1
|
Bayat A, Krett B, Dunø M, Torring PM, Vissing J. Novel truncating variants in FGD1 detected in two Danish families with Aarskog-Scott syndrome and myopathic features. Am J Med Genet A 2022; 188:2251-2257. [PMID: 35388608 PMCID: PMC9321604 DOI: 10.1002/ajmg.a.62753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/13/2022] [Accepted: 03/19/2022] [Indexed: 11/09/2022]
Abstract
Aarskog–Scott syndrome (AAS) is a developmental disorder, caused by disease‐causing hemizygous variants in the FGD1 gene. AAS is characterized by dysmorphic features, genital malformation, skeletal anomalies, and in some cases, intellectual disability and behavioral difficulties. Myopathy has only been reported once in two affected siblings diagnosed with AAS. Only few adult cases have been reported. This article reports four adults with AAS (three male cases and one female carrier) from two unrelated Danish families, all males presented with variable features suggestive of myopathy. All four carried novel hemizygous pathogenic variants in the FGD1 gene; one family presented with the c.2266dup, p.Cys756Leufs*19 variant while the c.527dup; p.Leu177Thrfs*40 variant was detected in the second family. All males had some mild myopathic symptoms or histological abnormalities. Case 1 had the most severe myopathic phenotype with prominent proximal muscular fatigue and exercise intolerance. In addition, he had multiple deletions of mtDNA and low respiratory chain activity. His younger nephew, case 3, had difficulties doing sports in his youth and had a mildly abnormal muscle biopsy and relatively decreased mitochondrial enzyme activity. The singular case from family 2 (case 4), had a mildly myopathic muscle biopsy, but no overt myopathic symptoms. Our findings suggest that myopathic involvement should be considered in AAS.
Collapse
Affiliation(s)
- Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Bjørg Krett
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, Molecular Genetic Laboratory, University Hospital Copenhagen, Copenhagen, Denmark
| | | | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhu Y, Chen Q, Lin H, Lu H, Qu Y, Yan Q, Wang C. FGD1 Variant Associated With Aarskog-Scott Syndrome. Front Pediatr 2022; 10:888923. [PMID: 35911831 PMCID: PMC9329920 DOI: 10.3389/fped.2022.888923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aarskog-Scott syndrome, a rare X-linked genetic disorder, is identified by combined clinical manifestations of short stature, facial, skeletal, and genital anomalies. Annually, two or three new cases are diagnosed with Aarskog-Scott syndrome, which is associated with FGD1 variants. However, there is no specific treatment for Aarskog-Scott syndrome due to its unclear mechanism. METHODS Clinical data were collected when the patient first visited the hospital. Trio whole-exome sequencing and Sanger sequencing were performed for the genetic cause of disease. To evaluate the pathogenicity of the variants in vitro, stable cell lines were constructed using lentivirus infection in 143B cell. Furthermore, Western blot was used to verify the expression of signaling pathway-related proteins, and the transcription levels of osteogenic-related genes were verified by luciferase reporter gene assay. RESULTS A 7-year-old boy was manifested with facial abnormalities, intellectual disability, and short stature (-3.98 SDS) while the growth hormone level of stimulation test was normal. Trio whole-exome sequencing and Sanger sequencing identified a variant (c.1270A>G, p.Asn424Asp) in FGD1 gene. The Asn424 residue was highly conserved and the hydrogen bond in the FGD1 variant protein has changed, which led to decrease in the interaction with CDC42 protein. In vitro study showed that the Asn424Asp variant significantly decreased the transcription levels of OCN, COL1A1, and ALP activity, and it activated the phosphorylation of JNK1. CONCLUSION Molecular biological mechanisms between abnormal expression of FGD1and Aarskog-Scott syndrome remain poorly understood. In our study, c.1270A>G variant of FGD1 resulted in Aarskog-Scott syndrome, and the analysis of pathogenicity supports the deleterious effect of the variant. Furthermore, we demonstrated the weakened affinity of the mutant FGD1 and CDC42. Decreased expression of osteogenic-related gene and abnormal activation of JNK1 were also shown in this work.
