971252 DOI: 10.1016/j.bbadis.2021.166166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Genetic mutations that cause hereditary diseases usually affect the composition of the transcribed mRNA and its encoded protein, leading to instability of the mRNA and/or the protein. Sometimes, however, such mutations affect the synthesis, the processing or the translation of the mRNA, with similar disastrous effects. We here present an overview of mRNA synthesis, its posttranscriptional modification and its translation into protein. We then indicate which elements in these processes are known to be affected by pathogenic mutations, but we restrict our review to mutations in cis, in the DNA of the gene that encodes the affected protein. These mutations can be in enhancer or promoter regions of the gene, which act as binding sites for transcription factors involved in pre-mRNA synthesis. We also describe mutations in polyadenylation sequences and in splice site regions, exonic and intronic, involved in intron removal. Finally, we include mutations in the Kozak sequence in mRNA, which is involved in protein synthesis. We provide examples of genetic diseases caused by mutations in these DNA regions and refer to databases to help identify these regions. The over-all knowledge of mRNA synthesis, processing and translation is essential for improvement of the diagnosis of patients with genetic diseases.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Martin de Boer
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Koprulu M, Shabbir RMK, Zaman Q, Nalbant G, Malik S, Tolun A. CRADD and USP44 mutations in intellectual disability, mild lissencephaly, brain atrophy, developmental delay, strabismus, behavioural problems and skeletal anomalies. Eur J Med Genet 2021; 64:104181. [PMID: 33647455 DOI: 10.1016/j.ejmg.2021.104181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 11/29/2022]
Abstract
In a consanguineous Pakistani kinship afflicted with mild to moderate intellectual disability (ID), mild lissencephaly, brain atrophy and skeletal anomalies, we detected homozygous CRADD c.2T > G (p.Met1?) and USP44 c.873_886delinsT (p.Leu291Phefs*8), two good candidates 1.85-Mb apart that segregated with the disorder. Biallelic damaging variants in CRADD cause recessive mental retardation-34 (MRT34; MIM 614499) with mild to moderate ID, "thin" lissencephaly, and variable megalencephaly and seizures. For USP44, only a single ID family has been reported with a homozygous deleterious variant, which is the same as the variant we detected. In affected individuals we present, at ages 29-32 years, clinical findings are similar yet not fully concordant with phenotypes for either gene considering the skeletal findings, and ID is not as severe as would be expected for defects in two genes with additive effect. Some variable CRADD-related features such as language impairment and seizures are not observed in the presented family. The presence of the two variants in the family is a very rare example of familial linked homozygous variants, and whether the damaging USP44 variant contributed to the disease in the family we present is not clear. As for the skeletal findings, facial dysmorphism and digestive problems, we did not find a candidate variant. This study is an example of both clinical variation and difficulty in variant detection and evaluation. Our findings highlight that even an extensive exome sequence analysis can fail to fully uncover the complex molecular basis of a syndrome even if potentially causative variants are identified.
Collapse
Affiliation(s)
- Mine Koprulu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Rana Muhammad Kamran Shabbir
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qamar Zaman
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gökhan Nalbant
- Department of Bioinformatics and Biostatistics, Institute of Health Sciences, Mehmet Ali Aydinlar Acibadem University, Istanbul, Turkey
| | - Sajid Malik
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Aslıhan Tolun
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
5
|
Morlino S, Nardella G, Castellana S, Micale L, Copetti M, Fusco C, Castori M. Review of clinical and molecular variability in autosomal recessive cutis laxa 2A. Am J Med Genet A 2020; 185:955-965. [PMID: 33369135 DOI: 10.1002/ajmg.a.62047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/10/2020] [Accepted: 12/13/2020] [Indexed: 11/06/2022]
Abstract
ATP6V0A2-related cutis laxa, also known as autosomal recessive cutis laxa type 2A (ARCL2A), is a subtype of hereditary cutis laxa originally characterized by skin, skeletal, and neurological involvement, and a combined defect of N-glycosylation and O-glycosylation. The associated clinical spectrum subsequently expanded to a less severe phenotype dominated by cutaneous involvement. At the moment, ARCL2A was described in a few case reports and series only. An Italian adult woman ARCL2A with a phenotype restricted to skin and the two novel c.3G>C and c.1101dup ATP6V0A2 variants has been reported. A systematic literature review allowed us to identify 69 additional individuals from 64 families. Available data were scrutinized in order to describe the clinical and molecular variability of ARCL2A. About 78.3% of known variants were predicted null alleles, while 11 were missense and 2 affected noncanonical splice sites. Age at ascertainment appeared as the unique phenotypic discriminator with earlier age more commonly associated with facial dysmorphism (p .02), high/cleft palate (p .005), intellectual disability/global developmental delay (p .013), and seizures (p .024). No specific genotype-phenotype correlations were identified. This work confirmed the existence of an attenuated phenotype associated with ATP6V0A2 biallelic variants and offers an updated critique to the clinical and molecular variability of ARCL2A.
