1
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Zi-Yi Z, Qin Q, Fei Z, Cun-Yu C, Lin T. Nesprin proteins: bridging nuclear envelope dynamics to muscular dysfunction. Cell Commun Signal 2024; 22:208. [PMID: 38566066 PMCID: PMC10986154 DOI: 10.1186/s12964-024-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.
Collapse
Affiliation(s)
- Zhou Zi-Yi
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Qin Qin
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Zhou Fei
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
| | - Cao Cun-Yu
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
- College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and immunotherapy, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Teng Lin
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China.
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, SE5 9NU, UK.
| |
Collapse
|
3
|
Alena SK, Eva B, Aleš K, Emilie L. Spatiotemporal Mislocalization of Nuclear Membrane-Associated Proteins in γ-Irradiation-Induced Senescent Cells. Cells 2020; 9:E999. [PMID: 32316379 PMCID: PMC7227243 DOI: 10.3390/cells9040999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular senescence, induced by genotoxic or replication stress, is accompanied by defects in nuclear morphology and nuclear membrane-heterochromatin disruption. In this work, we analyzed cytological and molecular changes in the linker of nucleoskeleton and cytoskeleton (LINC) complex proteins in senescence triggered by γ-irradiation. We used human mammary carcinoma and osteosarcoma cell lines, both original and shRNA knockdown clones targeting lamin B receptor (LBR) and leading to LBR and lamin B (LB1) reduction. The expression status and integrity of LINC complex proteins (nesprin-1, SUN1, SUN2), lamin A/C, and emerin were analyzed by immunodetection using confocal microscopy and Western blot. The results show frequent mislocalization of these proteins from the nuclear membrane to cytoplasm and micronuclei and, in some cases, their fragmentation and amplification. The timing of these changes clearly preceded the onset of senescence. The LBR deficiency triggered neither senescence nor changes in the LINC protein distribution before irradiation. However, the cytological changes following irradiation were more pronounced in shRNA knockdown cells compared to original cell lines. We conclude that mislocalization of LINC complex proteins is a significant characteristic of cellular senescence phenotypes and may influence complex events at the nuclear membrane, including trafficking and heterochromatin attachment.
Collapse
Affiliation(s)
- Svobodová Kovaříková Alena
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (S.K.A.); (B.E.)
| | - Bártová Eva
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (S.K.A.); (B.E.)
| | - Kovařík Aleš
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Lukášová Emilie
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
- Laboratory of Cell Biology and Radiobiology and Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| |
Collapse
|
4
|
Chromatin and Cytoskeletal Tethering Determine Nuclear Morphology in Progerin-Expressing Cells. Biophys J 2020; 118:2319-2332. [PMID: 32320674 DOI: 10.1016/j.bpj.2020.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear morphology of eukaryotic cells is determined by the interplay between the lamina forming the nuclear skeleton, the chromatin inside the nucleus, and the coupling with the cytoskeleton. Nuclear alterations are often associated with pathological conditions as in Hutchinson-Gilford progeria syndrome, in which a mutation in the lamin A gene yields an altered form of the protein, named progerin, and an aberrant nuclear shape. Here, we introduce an inducible cellular model of Hutchinson-Gilford progeria syndrome in HeLa cells in which increased progerin expression leads to alterations in the coupling of the lamin shell with cytoskeletal or chromatin tethers as well as with polycomb group proteins. Furthermore, our experiments show that progerin expression leads to enhanced nuclear shape fluctuations in response to cytoskeletal activity. To interpret the experimental results, we introduce a computational model of the cell nucleus that explicitly includes chromatin fibers, the nuclear shell, and coupling with the cytoskeleton. The model allows us to investigate how the geometrical organization of the chromatin-lamin tether affects nuclear morphology and shape fluctuations. In sum, our findings highlight the crucial role played by lamin-chromatin and lamin-cytoskeletal alterations in determining nuclear shape morphology and in affecting cellular functions and gene regulation.
