1
|
Trinh J, Schaake S, Gabbert C, Lüth T, Cowley SA, Fienemann A, Ullrich KK, Klein C, Seibler P. Optical genome mapping of structural variants in Parkinson's disease-related induced pluripotent stem cells. BMC Genomics 2024; 25:980. [PMID: 39425080 PMCID: PMC11490025 DOI: 10.1186/s12864-024-10902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Certain structural variants (SVs) including large-scale genetic copy number variants, as well as copy number-neutral inversions and translocations may not all be resolved by chromosome karyotype studies. The identification of genetic risk factors for Parkinson's disease (PD) has been primarily focused on the gene-disruptive single nucleotide variants. In contrast, larger SVs, which may significantly influence human phenotypes, have been largely underexplored. Optical genomic mapping (OGM) represents a novel approach that offers greater sensitivity and resolution for detecting SVs. In this study, we used induced pluripotent stem cell (iPSC) lines of patients with PD-linked SNCA and PRKN variants as a proof of concept to (i) show the detection of pathogenic SVs in PD with OGM and (ii) provide a comprehensive screening of genetic abnormalities in iPSCs. RESULTS OGM detected SNCA gene triplication and duplication in patient-derived iPSC lines, which were not identified by long-read sequencing. Additionally, various exon deletions were confirmed by OGM in the PRKN gene of iPSCs, of which exon 3-5 and exon 2 deletions were unable to phase with conventional multiplex-ligation-dependent probe amplification. In terms of chromosomal abnormalities in iPSCs, no gene fusions, no aneuploidy but two balanced inter-chromosomal translocations were detected in one line that were absent in the parental fibroblasts and not identified by routine single nucleotide variant karyotyping. CONCLUSIONS In summary, OGM can detect pathogenic SVs in PD-linked genes as well as reveal genomic abnormalities for iPSCs that were not identified by other techniques, which is supportive for OGM's future use in gene discovery and iPSC line screening.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - André Fienemann
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Kristian K Ullrich
- Division Scientific IT Group, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
2
|
Mor-Shaked H, Paz-Ebstein E, Basal A, Ben-Haim S, Grobe H, Heymann S, Israel Z, Namnah M, Nitzan A, Rosenbluh C, Saada A, Tzur T, Yanovsky-Dagan S, Zaidel-Bar R, Harel T, Arkadir D. Levodopa-responsive dystonia caused by biallelic PRKN exon inversion invisible to exome sequencing. Brain Commun 2021; 3:fcab197. [PMID: 34514401 PMCID: PMC8421701 DOI: 10.1093/braincomms/fcab197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Biallelic pathogenic variants in PRKN (PARK2), encoding the E3 ubiquitin ligase parkin, lead to early-onset Parkinson's disease. Structural variants, including duplications or deletions, are common in PRKN due to their location within the fragile site FRA6E. These variants are readily detectable by copy number variation analysis. We studied four siblings with levodopa-responsive dystonia by exome sequencing followed by genome sequencing. Affected individuals developed juvenile levodopa-responsive dystonia with subsequent appearance of parkinsonism and motor fluctuations that improved by subthalamic stimulation. Exome sequencing and copy number variation analysis were not diagnostic, yet revealed a shared homozygous block including PRKN. Genome sequencing revealed an inversion within PRKN, with intronic breakpoints flanking exon 5. Breakpoint junction analysis implicated non-homologous end joining and possibly replicative mechanisms as the repair pathways involved. Analysis of cDNA indicated skipping of exon 5 (84 bp) that was replaced by 93 bp of retained intronic sequence, preserving the reading frame yet altering a significant number of residues. Balanced copy number inversions in PRKN are associated with a severe phenotype. Such structural variants, undetected by exome analysis and by copy number variation analysis, should be considered in the relevant clinical setting. These findings raise the possibility that PRKN structural variants are more common than currently estimated.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Emuna Paz-Ebstein
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Adily Basal
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Simona Ben-Haim
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Nuclear Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel.,Institute of Nuclear Medicine, University College London and UCL Hospitals, NHS Trust, London NW1 2BU, UK