Collapse
Affiliation(s)
- Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Stefano Castellana
- Unit of Bioinformatics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| |
Collapse
|
6
|
Horie F, Endo K, Ito K. Artificial Protein-Responsive Riboswitches Upregulate Non-AUG Translation Initiation in Yeast. ACS Synth Biol 2020; 9:1623-1631. [PMID: 32531157 DOI: 10.1021/acssynbio.0c00206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Artificial control of gene expression is one of the core technologies for engineering biological systems. Riboswitches are cis-acting elements on mRNA that regulate gene expression in a ligand-dependent manner often seen in prokaryotes, but rarely in eukaryotes. Because of the poor variety of such elements available in eukaryotic systems, the number of artificially engineered eukaryotic riboswitches, especially of the upregulation type, is still limited. Here, we developed a design principle for upregulation-type riboswitches that utilize non-AUG initiation induced by ribosomal stalling in a ligand-dependent manner in Saccharomyces cerevisiae. Our design principle simply required the proper positioning of a near-cognate start codon relative to the RNA aptamer. Intriguingly, the CUG codon was the most preferable for non-AUG ON switches in terms of output level and switch performance. This work establishes novel choices for artificial genetic control in eukaryotes with versatile potential for industrial and biomedical applications as well as basic research.
Collapse
Affiliation(s)
- Fumihiro Horie
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Kei Endo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Koichi Ito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| |
Collapse
|
7
|
Kuper WFE, van Alfen C, van Eck L, de Man SA, Willemsen MH, van Gassen KLI, Losekoot M, van Hasselt PM. The c.1A > C start codon mutation in CLN3 is associated with a protracted disease course. JIMD Rep 2020; 52:23-27. [PMID: 32154056 PMCID: PMC7052694 DOI: 10.1002/jmd2.12097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background CLN3 disease is a disorder of lysosomal homeostasis predominantly affecting the retina and the brain. The severity of the underlying mutations in CLN3 particularly determines onset and course of neurological deterioration. Given the highly conserved start codon code among eukaryotic species, we expected a variant in the start codon of CLN3 to give rise to the classical, that is, severe, phenotype. Case series We present three patients with an identical CLN3 genotype (compound heterozygosity for the common 1 kb deletion in combination with a c.1A > C start codon variant) who all displayed a more attenuated phenotype than expected. While their retinal phenotype was similar to as expected in classical CLN3 disease, their neurological phenotype was delayed. Two patients had an early onset of cognitive impairment, but a particularly slow deterioration afterwards without any obvious motor impairment. The third patient also had a late onset of cognitive impairment. Conclusions Contrasting our initial expectations, patients with a start codon variant in CLN3 may display a protracted phenotype. Future work will have to reveal the exact mechanism behind the assumed residual protein synthesis, and determine whether this may be eligible to start codon targeted therapy.
Collapse
Affiliation(s)
- Willemijn F E Kuper
- Department of Metabolic Diseases, Wilhelmina Children's Hospital University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Claudia van Alfen
- Bartiméus Institute for the Visually Impaired Zeist, Doorn The Netherlands
| | - Linda van Eck
- Bartiméus Institute for the Visually Impaired Zeist, Doorn The Netherlands
| | - Stella A de Man
- Department of Pediatrics Amphia Hospital Breda The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics Radboud University Medical Center Nijmegen The Netherlands
| | - Koen L I van Gassen
- Department of Genetics University Medical Center Utrecht Utrecht The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics Leiden University Medical Center Leiden The Netherlands
| | - Peter M van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children's Hospital University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| |
Collapse
|
8
|
Kalkatawi M, Magana-Mora A, Jankovic B, Bajic VB. DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions. Bioinformatics 2019; 35:1125-1132. [PMID: 30184052 PMCID: PMC6449759 DOI: 10.1093/bioinformatics/bty752] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/15/2018] [Accepted: 08/31/2018] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION Recognition of different genomic signals and regions (GSRs) in DNA is crucial for understanding genome organization, gene regulation, and gene function, which in turn generate better genome and gene annotations. Although many methods have been developed to recognize GSRs, their pure computational identification remains challenging. Moreover, various GSRs usually require a specialized set of features for developing robust recognition models. Recently, deep-learning (DL) methods have been shown to generate more accurate prediction models than 'shallow' methods without the need to develop specialized features for the problems in question. Here, we explore the potential use of DL for the recognition of GSRs. RESULTS We developed DeepGSR, an optimized DL architecture for the prediction of different types of GSRs. The performance of the DeepGSR structure is evaluated on the recognition of polyadenylation signals (PAS) and translation initiation sites (TIS) of different organisms: human, mouse, bovine and fruit fly. The results show that DeepGSR outperformed the state-of-the-art methods, reducing the classification error rate of the PAS and TIS prediction in the human genome by up to 29% and 86%, respectively. Moreover, the cross-organisms and genome-wide analyses we performed, confirmed the robustness of DeepGSR and provided new insights into the conservation of examined GSRs across species. AVAILABILITY AND IMPLEMENTATION DeepGSR is implemented in Python using Keras API; it is available as open-source software and can be obtained at https://doi.org/10.5281/zenodo.1117159. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Manal Kalkatawi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arturo Magana-Mora