Collapse
|
5
|
Heller SA, Shih R, Kalra R, Kang PB. Emery-Dreifuss muscular dystrophy. Muscle Nerve 2019; 61:436-448. [PMID: 31840275 PMCID: PMC7154529 DOI: 10.1002/mus.26782] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a rare muscular dystrophy, but is particularly important to diagnose due to frequent life-threatening cardiac complications. EDMD classically presents with muscle weakness, early contractures, cardiac conduction abnormalities and cardiomyopathy, although the presence and severity of these manifestations vary by subtype and individual. Associated genes include EMD, LMNA, SYNE1, SYNE2, FHL1, TMEM43, SUN1, SUN2, and TTN, encoding emerin, lamin A/C, nesprin-1, nesprin-2, FHL1, LUMA, SUN1, SUN2, and titin, respectively. The Online Mendelian Inheritance in Man database recognizes subtypes 1 through 7, which captures most but not all of the associated genes. Genetic diagnosis is essential whenever available, but traditional diagnostic tools can help steer the evaluation toward EDMD and assist with interpretation of equivocal genetic test results. Management is primarily supportive, but it is important to monitor patients closely, especially for potential cardiac complications. There is a high potential for progress in the treatment of EDMD in the coming years.
Collapse
Affiliation(s)
- Scott A Heller
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - Renata Shih
- Congenital Heart Center, University of Florida College of Medicine, Gainesville, Florida
| | - Raghav Kalra
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida
| | - Peter B Kang
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida.,Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida.,Genetics Institute and Myology Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Loo TH, Ye X, Chai RJ, Ito M, Bonne G, Ferguson-Smith AC, Stewart CL. The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating drosha activity. eLife 2019; 8:e49485. [PMID: 31686651 PMCID: PMC6853637 DOI: 10.7554/elife.49485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/27/2019] [Indexed: 01/13/2023] Open
Abstract
Here we show that a major muscle specific isoform of the murine LINC complex protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like one antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that encodes the retrotransposon-like one protein (RTL1), which is also required for muscle regeneration and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate gene expression during muscle regeneration by controlling miRNA processing. This provides new insights into the molecular pathology underlying muscular dystrophies and how the LINC complex may regulate mechanosignaling.
Collapse
Affiliation(s)
- Tsui Han Loo
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Xiaoqian Ye
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Ruth Jinfen Chai
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Mitsuteru Ito
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Gisèle Bonne
- Center of Research in Myology, Institut de MyologieSorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, CNRS FRE 3617ParisFrance
| | | | - Colin L Stewart
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| |
Collapse
|
7
|
Li P, Zhang L, Zhao N, Xiong Q, Zhou YA, Wu C, Xiao H. A Novel α-Galactosidase A Splicing Mutation Predisposes to Fabry Disease. Front Genet 2019; 10:60. [PMID: 30853972 PMCID: PMC6396734 DOI: 10.3389/fgene.2019.00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Fabry disease (FD) is a rare X-linked α-galactosidase A (GLA) deficiency, resulting in progressive lysosomal accumulation of globotriaosylceramide (Gb3) in a variety of cell types. Here, we report a novel splicing mutation (c.801 + 1G > A) that results in alternative splicing in GLA of a FD patient with variable phenotypic presentations of renal involvement. Sequencing of the RT-PCR products from the patient's blood sample reveals a 36-nucleotide (nt) insertion exists at the junction between exons 5 and 6 of the GLA cDNA. Splicing assay indicates that the mutated minigene produces an alternatively spliced transcript which causes a frameshift resulting in an early termination of protein expression. Immunofluorescence shows puncta in cytoplasm for mutated GLA whereas uniform staining small dots evenly distributed inside cytoplasm for wild type GLA in transfected HeLa cells. The increased senescence and decreased GLA enzyme activity suggest that the abnormalities might be due to the altered localization which further might result from the lack of the C-terminal end of GLA. Our study reveals the pathogenesis of splicing mutation c.801 + 1G > A to FD and provides scientific foundation for accurate diagnosis and precise medical intervention for FD.