| | - Hanna Grobe
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Sami Heymann
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurosurgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Zvi Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurosurgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Montaser Namnah
- Department of Neurology, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Chaggai Rosenbluh
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tomer Tzur
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Plastic Surgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | | | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - David Arkadir
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurology, Hadassah Medical Organization, Jerusalem 91120, Israel
| |
Collapse
|
3
|
The role of monogenic genes in idiopathic Parkinson's disease. Neurobiol Dis 2018; 124:230-239. [PMID: 30448284 DOI: 10.1016/j.nbd.2018.11.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
In the past two decades, mutations in multiple genes have been linked to autosomal dominant or recessive forms of monogenic Parkinson's disease (PD). Collectively, these monogenic (often familial) cases account for less than 5% of all PD, the majority being apparently sporadic cases. More recently, large-scale genome-wide association studies have identified over 40 loci that increase risk of PD. Importantly, there is overlap between monogenic and sporadic PD genes, particularly for the loci that contain the genes SNCA and LRRK2, which are mutated in monogenic dominant PD. There have also been reports of idiopathic PD cases with heterozygous variants in autosomal recessive genes suggesting that these mutations may increase risk of PD. These observations suggest that monogenic and idiopathic PD may have shared pathogenic mechanisms. Here, we focus mainly on the role of monogenic PD genes that represent pleomorphic risk loci for idiopathic PD. We also discuss the functional mechanisms that may play a role in increasing risk of disease in both monogenic and idiopathic forms.
Collapse
|
4
|
La Cognata V, Morello G, Gentile G, Cavalcanti F, Cittadella R, Conforti FL, De Marco EV, Magariello A, Muglia M, Patitucci A, Spadafora P, D’Agata V, Ruggieri M, Cavallaro S. NeuroArray: A Customized aCGH for the Analysis of Copy Number Variations in Neurological Disorders. Curr Genomics 2018; 19:431-443. [PMID: 30258275 PMCID: PMC6128384 DOI: 10.2174/1389202919666180404105451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurological disorders are a highly heterogeneous group of pathological conditions that affect both the peripheral and the central nervous system. These pathologies are characterized by a complex and multifactorial etiology involving numerous environmental agents and genetic susceptibility factors. For this reason, the investigation of their pathogenetic basis by means of traditional methodological approaches is rather arduous. High-throughput genotyping technologies, including the microarray-based comparative genomic hybridization (aCGH), are currently replacing classical detection methods, providing powerful molecular tools to identify genomic unbalanced structural rearrangements and explore their role in the pathogenesis of many complex human diseases. METHODS In this report, we comprehensively describe the design method, the procedures, validation, and implementation of an exon-centric customized aCGH (NeuroArray 1.0), tailored to detect both single and multi-exon deletions or duplications in a large set of multi- and monogenic neurological diseases. This focused platform enables a targeted measurement of structural imbalances across the human genome, targeting the clinically relevant genes at exon-level resolution. CONCLUSION An increasing use of the NeuroArray platform may offer new insights in investigating potential overlapping gene signatures among neurological conditions and defining genotype-phenotype relationships.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sebastiano Cavallaro
- Address correspondence to this author at the Institute of Neurological Sciences, National Research Council, Via Paolo Gaifami 18, 95125, Catania, Italy; Tel: +39-095-7338111; E-mail:
| |
Collapse
|
5
|
Mokretar K, Pease D, Taanman JW, Soenmez A, Ejaz A, Lashley T, Ling H, Gentleman S, Houlden H, Holton JL, Schapira AHV, Nacheva E, Proukakis C. Somatic copy number gains of α-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain 2018; 141:2419-2431. [DOI: 10.1093/brain/awy157] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Katya Mokretar