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Drilling Technology Team, EXPEC-ARC, Saudi Aramco, Dhahran, Saudi Arabia
| | - Boris Jankovic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Poloni S, Sperb-Ludwig F, Borsatto T, Weber Hoss G, Doriqui MJR, Embiruçu EK, Boa-Sorte N, Marques C, Kim CA, Fischinger Moura de Souza C, Rocha H, Ribeiro M, Steiner CE, Moreno CA, Bernardi P, Valadares E, Artigalas O, Carvalho G, Wanderley HYC, Kugele J, Walter M, Gallego-Villar L, Blom HJ, Schwartz IVD. CBS mutations are good predictors for B6-responsiveness: A study based on the analysis of 35 Brazilian Classical Homocystinuria patients. Mol Genet Genomic Med 2018; 6:160-170. [PMID: 29352562 PMCID: PMC5902399 DOI: 10.1002/mgg3.342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 11/10/2022] Open
Abstract
Background Classical homocystinuria (HCU) is a monogenic disease caused by the deficient activity of cystathionine β‐synthase (CβS). The objective of this study was to identify the CBS mutations in Brazilian patients with HCU. Methods gDNA samples were obtained for 35 patients (30 families) with biochemically confirmed diagnosis of HCU. All exons and exon‐intron boundaries of CBS gene were sequenced. Gene expression analysis by qRT‐PCR was performed in six patients. Novel missense point mutations were expressed in E. coli by site‐directed mutagenesis. Results Parental consanguinity was reported in 16 families, and pyridoxine responsiveness in five (15%) patients. Among individuals from the same family, all presented the same phenotype. Both pathogenic mutations were identified in 29/30 patients. Twenty‐one different mutations were detected in nine exons and three introns; being six common mutations. Most prevalent were p.Ile278Thr (18.2%), p.Trp323Ter (11.3%), p.Thr191Met (11.3%), and c.828+1G>A (11.3%). Eight novel mutations were found [c.2T>C, c.209+1delG, c.284T>C, c.329A>T, c.444delG, c.864_868delGAG c.989_991delAGG, and c.1223+5G>T]. Enzyme activity in E. coli‐expressed mutations was 1.5% for c.329A>T and 17.5% for c.284T>C. qRT‐PCR analysis revealed reduced gene expression in all evaluated genotypes: [c.209+1delG; c.572C>T]; [c.2T>C; c.828+1G>A]; [c.828+1G>A; c.1126G>A]; [c.833T>C; c.989_991delAGG]; [c.1058C>T; c.146C>T]; and [c.444delG; c.444delG]. The expected phenotype according to the genotype (pyridoxine responsiveness) matched in all cases. Conclusions Most patients studied were pyridoxine nonresponsive and presented early manifestations, suggesting severe phenotypes. Many private mutations were observed, but the four most prevalent mutations together accounted for over 50% of mutated alleles. A good genotype–phenotype relationship was observed within families and for the four most common mutations.
Collapse
Affiliation(s)
- Soraia Poloni
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Sperb-Ludwig
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Taciane Borsatto
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giovana Weber Hoss
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Emília K Embiruçu
- Complexo Hospitalar Professor Edgard Santos, Universidade do Estado da Bahia, Salvador, Brazil.,Universidade do Estado da Bahia, Salvador, Brazil
| | - Ney Boa-Sorte
- Complexo Hospitalar Professor Edgard Santos, Universidade do Estado da Bahia, Salvador, Brazil.,Universidade do Estado da Bahia, Salvador, Brazil
| | - Charles Marques
- Hospital das Clínicas de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Chong A Kim
- Universidade de São Paulo, São Paulo, Brazil
| | | | - Helio Rocha
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Osvaldo Artigalas
- Children's Hospital, Grupo Hospitalar Conceição, Porto Alegre, Brazil.,Genetics Unit, Hospital Materno-Infantil Presidente Vargas, Porto Alegre, Brazil
| | | | - Hector Y C Wanderley
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória, Vitória, Brazil
| | - Johanna Kugele
- Laboratory for Clinical Biochemistry and Metabolism, University Medical Center, Freiburg, Germany
| | - Melanie Walter
- Laboratory for Clinical Biochemistry and Metabolism, University Medical Center, Freiburg, Germany
| | - Lorena Gallego-Villar
- Laboratory for Clinical Biochemistry and Metabolism, University Medical Center, Freiburg, Germany
| | - Henk J Blom
- Laboratory for Clinical Biochemistry and Metabolism, University Medical Center, Freiburg, Germany
| | - Ida Vanessa D Schwartz
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
10
|
Abstract
MOTIVATION Translation initiation is a key step in the regulation of gene expression. In addition to the annotated translation initiation sites (TISs), the translation process may also start at multiple alternative TISs (including both AUG and non-AUG codons), which makes it challenging to predict TISs and study the underlying regulatory mechanisms. Meanwhile, the advent of several high-throughput sequencing techniques for profiling initiating ribosomes at single-nucleotide resolution, e.g. GTI-seq and QTI-seq, provides abundant data for systematically studying the general principles of translation initiation and the development of computational method for TIS identification. METHODS We have developed a deep learning-based framework, named TITER, for accurately predicting TISs on a genome-wide scale based on QTI-seq data. TITER extracts the sequence features of translation initiation from the surrounding sequence contexts of TISs using a hybrid neural network and further integrates the prior preference of TIS codon composition into a unified prediction framework. RESULTS Extensive tests demonstrated that TITER can greatly outperform the state-of-the-art prediction methods in identifying TISs. In addition, TITER was able to identify important sequence signatures for individual types of TIS codons, including a Kozak-sequence-like motif for AUG start codon. Furthermore, the TITER prediction score can be related to the strength of translation initiation in various biological scenarios, including the repressive effect of the upstream open reading frames on gene expression and the mutational effects influencing translation initiation efficiency. AVAILABILITY AND IMPLEMENTATION TITER is available as an open-source software and can be downloaded from https://github.com/zhangsaithu/titer . CONTACT lzhang20@mail.tsinghua.edu.cn or zengjy321@tsinghua.edu.cn. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sai Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Hailin Hu