Collapse
Affiliation(s)
- Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Lijuan Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Na Zhao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yong-An Zhou
- Bluttransfusion, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Han Xiao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
8
|
Nesprin-1/2: roles in nuclear envelope organisation, myogenesis and muscle disease. Biochem Soc Trans 2018; 46:311-320. [PMID: 29487227 DOI: 10.1042/bst20170149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 02/05/2023]
Abstract
Nesprins (nuclear envelope spectrin repeat proteins) are multi-isomeric scaffolding proteins. Nesprin-1 and -2 are highly expressed in skeletal and cardiac muscles and together with SUN (Sad1p/UNC84) domain-containing proteins form the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex at the nuclear envelope in association with lamin A/C and emerin. Mutations in nesprin-1/2 have been found in patients with autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) as well as dilated cardiomyopathy (DCM). Several lines of evidence indicate that compromised LINC complex function is the critical step leading to muscle disease. Here, we review recent advances in our understanding of the functions of nesprin-1/2 in the LINC complex and mechanistic insights into how mutations in nesprin-1/2 lead to nesprin-related muscle diseases, in particular DCM and EDMD.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Nuclear envelope links to a wide range of disorders, including several myopathies and neuropathies over the past 2 decades, has spurred research leading to a completely changed view of this important cellular structure and its functions. However, the many functions now assigned to the nuclear envelope make it increasingly hard to determine which functions underlie these disorders. RECENT FINDINGS New nuclear envelope functions in genome organization, regulation and repair, signaling, and nuclear and cellular mechanics have been added to its classical barrier function. Arguments can be made for any of these functions mediating abnormality in nuclear envelope disorders and data exist supporting many. Moreover, transient and/or distal nuclear envelope connections to other cellular proteins and structures may increase the complexity of these disorders. SUMMARY Although the increased understanding of nuclear envelope functions has made it harder to distinguish specific causes of nuclear envelope disorders, this is because it has greatly expanded the spectrum of possible mechanisms underlying them. This change in perspective applies well beyond the known nuclear envelope disorders, potentially implicating the nuclear envelope in a much wider range of myopathies and neuropathies.
Collapse
|
10
|
Zhou C, Li C, Zhou B, Sun H, Koullourou V, Holt I, Puckelwartz MJ, Warren DT, Hayward R, Lin Z, Zhang L, Morris GE, McNally EM, Shackleton S, Rao L, Shanahan CM, Zhang Q. Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. Hum Mol Genet 2017; 26:2258-2276. [PMID: 28398466 PMCID: PMC5458344 DOI: 10.1093/hmg/ddx116] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/22/2017] [Indexed: 02/05/2023] Open
Abstract
Nesprins-1 and -2 are highly expressed in skeletal and cardiac muscle and together with SUN (Sad1p/UNC84)-domain containing proteins and lamin A/C form the LInker of Nucleoskeleton-and-Cytoskeleton (LINC) bridging complex at the nuclear envelope (NE). Mutations in nesprin-1/2 have previously been found in patients with autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD) as well as dilated cardiomyopathy (DCM). In this study, three novel rare variants (R8272Q, S8381C and N8406K) in the C-terminus of the SYNE1 gene (nesprin-1) were identified in seven DCM patients by mutation screening. Expression of these mutants caused nuclear morphology defects and reduced lamin A/C and SUN2 staining at the NE. GST pull-down indicated that nesprin-1/lamin/SUN interactions were disrupted. Nesprin-1 mutations were also associated with augmented activation of the ERK pathway in vitro and in hearts in vivo. During C2C12 muscle cell differentiation, nesprin-1 levels are increased concomitantly with kinesin light chain (KLC-1/2) and immunoprecipitation and GST pull-down showed that these proteins interacted via a recently identified LEWD domain in the C-terminus of nesprin-1. Expression of nesprin-1 mutants in C2C12 cells caused defects in myoblast differentiation and fusion associated with dysregulation of myogenic transcription factors and disruption of the nesprin-1 and KLC-1/2 interaction at the outer nuclear membrane. Expression of nesprin-1α2 WT and mutants in zebrafish embryos caused heart developmental defects that varied in severity. These findings support a role for nesprin-1 in myogenesis and muscle disease, and uncover a novel mechanism whereby disruption of the LINC complex may contribute to the pathogenesis of DCM.