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
- Department of Academic Haematology, University College London, UK
| | - Daniel Pease
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Jan-Willem Taanman
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Aynur Soenmez
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Ayesha Ejaz
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Helen Ling
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Anthony H V Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | | | - Christos Proukakis
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
6
|
Ji J, Qin Y, Wang R, Huang Z, Zhang Y, Zhou R, Song L, Ling X, Hu Z, Miao D, Shen H, Xia Y, Wang X, Lu C. Copy number gain of VCX, X-linked multi-copy gene, leads to cell proliferation and apoptosis during spermatogenesis. Oncotarget 2018; 7:78532-78540. [PMID: 27705943 PMCID: PMC5340235 DOI: 10.18632/oncotarget.12397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/25/2016] [Indexed: 11/25/2022] Open
Abstract
Male factor infertility affects one-sixth of couples worldwide, and non-obstructive azoospermia (NOA) is one of the most severe forms. In recent years there has been increasing evidence to implicate the participation of X chromosome in the process of spermatogenesis. To uncover the roles of X-linked multi-copy genes in spermatogenesis, we performed systematic analysis of X-linked gene copy number variations (CNVs) and Y chromosome haplogrouping in 447 idiopathic NOA patients and 485 healthy controls. Interestingly, the frequency of individuals with abnormal level copy of Variable charge, X-linked (VCX) was significantly different between cases and controls after multiple test correction (p = 5.10 × 10−5). To discriminate the effect of gain/loss copies in these genes, we analyzed the frequency of X-linked multi-copy genes in subjects among subdivided groups. Our results demonstrated that individuals with increased copy numbers of Nuclear RNA export factor 2 (NXF2) (p = 9.21 × 10−8) and VCX (p = 1.97 × 10−4) conferred the risk of NOA. In vitro analysis demonstrated that increasing copy number of VCX could upregulate the gene expression and regulate cell proliferation and apoptosis. Our study establishes a robust association between the VCX CNVs and NOA risk.
Collapse
Affiliation(s)
- Juan Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ran Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiufeng Ling
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Kasten M, Marras C, Klein C. Nonmotor Signs in Genetic Forms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:129-178. [DOI: 10.1016/bs.irn.2017.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Copy number variability in Parkinson's disease: assembling the puzzle through a systems biology approach. Hum Genet 2016; 136:13-37. [PMID: 27896429 PMCID: PMC5214768 DOI: 10.1007/s00439-016-1749-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder of aging, was long believed to be a non-genetic sporadic origin syndrome. The proof that several genetic loci are responsible for rare Mendelian forms has represented a revolutionary breakthrough, enabling to reveal molecular mechanisms underlying this debilitating still incurable condition. While single nucleotide polymorphisms (SNPs) and small indels constitute the most commonly investigated DNA variations accounting for only a limited number of PD cases, larger genomic molecular rearrangements have emerged as significant PD-causing mutations, including submicroscopic Copy Number Variations (CNVs). CNVs constitute a prevalent source of genomic variations and substantially participate in each individual’s genomic makeup and phenotypic outcome. However, the majority of genetic studies have focused their attention on single candidate-gene mutations or on common variants reaching a significant statistical level of acceptance. This gene-centric approach is insufficient to uncover the genetic background of polygenic multifactorial disorders like PD, and potentially masks rare individual CNVs that all together might contribute to disease development or progression. In this review, we will discuss literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will analyze the most frequent copy number changes in familiar PD genes and provide a “systems biology” overview of rare individual rearrangements that could functionally act on commonly deregulated molecular pathways. Assessing the global genome-wide burden of CNVs in PD patients may reveal new disease-related molecular mechanisms, and open the window to a new possible genetic scenario in the unsolved PD puzzle.