- School of Medicine, Tsinghua University, Beijing, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
- MOE Key Lab of Bioinformatics and Bioinformatics Division, TNLIST/Department of Computer Science and Technology, Tsinghua University, Beijing, China
- Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Lei Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Gastric Activity and Gut Peptides in Patients With Functional Dyspepsia: Postprandial Distress Syndrome Versus Epigastric Pain Syndrome. J Clin Gastroenterol 2017; 51:136-144. [PMID: 27092429 DOI: 10.1097/mcg.0000000000000531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
GOALS The goals of the study were to investigate in both postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS) the gastric electrical activity and the gastric emptying (GE) time together with the circulating concentrations of motilin, somatostatin, corticotrophin-releasing factor, and neurotensin, and to establish whether the genetic variability in the neurotensin system genes differs between these 2 categories of functional dyspepsia (FD). BACKGROUND The current FD classification is based on symptoms and it has been proven not to be completely satisfying because of a high degree of symptom overlap between subgroups. STUDY Gastric electrical activity was evaluated by cutaneous electrogastrography: the GE time by C-octanoic acid breast test. Circulating concentrations of gut peptides were measured by a radioimmunoassay. NTS 479 A/G and NTSR1 rs6090453 SNPs were evaluated by PCR and endonuclease digestion. RESULTS Fifty-four FD patients (50 female/4 male) were studied. Using a symptom questionnaire, 42 patients were classified as PDS and 12 as EPS, although an overlap between the symptom profiles of the 2 subgroups was recorded. The electrogastrographic parameters (the postprandial instability coefficient of dominant frequency, the dominant power, and the power ratio) were significantly different between the subgroups, whereas the GE time did not differ significantly. In addition, EPS was characterized by a different gut peptide profile compared with PDS. Finally, neurotensin polymorphism was shown to be associated with neurotensin levels. This evidence deserves further studies in consideration of an analgesic role of neurotensin. CONCLUSIONS Analysis of gut peptide profiles could represent an interesting tool to enhance FD diagnosis and overcome limitations due to a distinction based solely on symptoms.
Collapse
|
12
|
Pedurupillay CRJ, Amundsen SS, Barøy T, Rasmussen M, Blomhoff A, Stadheim BF, Ørstavik K, Holmgren A, Iqbal T, Frengen E, Misceo D, Strømme P. Clinical and molecular characteristics in three families with biallelic mutations in IGHMBP2. Neuromuscul Disord 2016; 26:570-5. [PMID: 27450922 DOI: 10.1016/j.nmd.2016.06.457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 11/28/2022]
Abstract
Biallelic mutations in IGHMBP2 cause spinal muscular atrophy with respiratory distress type 1 (SMARD1) or Charcot-Marie-Tooth type 2S (CMT2S). We report three families variably affected by IGHMBP2 mutations. Patient 1, an 8-year-old boy with two homozygous variants: c.2T>C and c.861C>G, was wheelchair bound due to sensorimotor axonal neuropathy and chronic respiratory failure. Patient 2 and his younger sister, Patient 3, had compound heterozygous variants: c.983_987delAAGAA and c.1478C>T. However, clinical phenotypes differed markedly as the elder with sensorimotor axonal neuropathy had still unaffected respiratory function at 4.5 years, whereas the younger presented as infantile spinal muscular atrophy and died from relentless respiratory failure at 11 months. Patient 4, a 6-year-old girl homozygous for IGHMBP2 c.449+1G>T documented to result in two aberrant transcripts, was wheelchair dependent due to axonal polyneuropathy. The clinical presentation in Patients 1 and 3 were consistent with SMARD1, whereas Patients 2 and 4 were in agreement with CMT2S.
Collapse
Affiliation(s)
- Christeen Ramane J Pedurupillay
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Silja S Amundsen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tuva Barøy
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Magnhild Rasmussen
- Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway; Unit for Congenital and Hereditary Neuromuscular Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Anne Blomhoff
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Barbro Fossøy Stadheim
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tahir Iqbal
- Molecular Biology laboratory, Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Petter Strømme
- Faculty of Medicine, University of Oslo, Oslo, Norway; Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
13
|
Pisareva VP, Pisarev AV. DHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context. Nucleic Acids Res 2016; 44:4252-65. [PMID: 27067542 PMCID: PMC4872109 DOI: 10.1093/nar/gkw240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/29/2016] [Indexed: 11/23/2022] Open
Abstract
During eukaryotic translation initiation, the 43S preinitiation complex (43S PIC), consisting of the 40S ribosomal subunit, eukaryotic initiation factors (eIFs) and initiator tRNA scans mRNA to find an appropriate start codon. Key roles in the accuracy of initiation codon selection belong to eIF1 and eIF1A, whereas the mammalian-specific DHX29 helicase substantially contributes to ribosomal scanning of structured mRNAs. Here, we show that DHX29 stimulates the recognition of the AUG codon but not the near-cognate CUG codon regardless of its nucleotide context during ribosomal scanning. The stimulatory effect depends on the contact between DHX29 and eIF1A. The unique DHX29 N-terminal domain binds to the ribosomal site near the mRNA entrance, where it contacts the eIF1A OB domain. UV crosslinking assays revealed that DHX29 may rearrange eIF1A and eIF2α in key nucleotide context positions of ribosomal complexes. Interestingly, DHX29 impedes the 48S initiation complex formation in the absence of eIF1A perhaps due to forming a physical barrier that prevents the 43S PIC from loading onto mRNA. Mutational analysis allowed us to split the mRNA unwinding and codon selection activities of DHX29. Thus, DHX29 is another example of an initiation factor contributing to start codon selection.