Collapse
Affiliation(s)
- Can Zhou
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK.,Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chen Li
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK.,Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Huaqin Sun
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education.,SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Victoria Koullourou
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK.,Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10?7AG, UK and Institute for Science and Technology in Medicine, Keele University, ST5?5BG, UK
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Derek T Warren
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| | - Robert Hayward
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| | - Ziyuan Lin
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education.,SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10?7AG, UK and Institute for Science and Technology in Medicine, Keele University, ST5?5BG, UK
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sue Shackleton
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1?9HN, UK
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Catherine M Shanahan
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| | - Qiuping Zhang
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| |
Collapse
|
11
|
Abstract
Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
12
|
Turgay Y, Medalia O. The structure of lamin filaments in somatic cells as revealed by cryo-electron tomography. Nucleus 2017. [PMID: 28635493 DOI: 10.1080/19491034.2017.1337622] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Metazoan nuclei are equipped with nuclear lamina - a thin layer of intermediate filaments (IFs) mostly built of nuclear lamins facing the inner nuclear membrane (INM). The nuclear lamina serves as an interaction hub for INM-proteins, soluble nuclear factors and DNA. It confers structural and mechanical stability to the nucleus, transduces mechanical forces and biochemical signals across the nuclear envelope (NE) and regulates the organization of chromatin. By using cryo-electron tomography (cryo-ET), we recently provided an unprecedented view into the 3D organization of lamin filaments within the lamina meshwork in mammalian somatic cells. Through implementation of averaging procedures, we resolved the rod and globular Ig-fold domains of lamin filaments. The density maps suggested that they assemble into 3.5 nm thick filaments. Our analysis revealed interesting structural differences between nucleoplasmic and cytoplasmic intermediate filaments, raising the question of which molecular cues define their assembly modes inside the cell.
Collapse
Affiliation(s)
- Y Turgay
- a Department of Biochemistry , University of Zurich , Zurich , Switzerland
| | - O Medalia
- a Department of Biochemistry , University of Zurich , Zurich , Switzerland.,b Department of Life Sciences and the National Institute for Biotechnology in the Negev , Ben-Gurion University , Beer-Sheva , Israel
| |
Collapse
|
13
|
Barker AR, McIntosh KV, Dawe HR. Centrosome positioning in non-dividing cells. PROTOPLASMA 2016; 253:1007-1021. [PMID: 26319517 DOI: 10.1007/s00709-015-0883-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 06/04/2023]
Abstract
Centrioles and centrosomes are found in almost all eukaryotic cells, where they are important for organising the microtubule cytoskeleton in both dividing and non-dividing cells. The spatial location of centrioles and centrosomes is tightly controlled and, in non-dividing cells, plays an important part in cell migration, ciliogenesis and immune cell functions. Here, we examine some of the ways that centrosomes are connected to other organelles and how this impacts on cilium formation, cell migration and immune cell function in metazoan cells.
Collapse
Affiliation(s)
- Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London
| | - Kate V McIntosh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
14
|
Simple Separation of Functionally Distinct Populations of Lamin-Binding Proteins. Methods Enzymol 2016. [PMID: 26778555 DOI: 10.1016/bs.mie.2015.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The inner membrane of the nuclear envelope (NE) is home to hundreds of integral membrane proteins (NE transmembrane proteins, "NETs") with conserved or tissue-specific roles in genome organization and nuclear function. Nearly all characterized NETs bind A- or B-type lamins directly. However, hundreds of NETs remain uncharacterized, collectively posing an enormous gap that must be bridged to understand nuclear function and genome biology. We provide technically simple protocols for the separation and recovery of functionally distinct populations of NETs and A-type lamins. This protocol was developed for emerin, an inner nuclear membrane protein that binds lamins and barrier-to-autointegration factor (BANF1) as a component of nuclear lamina structure, and has diverse roles in nuclear assembly, signaling, and gene regulation. This protocol separates easily solubilized ("easy") populations of nuclear lamina proteins (emerin, lamin A, BAF) from "sonication-dependent" populations. Depending on cell type, the "easy" and "sonication-dependent" fractions each contain up to about half the available emerin, A-type lamins, and BAF, whereas B-type lamins and histone H3 are predominantly sonication dependent. The two populations of emerin have distinct posttranslational modifications, and only one population associates with BAF. This method may be useful for functional screening or analysis of other lamin-associated proteins, including novel NETs emerging from proteomic studies.