Collapse
Affiliation(s)
- Yilin Zhu
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qingqing Chen
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyan Lin
- Department of Pediatrics, The First People's Hospital of Wenling, Taizhou, China
| | - Huifei Lu
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yangbin Qu
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qingfeng Yan
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,College of Life Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, China
| | - Chunlin Wang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Jabalameli MR, Briceno I, Martinez J, Briceno I, Pengelly RJ, Ennis S, Collins A. Aarskog-Scott syndrome: phenotypic and genetic heterogeneity. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractAarskog-Scott syndrome (AAS) is a rare developmental disorder which primarily affects males and has a relative prevalence of 1 in 25,000 in the general population. AAS patients usually present with developmental complications including short stature and facial, skeletal and urogenital anomalies. The spectrum of genotype-phenotype correlations in AAS is unclear and mutations of the FGD1 gene on the proximal short arm of chromosome X account for only 20% of the incidence of the disorder. Failure to identify pathogenic variants in patients referred for FGD1 screening suggests heterogeneity underlying pathophysiology of the condition. Furthermore, overlapping features of AAS with several other developmental disorders increase the complexity of diagnosis. Cytoskeletal signaling may be involved in the pathophysiology of AAS. The FGD1 protein family has a role in activation of CDC42 (Cell Division Control protein 42 homolog) which has a core function in remodeling of extracellular matrix and the transcriptional activation of many modulators of development. Therefore, mutations in components in the EGFR1 (Epidermal Growth Factor Receptor 1) signaling pathway, to which CDC42 belongs, may contribute to pathophysiology. Parallel sequencing strategies (so-called next generation sequencing or high throughput sequencing) enables simultaneous production of millions of sequencing reads that enormously facilitate cost-effective identification of cryptic mutations in heterogeneous monogenic disorders. Here we review the source of phenotypic and genetic heterogeneity in the context of AAS and discuss the applicability of next generation sequencing for identification of novel mutations underlying AAS.
Collapse
Affiliation(s)
- M. Reza Jabalameli
- Genetic Epidemiology & Genomic Informatics, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ignacio Briceno
- Department of Biomedical Sciences, Medical School, Universidad de La Sabana, Bogota, Colombia
| | - Julio Martinez
- Department of Biomedical Sciences, Medical School, Universidad de La Sabana, Bogota, Colombia
| | - Ignacio Briceno
- Instituto de Genética Humana, Faculty of Medicine, Pontificia Universidad Javeriana, Colombia
| | - Reuben J. Pengelly
- Genetic Epidemiology & Genomic Informatics, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sarah Ennis
- Genetic Epidemiology & Genomic Informatics, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andrew Collins
- Genetic Epidemiology & Genomic Informatics, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
The Prevalence of Clinical Features in Patients with Aarskog-Scott Syndrome and Assessment of Genotype-Phenotype Correlation: A Systematic Review. Genet Res (Camb) 2021; 2021:6652957. [PMID: 33762894 PMCID: PMC7953535 DOI: 10.1155/2021/6652957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022] Open
Abstract
Aarskog–Scott syndrome is a genetically and clinically heterogeneous rare condition caused by a pathogenic variant in the FGD1 gene. A systematic review was carried out to analyse the prevalence of clinical manifestations found in patients, as well as to evaluate the genotype-phenotype correlation. The results obtained show that clinical findings of the craniofacial, orthopaedic, and genitourinary tract correspond to the highest scores of prevalence. The authors reclassified the primary, secondary, and additional criteria based on their prevalence. Furthermore, it was possible to observe, in accordance with previous reports, that the reported phenotypes do not present a direct relation to the underlying genotypes.
Collapse
|
5
|
Lord J, Gallone G, Short PJ, McRae JF, Ironfield H, Wynn EH, Gerety SS, He L, Kerr B, Johnson DS, McCann E, Kinning E, Flinter F, Temple IK, Clayton-Smith J, McEntagart M, Lynch SA, Joss S, Douzgou S, Dabir T, Clowes V, McConnell VPM, Lam W, Wright CF, FitzPatrick DR, Firth HV, Barrett JC, Hurles ME. Pathogenicity and selective constraint on variation near splice sites. Genome Res 2018; 29:159-170. [PMID: 30587507 PMCID: PMC6360807 DOI: 10.1101/gr.238444.118] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
Mutations that perturb normal pre-mRNA splicing are significant contributors to human disease. We used exome sequencing data from 7833 probands with developmental disorders (DDs) and their unaffected parents, as well as more than 60,000 aggregated exomes from the Exome Aggregation Consortium, to investigate selection around the splice sites and quantify the contribution of splicing mutations to DDs. Patterns of purifying selection, a deficit of variants in highly constrained genes in healthy subjects, and excess de novo mutations in patients highlighted particular positions within and around the consensus splice site of greater functional relevance. By using mutational burden analyses in this large cohort of proband–parent trios, we could estimate in an unbiased manner the relative contributions of mutations at canonical dinucleotides (73%) and flanking noncanonical positions (27%), and calculate the positive predictive value of pathogenicity for different classes of mutations. We identified 18 patients with likely diagnostic de novo mutations in dominant DD-associated genes at noncanonical positions in splice sites. We estimate 35%–40% of pathogenic variants in noncanonical splice site positions are missing from public databases.