Collapse
Affiliation(s)
- Vera P Pisareva
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Andrey V Pisarev
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| |
Collapse
|
14
|
Identification of mutations, genotype–phenotype correlation and prenatal diagnosis of maple syrup urine disease in Indian patients. Eur J Med Genet 2015; 58:471-8. [DOI: 10.1016/j.ejmg.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023]
|
15
|
Li Z, Schonberg R, Guidugli L, Johnson AK, Arnovitz S, Yang S, Scafidi J, Summar ML, Vezina G, Das S, Chapman K, del Gaudio D. A novel mutation in the promoter of RARS2 causes pontocerebellar hypoplasia in two siblings. J Hum Genet 2015; 60:363-9. [PMID: 25809939 DOI: 10.1038/jhg.2015.31] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 02/26/2015] [Indexed: 02/04/2023]
Abstract
Pontocerebellar hypoplasia (PCH) is characterized by hypoplasia and atrophy of the cerebellum, variable pontine atrophy, microcephaly, severe mental and motor impairments and seizures. Mutations in 11 genes have been reported in 8 out of 10 forms of PCH. Recessive mutations in the mitochondrial arginyl-transfer RNA synthetase gene (RARS2) have been recently associated with PCH type 6, which is characterized by early-onset encephalopathy with signs of oxidative phosphorylation defect. Here we describe the clinical presentation, neuroimaging findings and molecular characterizations of two siblings with a clinical diagnosis of PCH who displayed a novel variant (c.-2A>G) in the 5'-UTR of the RARS2 gene in the homozygous state. This variant was identified through next-generation sequencing testing of a panel of nine genes known to be involved in PCH. Gene expression and functional studies demonstrated that the c.-2A>G sequence change directly leads to a reduced RARS2 messenger RNA expression in the patients by decreasing RARS2 promoter activity, thus providing evidence that mutations in the RARS2 promoter are likely to represent a new causal mechanism of PCH6.
Collapse
Affiliation(s)
- Zejuan Li
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Rhonda Schonberg
- 1] Division of Genetics and Metabolism, Children's National Health System, Washington, DC, USA [2] The George Washington University Medical Center, Washington, DC, USA
| | - Lucia Guidugli
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - Stephen Arnovitz
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sandra Yang
- Division of Genetics and Metabolism, Children's National Health System, Washington, DC, USA
| | - Joseph Scafidi
- 1] The George Washington University Medical Center, Washington, DC, USA [2] Division of Neurology, Children's National Health System, Washington, DC, USA
| | - Marshall L Summar
- 1] Division of Genetics and Metabolism, Children's National Health System, Washington, DC, USA [2] The George Washington University Medical Center, Washington, DC, USA
| | - Gilbert Vezina
- 1] The George Washington University Medical Center, Washington, DC, USA [2] Department of Radiology, Children's National Health System, Washington, DC, USA
| | - Soma Das
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Kimberly Chapman
- 1] Division of Genetics and Metabolism, Children's National Health System, Washington, DC, USA [2] The George Washington University Medical Center, Washington, DC, USA
| | | |
Collapse
|
16
|
Noderer WL, Flockhart RJ, Bhaduri A, Diaz de Arce AJ, Zhang J, Khavari PA, Wang CL. Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol Syst Biol 2014; 10:748. [PMID: 25170020 PMCID: PMC4299517 DOI: 10.15252/msb.20145136] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An approach combining fluorescence-activated cell sorting and high-throughput DNA sequencing
(FACS-seq) was employed to determine the efficiency of start codon recognition for all possible
translation initiation sites (TIS) utilizing AUG start codons. Using FACS-seq, we measured
translation from a genetic reporter library representing all 65,536 possible TIS sequences spanning
the −6 to +5 positions. We found that the motif RYMRMVAUGGC enhanced start codon
recognition and translation efficiency. However, dinucleotide interactions, which cannot be conveyed
by a single motif, were also important for modeling TIS efficiency. Our dataset combined with
modeling allowed us to predict genome-wide translation initiation efficiency for all mRNA
transcripts. Additionally, we screened somatic TIS mutations associated with tumorigenesis to
identify candidate driver mutations consistent with known tumor expression patterns. Finally, we
implemented a quantitative leaky scanning model to predict alternative initiation sites that produce
truncated protein isoforms and compared predictions with ribosome footprint profiling data. The
comprehensive analysis of the TIS sequence space enables quantitative predictions of translation
initiation based on genome sequence.