Collapse
|
15
|
Abstract
The nuclear envelope consists of 2 membranes separated by 30–50 nm, but how the 2 membranes are evenly spaced has been an open question in the field. Nuclear envelope bridges composed of inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins have been proposed to set and regulate nuclear envelope spacing. We tested this hypothesis directly by examining nuclear envelope spacing in Caenorhabditis elegans animals lacking UNC-84, the sole somatic SUN protein. SUN/KASH bridges are not required to maintain even nuclear envelope spacing in most tissues. However, UNC-84 is required for even spacing in body wall muscle nuclei. Shortening UNC-84 by 300 amino acids did not narrow the nuclear envelope space. While SUN proteins may play a role in maintaining nuclear envelope spacing in cells experiencing forces, our data suggest they are dispensable in most cells.
Collapse
Affiliation(s)
- Natalie E Cain
- a Department of Molecular and Cellular Biology ; University of California Davis ; Davis , CA USA
| | | |
Collapse
|
16
|
Heading in the Right Direction: Understanding Cellular Orientation Responses to Complex Biophysical Environments. Cell Mol Bioeng 2015; 9:12-37. [PMID: 26900408 PMCID: PMC4746215 DOI: 10.1007/s12195-015-0422-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/10/2015] [Indexed: 01/09/2023] Open
Abstract
The aim of cardiovascular regeneration is to mimic the biological and mechanical functioning of tissues. For this it is crucial to recapitulate the in vivo cellular organization, which is the result of controlled cellular orientation. Cellular orientation response stems from the interaction between the cell and its complex biophysical environment. Environmental
biophysical cues are continuously detected and transduced to the nucleus through entwined mechanotransduction pathways. Next to the biochemical cascades invoked by the mechanical stimuli, the structural mechanotransduction pathway made of focal adhesions and the actin cytoskeleton can quickly transduce the biophysical signals directly to the nucleus. Observations linking cellular orientation response to biophysical cues have pointed out that the anisotropy and cyclic straining of the substrate influence cellular orientation. Yet, little is known about the mechanisms governing cellular orientation responses in case of cues applied separately and in combination. This review provides the state-of-the-art knowledge on the structural mechanotransduction pathway of adhesive cells, followed by an overview of the current understanding of cellular orientation responses to substrate anisotropy and uniaxial cyclic strain. Finally, we argue that comprehensive understanding of cellular orientation in complex biophysical environments requires systematic approaches based on the dissection of (sub)cellular responses to the individual cues composing the biophysical niche.
Collapse
|
17
|
Li P, Noegel AA. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export. Nucleic Acids Res 2015; 43:9874-88. [PMID: 26476453 PMCID: PMC4787764 DOI: 10.1093/nar/gkv1058] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/01/2015] [Indexed: 11/12/2022] Open
Abstract
Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153.
Collapse
Affiliation(s)
- Ping Li
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| |
Collapse
|
18
|
Meinke P, Schirmer EC. LINC'ing form and function at the nuclear envelope. FEBS Lett 2015; 589:2514-21. [PMID: 26096784 DOI: 10.1016/j.febslet.2015.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 11/15/2022]
Abstract
The nuclear envelope is an amazing piece of engineering. On one hand it is built like a mediaeval fortress with filament systems reinforcing its membrane walls and its double membrane structure forming a lumen like a castle moat. On the other hand its structure can adapt while maintaining its integrity like a reed bending in a river. Like a fortress it has guarded drawbridges in the nuclear pore complexes, but also has other mechanical means of communication. All this is enabled largely because of the LINC complex, a multi-protein structure that connects the intermediate filament nucleoskeleton across the lumen of the double membrane nuclear envelope to multiple cytoplasmic filament systems that themselves could act simultaneously both like mediaeval buttresses and like lines on a suspension bridge. Although many details of the greater LINC structure remain to be discerned, a number of recent findings are giving clues as to how its structural organization can yield such striking dynamic yet stable properties. Combining double- and triple-helical coiled-coils, intrinsic disorder and order, tissue-specific components, and intermediate filaments enables these unique properties.