Collapse
Affiliation(s)
- Jenny Lord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Giuseppe Gallone
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Patrick J Short
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jeremy F McRae
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Holly Ironfield
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Elizabeth H Wynn
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sebastian S Gerety
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Liu He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Diana S Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, OPD2, Northern General Hospital, Sheffield S5 7AU, United Kingdom
| | - Emma McCann
- Liverpool Women's Hospital Foundation Trust, Liverpool L8 7SS, United Kingdom
| | - Esther Kinning
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute of Medical Genetics, Yorkhill Hospital, Glasgow G3 8SJ, United Kingdom
| | - Frances Flinter
- South East Thames Regional Genetics Centre, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London SE1 9RT, United Kingdom
| | - I Karen Temple
- Faculty of Medicine, University of Southampton, Institute of Developmental Sciences, Southampton SO16 6YD, United Kingdom.,Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, Southampton SO16 5YA, United Kingdom
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Meriel McEntagart
- South West Thames Regional Genetics Centre, St. George's Healthcare NHS Trust, St. George's, University of London, London SW17 0RE, United Kingdom
| | | | - Shelagh Joss
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Tabib Dabir
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast BT9 7AB, United Kingom
| | - Virginia Clowes
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Northwick Park and St. Mark's Hospitals, Harrow HA1 3UJ, United Kingdom
| | - Vivienne P M McConnell
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast BT9 7AB, United Kingom
| | - Wayne Lam
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, United Kingdom
| | - David R FitzPatrick
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.,MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.,East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jeffrey C Barrett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
6
|
Chiereghin C, Robusto M, Mastrangelo A, Castorina P, Montini G, Giani M, Duga S, Asselta R, Soldà G. Alport syndrome cold cases: Missing mutations identified by exome sequencing and functional analysis. PLoS One 2017; 12:e0178630. [PMID: 28570636 PMCID: PMC5453569 DOI: 10.1371/journal.pone.0178630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/16/2017] [Indexed: 12/30/2022] Open
Abstract
Alport syndrome (AS) is an inherited progressive renal disease caused by mutations in COL4A3, COL4A4, and COL4A5 genes. Despite simultaneous screening of these genes being widely available, mutation detection still remains incomplete in a non-marginal portion of patients. Here, we applied whole-exome sequencing (WES) in 3 Italian families negative after candidate-gene analyses. In Family 1, we identified a novel heterozygous intronic variant (c.2245-40A>G) -outside the conventionally screened candidate region for diagnosis- potentially disrupting COL4A5 exon29 splicing. Using a minigene-based approach in HEK293 cells we demonstrated that this variant abolishes exon29 branch site, causing exon skipping. Moreover, skewed X-inactivation of the c.2245-40A>G allele correlated with disease severity in heterozygous females. In Family 2, WES highlighted a novel COL4A5 hemizygous missense mutation (p.Gly491Asp), which segregates with the phenotype and impacts on a highly-conserved residue. Finally, in Family 3, we detected a homozygous 24-bp in-frame deletion in COL4A3 exon1 (NM_000091.4:c.30_53del:p.Val11_Leu18del or c.40_63del24:p.Leu14_Leu21del), which is ambiguously annotated in databases, although it corresponds to a recurrent AS mutation. Functional analyses showed that this deletion disrupts COL4A3 signal peptide, possibly altering protein secretion. In conclusion, WES -together with functional studies- was fundamental for molecular diagnosis in 3 AS families, highlighting pathogenic variants that escaped previous screenings.