Collapse
|
9
|
A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson's disease. Neurogenetics 2016; 17:233-244. [PMID: 27637465 PMCID: PMC5566182 DOI: 10.1007/s10048-016-0494-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder, was long believed to be a non-genetic sporadic syndrome. Today, only a small percentage of PD cases with genetic inheritance patterns are known, often complicated by reduced penetrance and variable expressivity. The few well-characterized Mendelian genes, together with a number of risk factors, contribute to the major sporadic forms of the disease, thus delineating an intricate genetic profile at the basis of this debilitating and incurable condition. Along with single nucleotide changes, gene-dosage abnormalities and copy number variations (CNVs) have emerged as significant disease-causing mutations in PD. However, due to their size variability and to the quantitative nature of the assay, CNV genotyping is particularly challenging. For this reason, innovative high-throughput platforms and bioinformatics algorithms are increasingly replacing classical CNV detection methods. Here, we report the design strategy, development, validation and implementation of NeuroArray, a customized exon-centric high-resolution array-based comparative genomic hybridization (aCGH) tailored to detect single/multi-exon deletions and duplications in a large panel of PD-related genes. This targeted design allows for a focused evaluation of structural imbalances in clinically relevant PD genes, combining exon-level resolution with genome-wide coverage. The NeuroArray platform may offer new insights in elucidating inherited potential or de novo structural alterations in PD patients and investigating new candidate genes.
Collapse
|
10
|
Murthy MN, Veerappa AM, Seshachalam KB, Ramachandra NB. High-resolution arrays reveal burden of copy number variations on Parkinson disease genes associated with increased disease risk in random cohorts. Neurol Res 2016; 38:775-85. [PMID: 27399248 DOI: 10.1080/01616412.2016.1204105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Parkinson disease (PD) is a neurological disease responsible for a considerable rate of mortality and morbidity in the society. Since the symptoms of the disease appear much later than the actual onset of neuron degeneration, a majority of cases remain undiagnosed until the manifestation of the symptoms. OBJECTIVES In order to investigate the existence of such susceptibility in the population, we analyzed Copy Number Variation (CNV) influences on PD genes in 1715 individuals from 12 different populations. RESULTS Overall, 16 CNV-PD genes, 3 known to be causal and 13 associated, were found to be significantly enriched. PARK2, was under heavy burden with ~1% of the population containing CNV in the exonic region. The impact of these genes on the genome and disease pathway was analyzed using several genome analysis tools. Protein interaction network of CNV-PD genes revealed a complex interaction of molecules forming a major hub by the α-Synuclein, whose direct interactors, LRRK2, PARK2 and ATP13A2 are under CNV influence. CONCLUSIONS We hypothesize that CNVs may not be the initiating event in the pathogenesis of PD and remain latent until additional secondary hits are acquired and also propose novel genes that may fall under the PD pathway which contribute in pathogenesis.
Collapse
Affiliation(s)
- Megha N Murthy
- a Genetics and Genomics Lab, Department of Genetics and Genomics , University of Mysore , Mysore , India
| | - Avinash M Veerappa
- a Genetics and Genomics Lab, Department of Genetics and Genomics , University of Mysore , Mysore , India
| | | | - Nallur B Ramachandra
- a Genetics and Genomics Lab, Department of Genetics and Genomics , University of Mysore , Mysore , India
| |
Collapse
|
11
|
Huttenlocher J, Stefansson H, Steinberg S, Helgadottir HT, Sveinbjörnsdóttir S, Riess O, Bauer P, Stefansson K. Heterozygote carriers for CNVs in PARK2 are at increased risk of Parkinson's disease. Hum Mol Genet 2015; 24:5637-43. [PMID: 26188007 DOI: 10.1093/hmg/ddv277] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/10/2015] [Indexed: 01/26/2023] Open
Abstract
Together with point mutations, homozygous deletions or duplications in PARK2 are responsible for the majority of autosomal recessive juvenile Parkinsonism. It is debated, however, whether heterozygous carriers of these mutations are at increased risk of Parkinson's disease (PD). Our goal was to determine whether heterozygous carriers of copy number variants (CNVs) affecting exons of the PARK2 gene are at risk of PD that is greater than that of non-carriers. We searched for CNVs affecting exons of PARK2 in a sample of 105 749 genotyped Icelanders. In total, 989 carriers, including 24 diagnosed with PD, were identified. The heterozygous carriers were tested for association in a sample of 1415 PD patients and 40 474 controls ≥65 years of age. PD patients were more often heterozygous carriers of PARK2 CNVs than controls [odds ratio (OR) = 1.69, P = 0.03] and compound heterozygous PD patients for a CNV and a missense mutation were not found. Furthermore, we conducted a meta-analysis of studies reporting on case-control samples screened for heterozygous PARK2 CNVs. Ten studies were included in the final analysis, with 4538 cases and 4213 controls. The pooled OR and P-value for the published and Icelandic results showed significant association between PARK2 CNVs and risk of PD (OR = 2.11, P = 2.54 × 10(-6)). Our analysis shows that heterozygous carriers of CNVs affecting exons of PARK2 have greater risk of PD than non-carriers.