Collapse
Affiliation(s)
- William L Noderer
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Ross J Flockhart
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aparna Bhaduri
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA The Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jiajing Zhang
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Clifford L Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Mohan RA, van Engelen K, Stefanovic S, Barnett P, Ilgun A, Baars MJ, Bouma BJ, Mulder BJ, Christoffels VM, Postma AV. A mutation in the Kozak sequence ofGATA4hampers translation in a family with atrial septal defects. Am J Med Genet A 2014; 164A:2732-8. [DOI: 10.1002/ajmg.a.36703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 07/02/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Rajiv A. Mohan
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
| | - Klaartje van Engelen
- Department of Clinical Genetics; Academic Medical Center; Amsterdam the Netherlands
- Department of Cardiology; Academic Medical Center; Amsterdam the Netherlands
| | - Sonia Stefanovic
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
| | - Phil Barnett
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
| | - Aho Ilgun
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
| | - Marieke J.H. Baars
- Department of Clinical Genetics; Academic Medical Center; Amsterdam the Netherlands
| | - Berto J. Bouma
- Department of Cardiology; Academic Medical Center; Amsterdam the Netherlands
| | - Barbara J.M. Mulder
- Department of Cardiology; Academic Medical Center; Amsterdam the Netherlands
| | - Vincent M. Christoffels
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
| | - Alex V. Postma
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
- Department of Clinical Genetics; Academic Medical Center; Amsterdam the Netherlands
| |
Collapse
|
18
|
Gutiérrez-Enríquez S, Bonache S, de Garibay GR, Osorio A, Santamariña M, Ramón y Cajal T, Esteban-Cardeñosa E, Tenés A, Yanowsky K, Barroso A, Montalban G, Blanco A, Cornet M, Gadea N, Infante M, Caldés T, Díaz-Rubio E, Balmaña J, Lasa A, Vega A, Benítez J, de la Hoya M, Diez O. About 1% of the breast and ovarian Spanish families testing negative for BRCA1 and BRCA2 are carriers of RAD51D pathogenic variants. Int J Cancer 2014; 134:2088-97. [PMID: 24130102 DOI: 10.1002/ijc.28540] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/16/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
RAD51D mutations have been recently identified in breast (BC) and ovarian cancer (OC) families. Although an etiological role in OC appears to be present, the association of RAD51D mutations and BC risk is more unclear. We aimed to determine the prevalence of germline RAD51D mutations in Spanish BC/OC families negative for BRCA1/BRCA2 mutations. We analyzed 842 index patients: 491 from BC/OC families, 171 BC families, 51 OC families and 129 patients without family history but with early-onset BC or OC or metachronous BC and OC. Mutation detection was performed with high-resolution melting, denaturing high-performance liquid chromatography or Sanger sequencing. Three mutations were found in four families with BC and OC cases (0.82%). Two were novel: c.1A>T (p.Met1?) and c.667+2_667+23del, leading to the exon 7 skipping and one previously described: c.674C>T (p.Arg232*). All were present in BC/OC families with only one OC. The c.667+2_667+23del cosegregated in the family with one early-onset BC and two bilateral BC cases. We also identified the c.629C>T (p.Ala210Val) variant, which was predicted in silico to be potentially pathogenic. About 1% of the BC and OC Spanish families negative for BRCA1/BRCA2 are carriers of RAD51D mutations. The presence of several BC mutation carriers, albeit in the context of familial OC, suggests an increased risk for BC, which should be taken into account in the follow-up and early detection measures. RAD51D testing should be considered in clinical setting for families with BC and OC, irrespective of the number of OC cases in the family.
Collapse
|
19
|
Hendrickx G, Boudin E, Fijałkowski I, Nielsen TL, Andersen M, Brixen K, Van Hul W. Variation in the Kozak sequence of WNT16 results in an increased translation and is associated with osteoporosis related parameters. Bone 2014; 59:57-65. [PMID: 24185276 DOI: 10.1016/j.bone.2013.10.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
The importance of WNT16 in the regulation of bone metabolism was recently confirmed by several genome-wide association studies and by a Wnt16 (Wnt16(-/-)) knockout mouse model. The aim of this study was thus to replicate and further elucidate the effect of common genetic variation in WNT16 on osteoporosis related parameters. Hereto, we performed a WNT16 candidate gene association study in a population of healthy Caucasian men from the Odense Androgen Study (OAS). Using HapMap, five tagSNPs and one multimarker test were selected for genotyping to cover most of the common genetic variation in and around WNT16 (MAF>5%). This study confirmed previously reported associations for rs3801387 and rs2707466 with bone mineral density (BMD) at several sites. Furthermore, we additionally demonstrated that rs2908007 is strongly associated with BMD at several sites in the young, elderly and complete OAS population. The observed effect of these three associated SNPs on the respective phenotypes is comparable and we can conclude that the presence of the minor allele results in an increase in BMD. Additionally, we performed re-sequencing of WNT16 on two cohorts selected from the young OAS cohort, based on their extreme BMD values. On this basis, rs55710688 was selected for an in vitro translation experiment since it is located in the Kozak sequence of WNT16a. We observed an increased translation efficiency and thus a higher amount of WNT16a for the Kozak sequence that was significantly more prevalent in the high BMD cohort. This observation is in line with the results of the Wnt16(-/-) mice. Finally, a WNT luciferase reporter assay was performed and showed no activation of the β-catenin dependent pathway by Wnt16. We did detect a dose-dependent inhibitory effect of Wnt16 on WNT1 activation of this canonical WNT pathway. Increased translation of WNT16 can thus lead to an increased inhibitory action of WNT16 on canonical WNT signaling. This statement is in contrast with the known activating effect of canonical WNT signaling on bone formation and suggests a stimulatory effect on bone metabolism via noncanonical WNT signaling. More research is required to not only confirm this hypothesis, but also to further elucidate the role of non-canonical WNT pathways in bone metabolism and the general mechanisms of interplay between the different WNT signaling pathways.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Department of Medical Genetics, University of Antwerp, Belgium.