Collapse
Affiliation(s)
- Peter Meinke
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Meinke P, Schneiderat P, Srsen V, Korfali N, Lê Thành P, Cowan GJM, Cavanagh DR, Wehnert M, Schirmer EC, Walter MC. Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 2014; 25:127-36. [PMID: 25454731 PMCID: PMC4317192 DOI: 10.1016/j.nmd.2014.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/19/2014] [Accepted: 09/29/2014] [Indexed: 12/02/2022]
Abstract
X-linked female presenting with EDMD1 not explained by uneven X-inactivation. First EDMD blood phenotype with highly lobulated lymphocytes in EDMD1 patient. Found high incidence of spontaneous differentiation in cultured patient myoblasts. Faster proliferation of emerin-null than emerin-positive EDMD1 patient myoblasts. Loss of satellite cells from the above might explain EDMD pathology.
Emery–Dreifuss muscular dystrophy (EDMD) is a neuromuscular disease characterized by early contractures, slowly progressive muscular weakness and life-threatening cardiac arrhythmia that can develop into cardiomyopathy. In X-linked EDMD (EDMD1), female carriers are usually unaffected. Here we present a clinical description and in vitro characterization of a mildly affected EDMD1 female carrying the heterozygous EMD mutation c.174_175delTT; p.Y59* that yields loss of protein. Muscle tissue sections and cultured patient myoblasts exhibited a mixed population of emerin-positive and -negative cells; thus uneven X-inactivation was excluded as causative. Patient blood cells were predominantly emerin-positive, but considerable nuclear lobulation was observed in non-granulocyte cells – a novel phenotype in EDMD. Both emerin-positive and emerin-negative myoblasts exhibited spontaneous differentiation in tissue culture, though emerin-negative myoblasts were more proliferative than emerin-positive cells. The preferential proliferation of emerin-negative myoblasts together with the high rate of spontaneous differentiation in both populations suggests that loss of functional satellite cells might be one underlying mechanism for disease pathology. This could also account for the slowly developing muscle phenotype.
Collapse
Affiliation(s)
- Peter Meinke
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Peter Schneiderat
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Vlastimil Srsen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Nadia Korfali
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Phú Lê Thành
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Graeme J M Cowan
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - David R Cavanagh
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Manfred Wehnert
- Institute of Human Genetics Greifswald, University Medicine, University of Greifswald, Germany (retired)
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Maggie C Walter
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| |
Collapse
|
20
|
Cain NE, Tapley EC, McDonald KL, Cain BM, Starr DA. The SUN protein UNC-84 is required only in force-bearing cells to maintain nuclear envelope architecture. ACTA ACUST UNITED AC 2014; 206:163-72. [PMID: 25023515 PMCID: PMC4107780 DOI: 10.1083/jcb.201405081] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SUN-KASH bridges that connect the nucleoskeleton to the cytoskeleton are only required to maintain nuclear envelope spacing in cells subjected to increased mechanical forces, such as muscle cells. The nuclear envelope (NE) consists of two evenly spaced bilayers, the inner and outer nuclear membranes. The Sad1p and UNC-84 (SUN) proteins and Klarsicht, ANC-1, and Syne homology (KASH) proteins that interact to form LINC (linker of nucleoskeleton and cytoskeleton) complexes connecting the nucleoskeleton to the cytoskeleton have been implicated in maintaining NE spacing. Surprisingly, the NE morphology of most Caenorhabditis elegans nuclei was normal in the absence of functional SUN proteins. Distortions of the perinuclear space observed in unc-84 mutant muscle nuclei resembled those previously observed in HeLa cells, suggesting that SUN proteins are required to maintain NE architecture in cells under high mechanical strain. The UNC-84 protein with large deletions in its luminal domain was able to form functional NE bridges but had no observable effect on NE architecture. Therefore, SUN-KASH bridges are only required to maintain NE spacing in cells subjected to increased mechanical forces. Furthermore, SUN proteins do not dictate the width of the NE.
Collapse
Affiliation(s)
- Natalie E Cain
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Erin C Tapley
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Kent L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Benjamin M Cain
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Daniel A Starr
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| |
Collapse
|
21
|
Affiliation(s)
- Gisèle Bonne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U974, CNRS FRE 3617, Center of Research in Myology, Institut de Myologie, Paris F-75013, France; Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, U.F. Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris F-75013, France.
| |
Collapse
|
22
|
|