Collapse
Affiliation(s)
- Johanna Huttenlocher
- deCODE Genetics/AMGEN, Reykjavik 101, Iceland, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen D-72076, Germany
| | | | | | | | - Sigurlaug Sveinbjörnsdóttir
- Department of Neurology, National University Hospital, Reykjavik 101, Iceland, Department of Neurology, MEHT, Broomfield Hospital, Court Road, Essex CM1 7ET, UK, Neuroscience Department, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK and
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen D-72076, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen D-72076, Germany
| | - Kari Stefansson
- deCODE Genetics/AMGEN, Reykjavik 101, Iceland, Faculty of Medicine, University of Iceland, Reykjavik IS-101, Iceland
| |
Collapse
|
12
|
Zhao N, Xiao J, Zheng Z, Fei G, Zhang F, Jin L, Zhong C. Single-nucleotide polymorphisms and haplotypes of non-coding area in the CP gene are correlated with Parkinson's disease. Neurosci Bull 2015; 31:245-56. [PMID: 25758665 DOI: 10.1007/s12264-014-1512-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/25/2014] [Indexed: 10/23/2022] Open
Abstract
Our previous studies have demonstrated that ceruloplasmin (CP) dysmetabolism is correlated with Parkinson's disease (PD). However, the causes of decreased serum CP levels in PD patients remain to be clarified. This study aimed to explore the potential association between genetic variants of the CP gene and PD. Clinical features, serum CP levels, and the CP gene (both promoter and coding regions) were analyzed in 60 PD patients and 50 controls. A luciferase reporter system was used to investigate the function of promoter single-nucleotide polymorphisms (SNPs). High-density comparative genomic hybridization microarrays were also used to detect large-scale copy-number variations in CP and an additional 47 genes involved in PD and/or copper/iron metabolism. The frequencies of eight SNPs (one intronic SNP and seven promoter SNPs of the CP gene) and their haplotypes were significantly different between PD patients, especially those with lowered serum CP levels, and controls. However, the luciferase reporter system revealed no significant effect of the risk haplotype on promoter activity of the CP gene. Neither these SNPs nor their haplotypes were correlated with the Hoehn and Yahr staging of PD. The results of this study suggest that common genetic variants of CP are associated with PD and further investigation is needed to explore their functions in PD.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neurology, Zhongshan Hospital and Shanghai Medical College; State Key Laboratory of Medical Neurobiology; Institute of Brain Science, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Proukakis C. Genetics of Parkinson's disease: alpha-synuclein and other insights from Greece. Eur J Neurol 2014; 21:946-7. [PMID: 24460978 DOI: 10.1111/ene.12357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C Proukakis
- UCL Institute of Neurology, Clinical Neuroscience Department, London, UK.
| |
Collapse
|