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Belgium.
| | | | | | | | - Kim Brixen
- Department of Endocrinology, Odense University Hospital, Denmark.
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Belgium.
| |
Collapse
|
20
|
Spiegel R, Saada A, Halvardson J, Soiferman D, Shaag A, Edvardson S, Horovitz Y, Khayat M, Shalev SA, Feuk L, Elpeleg O. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. Eur J Hum Genet 2013; 22:902-6. [PMID: 24281368 DOI: 10.1038/ejhg.2013.269] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 10/04/2013] [Accepted: 10/25/2013] [Indexed: 11/09/2022] Open
Abstract
Isolated metabolic myopathies encompass a heterogeneous group of disorders, with mitochondrial myopathies being a subgroup, with depleted skeletal muscle energy production manifesting either by recurrent episodes of myoglobinuria or progressive muscle weakness. In this study, we investigated the genetic cause of a patient from a consanguineous family who presented with adolescent onset autosomal recessive mitochondrial myopathy. Analysis of enzyme activities of the five respiratory chain complexes in our patients' skeletal muscle showed severely impaired activities of iron sulfur (Fe-S)-dependent complexes I, II and III and mitochondrial aconitase. We employed exome sequencing combined with homozygosity mapping to identify a homozygous mutation, c.1A>T, in the FDX1L gene, which encodes the mitochondrial ferredoxin 2 (Fdx2) protein. The mutation disrupts the ATG initiation translation site resulting in severe reduction of Fdx2 content in the patient muscle and fibroblasts mitochondria. Fdx2 is the second component of the Fe-S cluster biogenesis machinery, the first being IscU that is associated with isolated mitochondrial myopathy. We suggest adding genetic analysis of FDX1L in cases of mitochondrial myopathy especially when associated with reduced activity of the respiratory chain complexes I, II and III.
Collapse
Affiliation(s)
- Ronen Spiegel
- 1] Department of Pediatric A', Emek Medical Center, Afula, Rappaport School of Medicine, Technion, Haifa, Israel [2] Genetic Institute, Emek Medical Center, Afula, Rappaport School of Medicine, Technion, Haifa, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Devorah Soiferman
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Simon Edvardson
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Yoseph Horovitz
- Department of Pediatric A', Emek Medical Center, Afula, Rappaport School of Medicine, Technion, Haifa, Israel
| | - Morad Khayat
- Genetic Institute, Emek Medical Center, Afula, Rappaport School of Medicine, Technion, Haifa, Israel
| | - Stavit A Shalev
- Genetic Institute, Emek Medical Center, Afula, Rappaport School of Medicine, Technion, Haifa, Israel
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Neutropenia-associated ELANE mutations disrupting translation initiation produce novel neutrophil elastase isoforms. Blood 2013; 123:562-9. [PMID: 24184683 DOI: 10.1182/blood-2013-07-513242] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hereditary neutropenia is usually caused by heterozygous germline mutations in the ELANE gene encoding neutrophil elastase (NE). How mutations cause disease remains uncertain, but two hypotheses have been proposed. In one, ELANE mutations lead to mislocalization of NE. In the other, ELANE mutations disturb protein folding, inducing an unfolded protein response in the endoplasmic reticulum (ER). In this study, we describe new types of mutations that disrupt the translational start site. At first glance, they should block translation and are incompatible with either the mislocalization or misfolding hypotheses, which require mutant protein for pathogenicity. We find that start-site mutations, instead, force translation from downstream in-frame initiation codons, yielding amino-terminally truncated isoforms lacking ER-localizing (pre) and zymogen-maintaining (pro) sequences, yet retain essential catalytic residues. Patient-derived induced pluripotent stem cells recapitulate hematopoietic and molecular phenotypes. Expression of the amino-terminally deleted isoforms in vitro reduces myeloid cell clonogenic capacity. We define an internal ribosome entry site (IRES) within ELANE and demonstrate that adjacent mutations modulate IRES activity, independently of protein-coding sequence alterations. Some ELANE mutations, therefore, appear to cause neutropenia via the production of amino-terminally deleted NE isoforms rather than by altering the coding sequence of the full-length protein.