Collapse
Affiliation(s)
- Chiara Chiereghin
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Michela Robusto
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Antonio Mastrangelo
- UOC Nefrologia Pediatrica, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierangela Castorina
- UO Audiologia, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Montini
- UOC Nefrologia Pediatrica, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marisa Giani
- UOC Nefrologia Pediatrica, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
7
|
Ge Y, Li N, Wang Z, Wang J, Cai H. Novel variant in the FGD1 gene causing Aarskog-Scott syndrome. Exp Ther Med 2017; 13:2623-2628. [PMID: 28587322 PMCID: PMC5450764 DOI: 10.3892/etm.2017.4301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/11/2016] [Indexed: 11/05/2022] Open
Abstract
Aarskog-Scott syndrome (ASS) is a rare, X-linked recessive inherited disorder. Affected individuals may develop short stature and exhibit distinctive skeletal and genital development. Mutations in the FYVE, rhogef and pleckstrin homology domain-containing protein 1 (FGD1) gene, located within the Xp11.21 region, are responsible for the occurrence of ASS. Since it is rare and complex, it can take a long time to obtain a definitive clinical diagnosis unless clinicians are familiar with the disease. In the present study, whole-exome sequencing (WES) was performed to screen for causal variants in a Chinese pediatric patient who exhibited a number of clinical symptoms of ASS, including short stature, facial abnormalities, stubby metacarpals and swollen testis. DNA sequencing revealed a novel c.1270 A>G mutation in exon 6 of the FGD1 gene, which led to an amino acid conversion of asparagine to aspartic acid on codon 424 and in silico analysis indicated that this novel missense mutation was pathogenic. The present study identified a novel variant of the FGD1 gene and to the best of our knowledge, is the first report of ASS in a Chinese individual. The results indicated that WES is an effective tool for the diagnosis of rare and complex syndromes such as ASS.
Collapse
Affiliation(s)
- Yihua Ge
- Department of Pediatric Orthopedics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Niu Li
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Zhigang Wang
- Department of Pediatric Orthopedics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Jian Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Haiqing Cai
- Department of Pediatric Orthopedics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
8
|
Bergsma AJ, in ‘t Groen SLM, Verheijen FW, van der Ploeg AT, Pijnappel WWMP. From Cryptic Toward Canonical Pre-mRNA Splicing in Pompe Disease: a Pipeline for the Development of Antisense Oligonucleotides. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e361. [PMID: 27623443 PMCID: PMC5056997 DOI: 10.1038/mtna.2016.75] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022]
Abstract
While 9% of human pathogenic variants have an established effect on pre-mRNA splicing, it is suspected that an additional 20% of otherwise classified variants also affect splicing. Aberrant splicing includes disruption of splice sites or regulatory elements, or creation or strengthening of cryptic splice sites. For the majority of variants, it is poorly understood to what extent and how these may affect splicing. We have identified cryptic splicing in an unbiased manner. Three types of cryptic splicing were analyzed in the context of pathogenic variants in the acid α-glucosidase gene causing Pompe disease. These involved newly formed deep intronic or exonic cryptic splice sites, and a natural cryptic splice that was utilized due to weakening of a canonical splice site. Antisense oligonucleotides that targeted the identified cryptic splice sites repressed cryptic splicing at the expense of canonical splicing in all three cases, as shown by reverse-transcriptase-quantitative polymerase chain reaction analysis and by enhancement of acid α-glucosidase enzymatic activity. This argues for a competition model for available splice sites, including intact or weakened canonical sites and natural or newly formed cryptic sites. The pipeline described here can detect cryptic splicing and correct canonical splicing using antisense oligonucleotides to restore the gene defect.
Collapse
Affiliation(s)
- Atze J Bergsma
- Department of Clinical Genetics, Molecular Stem Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stijn LM in ‘t Groen
- Department of Clinical Genetics, Molecular Stem Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frans W Verheijen
- Department of Clinical Genetics, Molecular Diagnostics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - WWM Pim Pijnappel
- Department of Clinical Genetics, Molecular Stem Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Wit JM, Oostdijk W, Losekoot M, van Duyvenvoorde HA, Ruivenkamp CAL, Kant SG. MECHANISMS IN ENDOCRINOLOGY: Novel genetic causes of short stature. Eur J Endocrinol 2016; 174:R145-73. [PMID: 26578640 DOI: 10.1530/eje-15-0937] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFκB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. Heterozygous NPR2 or SHOX defects may be found in ∼3% of short children, and also rasopathies (e.g., Noonan syndrome) can be found in children without clear syndromic appearance. Numerous other syndromes associated with short stature are caused by genetic defects in fundamental cellular processes, chromosomal abnormalities, CNVs, and imprinting disorders.
Collapse
Affiliation(s)
- Jan M Wit
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilma Oostdijk
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique Losekoot
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Hermine A van Duyvenvoorde
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sarina G Kant
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
10
|
Chaudhry AS, Prasad B, Shirasaka Y, Fohner A, Finkelstein D, Fan Y, Wang S, Wu G, Aklillu E, Sim SC, Thummel KE, Schuetz EG. The CYP2C19 Intron 2 Branch Point SNP is the Ancestral Polymorphism Contributing to the Poor Metabolizer Phenotype in Livers with CYP2C19*35 and CYP2C19*2 Alleles. Drug Metab Dispos 2015; 43:1226-35. [PMID: 26021325 DOI: 10.1124/dmd.115.064428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022] Open
Abstract
CYP2C19 rs12769205 alters an intron 2 branch point adenine leading to an alternative mRNA in human liver with complete inclusion of intron 2 (exon 2B). rs12769205 changes the mRNA reading frame, introduces 87 amino acids, and leads to a premature stop codon. The 1000 Genomes project (http://browser.1000genomes.org/index.html) indicated rs12769205 is in linkage disequilibrium with rs4244285 on CYP2C19*2, but found alone on CYP2C19*35 in Blacks. Minigenes containing rs12769205 transfected into HepG2 cells demonstrated this single nucleotide polymorphism (SNP) alone leads to exon 2B and decreases CYP2C19 canonical mRNA. A residual amount of CYP2C19 protein was detectable by quantitative proteomics with tandem mass spectrometry in CYP2C19*2/*2 and *1/*35 liver microsomes with an exon 2 probe. However, an exon 4 probe, downstream from rs12769205, but upstream of rs4244285, failed to detect CYP2C19 protein in livers homozygous for rs12769205, demonstrating rs12769205 alone can lead to complete loss of CYP2C19 protein. CYP2C19 genotypes and mephenytoin phenotype were compared in 104 Ethiopians. Poor metabolism of mephenytoin was seen in persons homozygous for both rs12769205 and rs4244285 (CYP2C19*2/*2), but with little effect on mephenytoin disposition of CYP2C19*1/*2, CYP2C19*1/*3, or CYP2C19*1/*35 heterozygous alleles. Extended haplotype homozygosity tests of the HapMap Yorubans (YRI) showed both haplotypes carrying rs12769205 (CYP2C19*35 and CYP2C19*2) are under significant natural selection, with CYP2C19*35 having a higher relative extended haplotype homozygosity score. The phylogenetic tree of the YRI CYP2C19 haplotypes revealed rs12769205 arose first on CYP2C19*35 and that rs4244285 was added later, creating CYP2C19*2. In conclusion, rs12769205 is the ancestral polymorphism leading to aberrant splicing of CYP2C19*35 and CYP2C19*2 alleles in liver.
Collapse
Affiliation(s)
- Amarjit S Chaudhry
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - Yoshiyuki Shirasaka
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - Alison Fohner
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - David Finkelstein
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - Yiping Fan
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - Shuoguo Wang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - Gang Wu
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - Eleni Aklillu
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - Sarah C Sim
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - Kenneth E Thummel
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., Y.S., A.F., K.E.T.); Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (D.F., Y.F., S.W., G.W.); Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.C.S.)
| |
Collapse
|
11
|
Pérez-Coria M, Lugo-Trampe JJ, Zamudio-Osuna M, Rodríguez-Sánchez IP, Lugo-Trampe A, de la Fuente-Cortez B, Campos-Acevedo LD, Martínez-de-Villarreal LE. Identification of novel mutations in Mexican patients with Aarskog-Scott syndrome. Mol Genet Genomic Med 2015; 3:197-202. [PMID: 26029706 PMCID: PMC4444161 DOI: 10.1002/mgg3.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/30/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022] Open
Abstract
Aarskog-Scott syndrome (AAS), also known as faciogenital dysplasia (FGD, OMIM # 305400), is an X-linked disorder of recessive inheritance, characterized by short stature and facial, skeletal, and urogenital abnormalities. AAS is caused by mutations in the FGD1 gene (Xp11.22), with over 56 different mutations identified to date. We present the clinical and molecular analysis of four unrelated families of Mexican origin with an AAS phenotype, in whom FGD1 sequencing was performed. This analysis identified two stop mutations not previously reported in the literature: p.Gln664* and p.Glu380*. Phenotypically, every male patient met the clinical criteria of the syndrome, whereas discrepancies were found between phenotypes in female patients. Our results identify two novel mutations in FGD1, broadening the spectrum of reported mutations; and provide further delineation of the phenotypic variability previously described in AAS.