Collapse
|
22
|
Minchiotti L, Galliano M, Caridi G, Kragh-Hansen U, Peters T. Congenital analbuminaemia: molecular defects and biochemical and clinical aspects. Biochim Biophys Acta Gen Subj 2013; 1830:5494-502. [PMID: 23612153 DOI: 10.1016/j.bbagen.2013.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND DNA and mRNA sequencing of the coding regions of the human albumin gene (ALB) and of its intron/exon junctions has revealed twenty-one different molecular defects causing congenital analbuminaemia (CAA). SCOPE OF REVIEW To describe the mutations in molecular terms and to present the current knowledge about the most important biochemical and clinical effects of CAA. MAJOR CONCLUSIONS CAA is rare, but its frequency seems to be significantly higher in restricted and minimally admixed populations. The condition affects especially the lipid metabolism but apart from a possible increased risk for atherosclerotic complications, it is generally associated with mild clinical symptoms in adults. By contrast, several reports indicate that analbuminaemic individuals may be at risk during the perinatal and childhood periods, in which they seem to show increased morbidity and mortality. The twenty-one causative defects include seven nonsense mutations, seven changes affecting splicing, five frame-shift/deletions, one frame-shift/insertion and one mutation in the start codon. These results indicate that the trait is an allelic heterogeneous disorder caused by homozygous (nineteen cases) or compound heterozygous (single case) inheritance of defects. Most mutations are unique, but one, named Kayseri, is responsible for about half of the known cases. GENERAL SIGNIFICANCE Study of the defects in the ALB resulting in CAA allows the identification of "hot spot" regions and contributes to understanding the molecular mechanism underlying the trait. Such studies could also give molecular information about different aspects of ALB regulation and shed light on the regulatory mechanisms involved in the synthesis of the protein. This article is part of a Special Issue entitled Serum Albumin.
Collapse
Affiliation(s)
- Lorenzo Minchiotti
- Department of Molecular Medicine, University of Pavia, I-27100 Pavia, Italy.
| | | | | | | | | |
Collapse
|
23
|
Caridi G, Dagnino M, Lugani F, Shalev SA, Campagnoli M, Galliano M, Spiegel R, Minchiotti L. A novel mutation in the albumin gene (c.1A>C) resulting in analbuminemia. Eur J Clin Invest 2013; 43:72-8. [PMID: 23176518 DOI: 10.1111/eci.12019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Analbuminemia (OMIM # 103600) is a rare autosomal recessive disorder manifested by the absence or severe reduction of circulating serum albumin in homozygous or compound heterozygous subjects. The trait is caused by a variety of mutations within the albumin gene. DESIGN We report here the clinical and molecular characterisation of two new cases of congenital analbuminemia diagnosed in two members of the Druze population living in a Galilean village (Northern Israel) on the basis of their low level of circulating albumin. The albumin gene was screened by single-strand conformation polymorphism and heteroduplex analysis, and the mutated region was submitted to DNA sequencing. RESULTS Both the analbuminemic subjects resulted homozygous for a previously unreported c.1 A>C transversion, for which we suggest the name Afula from the hospital where the two cases were investigated. This mutation causes the loss of the primary start codon ATG for Met1, which is replaced by a - then untranslated - triplet CTG for Leu. (p.Met1Leu). The use of an alternative downstream ATG codon would probably give rise to a completely aberrant polypeptide chain, leading to a misrouted intracellular transport and a premature degradation. CONCLUSIONS The discovery of this new ALB mutation, probably inherited from a common ancestor, sheds light on the molecular mechanism underlying the analbuminemic trait and may serve in the development of a rapid genetic test for the identification of a-symptomatic heterozygous carriers in the Druze population in the Galilee.
Collapse
Affiliation(s)
- Gianluca Caridi
- Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini IRCCS, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mutation of the translation initiation codon in FGA causes congenital afibrinogenemia. Blood Coagul Fibrinolysis 2012; 23:556-8. [DOI: 10.1097/mbc.0b013e328355a76e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Farias FHG, Zeng R, Johnson GS, Shelton GD, Paquette D, O'Brien DP. A L2HGDH initiator methionine codon mutation in a Yorkshire terrier with L-2-hydroxyglutaric aciduria. BMC Vet Res 2012; 8:124. [PMID: 22834903 PMCID: PMC3461439 DOI: 10.1186/1746-6148-8-124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background L-2-hydroxyglutaric aciduria is a metabolic repair deficiency characterized by elevated levels of L-2-hydroxyglutaric acid in urine, blood and cerebrospinal fluid. Neurological signs associated with the disease in humans and dogs include seizures, ataxia and dementia. Case presentation Here we describe an 8 month old Yorkshire terrier that presented with episodes of hyperactivity and aggressive behavior. Between episodes, the dog’s behavior and neurologic examinations were normal. A T2 weighted MRI of the brain showed diffuse grey matter hyperintensity and a urine metabolite screen showed elevated 2-hydroxyglutaric acid. We sequenced all 10 exons and intron-exon borders of L2HGDH from the affected dog and identified a homozygous A to G transition in the initiator methionine codon. The first inframe methionine is at p.M183 which is past the mitochondrial targeting domain of the protein. Initiation of translation at p.M183 would encode an N-terminal truncated protein unlikely to be functional. Conclusions We have identified a mutation in the initiation codon of L2HGDH that is likely to result in a non-functional gene. The Yorkshire terrier could serve as an animal model to understand the pathogenesis of L-2-hydroxyglutaric aciduria and to evaluate potential therapies.
Collapse
Affiliation(s)
- Fabiana H G Farias
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA.
| | | | | | | | | | | |
Collapse
|