Collapse
Affiliation(s)
- Mariana Pérez-Coria
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - José J Lugo-Trampe
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - Michell Zamudio-Osuna
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - Iram P Rodríguez-Sánchez
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - Angel Lugo-Trampe
- Centro Mesoamericano de Estudios en Salud Pública y Desastres, Universidad Autónoma de Chiapas (UNACH) Tapachula, Chis, México
| | - Beatriz de la Fuente-Cortez
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - Luis D Campos-Acevedo
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - Laura E Martínez-de-Villarreal
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| |
Collapse
|
12
|
Mele C, Lemaire M, Iatropoulos P, Piras R, Bresin E, Bettoni S, Bick D, Helbling D, Veith R, Valoti E, Donadelli R, Murer L, Neunhäuserer M, Breno M, Frémeaux-Bacchi V, Lifton R, Remuzzi G, Noris M. Characterization of a New DGKE Intronic Mutation in Genetically Unsolved Cases of Familial Atypical Hemolytic Uremic Syndrome. Clin J Am Soc Nephrol 2015; 10:1011-9. [PMID: 25854283 DOI: 10.2215/cjn.08520814] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/09/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Genetic and acquired abnormalities causing dysregulation of the complement alternative pathway contribute to atypical hemolytic uremic syndrome (aHUS), a rare disorder characterized by thrombocytopenia, nonimmune microangiopathic hemolytic anemia, and acute kidney failure. However, in a substantial proportion of patients the disease-associated alterations are still unknown. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Whole-exome and whole-genome sequencing were performed in two unrelated families with infantile recessive aHUS. Sequencing of cDNA from affected individuals was used to test for the presence of aberrant mRNA species. Expression of mutant diacylglycerol kinase epsilon (DGKE) protein was evaluated with western blotting. RESULTS Whole-exome sequencing analysis with conventional variant filtering parameters did not reveal any obvious candidate mutation in the first family. The report of aHUS-associated mutations in DGKE, encoding DGKE, led to re-examination of the noncoding DGKE variants obtained from next-generation sequencing, allowing identification of a novel intronic DGKE mutation (c.888+40A>G) that segregated with disease. Sequencing of cDNA from affected individuals revealed aberrant forms of DGKE mRNA predicted to cause profound abnormalities in the protein catalytic site. By whole-genome sequencing, the same mutation was found in compound heterozygosity with a second nonsense DGKE mutation in all affected siblings of another unrelated family. Homozygous and compound heterozygous patients presented similar clinical features, including aHUS presentation in the first year of life, multiple relapsing episodes, and proteinuria, which are prototypical of DGKE-associated aHUS. CONCLUSIONS This is the first report of a mutation located beyond the exon-intron boundaries in aHUS. Intronic mutations such as these are underreported because conventional filtering parameters used to process next-generation sequencing data routinely exclude these regions from downstream analyses in both research and clinical settings. The results suggest that analysis of noncoding regions of aHUS-associated genes coupled with mRNA sequencing might provide a tool to explain genetically unsolved aHUS cases.
Collapse
Affiliation(s)
- Caterina Mele
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Mathieu Lemaire
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Paraskevas Iatropoulos
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Rossella Piras
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Elena Bresin
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Serena Bettoni
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - David Bick
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Daniel Helbling
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Regan Veith
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Elisabetta Valoti
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Roberta Donadelli
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Luisa Murer
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Maria Neunhäuserer
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Matteo Breno
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Véronique Frémeaux-Bacchi
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Richard Lifton
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Giuseppe Remuzzi
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material.
| | - Marina Noris
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| |
Collapse
|
13
|
Rousseau-Nepton I, Okubo M, Grabs R, Mitchell J, Polychronakos C, Rodd C. A founder AGL mutation causing glycogen storage disease type IIIa in Inuit identified through whole-exome sequencing: a case series. CMAJ 2015; 187:E68-E73. [PMID: 25602008 DOI: 10.1503/cmaj.140840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Glycogen storage disease type III is caused by mutations in both alleles of the AGL gene, which leads to reduced activity of glycogen-debranching enzyme. The clinical picture encompasses hypoglycemia, with glycogen accumulation leading to hepatomegaly and muscle involvement (skeletal and cardiac). We sought to identify the genetic cause of this disease within the Inuit community of Nunavik, in whom previous DNA sequencing had not identified such mutations. METHODS Five Inuit children with a clinical and biochemical diagnosis of glycogen storage disease type IIIa were recruited to undergo genetic testing: 2 underwent whole-exome sequencing and all 5 underwent Sanger sequencing to confirm the identified mutation. Selected DNA regions near the AGL gene were also sequenced to identify a potential founder effect in the community. In addition, control samples from 4 adults of European descent and 7 family members of the affected children were analyzed for the specific mutation by Sanger sequencing. RESULTS We identified a homozygous frame-shift deletion, c.4456delT, in exon 33 of the AGL gene in 2 children by whole-exome sequencing. Confirmation by Sanger sequencing showed the same mutation in all 5 patients, and 5 family members were found to be carriers. With the identification of this mutation in 5 probands, the estimated prevalence of genetically confirmed glycogen storage disease type IIIa in this region is among the highest worldwide (1:2500). Despite identical mutations, we saw variations in clinical features of the disease. INTERPRETATION Our detection of a homozygous frameshift mutation in 5 Inuit children determines the cause of glycogen storage disease type IIIa and confirms a founder effect.
Collapse
Affiliation(s)
- Isabelle Rousseau-Nepton
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Minoru Okubo
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Rosemarie Grabs
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | | | - John Mitchell
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Constantin Polychronakos
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Celia Rodd
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man.
| |
Collapse
|
14
|
Völter C, Martínez R, Hagen R, Kress W. Aarskog-Scott syndrome: a novel mutation in the FGD1 gene associated with severe craniofacial dysplasia. Eur J Pediatr 2014; 173:1373-6. [PMID: 24770546 DOI: 10.1007/s00431-014-2317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED Aarskog syndrome (AAS) is an X-linked human disease that affects the skeletal formation and embryonic morphogenesis and is caused by mutations in the FGD1 gene. Patients typically show distinctive skeletal and genital developmental abnormalities, but a broad spectrum of clinical phenotypes has been observed. We report here on the clinical and molecular analysis of a family that reveals a novel FGD1 mutation in a 9-year-old boy displaying extreme craniofacial dysplasia associated with attention deficit hyperactivity disorder. Sequencing of FGD1 revealed a novel mutation in exon 7 at position c.1468 C > T in the index patient, leading to a stop codon in the highly conserved RhoGEF gene domain. His mother and maternal grandmother were also found to be heterozygous for this FGD1 mutation. CONCLUSION Our results identify a novel mutation of FDG1 in a family with Aarskog syndrome and underscore the phenotypical variability of this condition.
Collapse
Affiliation(s)
- Christiane Völter
- Department of Otorhinolaryngology, University of Goettingen, Robert Koch-Str. 40, 37075, Goettingen, Germany,
| | | | | | | |
Collapse
|
15
|
Clinical utility gene card for: Aarskog-Scott Syndrome (faciogenital dysplasia) - update 2015. Eur J Hum Genet 2014; 23:ejhg2014178. [PMID: 25227149 DOI: 10.1038/ejhg.2014.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 11/08/2022] Open
|
16
|
Exome sequencing greatly expedites the progressive research of Mendelian diseases. Front Med 2014; 8:42-57. [PMID: 24384736 DOI: 10.1007/s11684-014-0303-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
Abstract
The advent of whole-exome sequencing (WES) has facilitated the discovery of rare structure and functional genetic variants. Combining exome sequencing with linkage studies is one of the most efficient strategies in searching disease genes for Mendelian diseases. WES has achieved great success in the past three years for Mendelian disease genetics and has identified over 150 new Mendelian disease genes. We illustrate the workflow of exome capture and sequencing to highlight the advantages of WES. We also indicate the progress and limitations of WES that can potentially result in failure to identify disease-causing mutations in part of patients. With an affordable cost, WES is expected to become the most commonly used tool for Mendelian disease gene identification. The variants detected cumulatively from previous WES studies will be widely used in future clinical services.
Collapse
|