1
|
Forgerini M, Gini ALR, Lemos IH, Santos ACS, Bessa MP, Valentini SR, Mastroianni PDC. The Impact of TBXA2R Gene Variants on the Risk of Aspirin-Induced Upper Gastrointestinal Bleeding: A Case-Control Study. Hosp Pharm 2024; 59:666-676. [PMID: 39465093 PMCID: PMC11500220 DOI: 10.1177/00185787241269111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Objective: Upper gastrointestinal bleeding (UGIB) has been identified as a potential adverse drug reaction associated with the use of low-dose aspirin (LDA). This study aimed to investigate the relationship between variants in the TBXA2R gene, which is involved in platelet aggregation, and the risk of UGIB in patients with cardiovascular diseases treated with LDA. Methods: A case-control study was conducted at a Brazilian hospital complex. Three groups were defined: (1) case group (n = 50): patients with cardiovascular disease who used LDA and were diagnosed with UGIB of non-variceal etiology, (2) LDA control group (n = 50): patients with cardiovascular disease who used LDA without developing UGIB, and (3) healthy control group (n = 189). Data were collected through face-to-face interviews, and blood samples were collected for the analysis of Helicobacter pylori infection and genotyping of 3 genetic variants [rs2238631 (C > T), rs4807491 (A > G), and rs1131882 (A > G)]. Results: The case group had a significantly higher frequency of carriers of the rs4807491.G allele compared to the control group of LDA users (P-value = .004). No significant difference was observed in the proportion of carriers of the rs2238631.T and 1131882.G variants between the studied groups. Carriers of rs2238631.T (OR: 4.515, 95% CI: 1.37-14.89) and rs4807491.G allele (OR: 3.232, 95% CI: 1.12-9.37) exhibited a higher risk of UGIB. Conclusion: These findings suggest that the presence of the rs2238631 and rs4807491 variant alleles is associates with a 3- to 4-fold increased risk of UGIB in patients with cardiovascular diseases treated with LDA. Future studies with larger sample sizes should confirm these results and to better identify individuals who may benefit from chronic LDA use.
Collapse
Affiliation(s)
- Marcela Forgerini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Ana Luísa Rodriguez Gini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Isabele Held Lemos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Ana Caroline Silva Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Maria Paula Bessa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Sandro Roberto Valentini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | |
Collapse
|
2
|
Atique Tacla M, de Mello Copelli M, Pairet E, Monlleó IL, Ribeiro EM, Lustosa Mendes E, Helaers R, Vieira TP, Vikkula M, Gil-da-Silva-Lopes VL. Molecular investigation in individuals with orofacial clefts and microphthalmia-anophthalmia-coloboma spectrum. Eur J Hum Genet 2024; 32:1257-1266. [PMID: 37932364 PMCID: PMC11499658 DOI: 10.1038/s41431-023-01488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
This study describes genomic findings among individuals with both orofacial clefts (OC) and microphthalmia/anophthalmia/coloboma (MAC) recorded in the Brazilian Database on Craniofacial Anomalies (BDCA). Chromosomal microarray analysis (CMA) and Whole Exome Sequencing (WES) were performed in 17 individuals with OC-MAC. Clinical interpretation of molecular findings was based on data available at the BDCA and on re-examination. No copy number variants (CNVs) classified as likely pathogenic or pathogenic were detected by CMA. WES allowed a conclusive diagnosis in six individuals (35.29%), two of them with variants in the CHD7 gene, and the others with variants in the TFAP2A, POMT1, PTPN11, and TP63 genes with the following syndromes: CHARGE, CHD7-spectrum, Branchiooculofacial, POMT1-spectrum, LEOPARD, and ADULT. Variants of uncertain significance (VUS) possibly associated to the phenotypes were found in six other individuals. Among the individuals with VUSes, three individuals presented variants in genes associated to defects of cilia structure and/or function, including DYNC2H1, KIAA0586, WDR34, INTU, RPGRIP1L, KIF7, and LMNA. These results show that WES was the most effective molecular approach for OC-MAC in this cohort. This study also reinforces the genetic heterogeneity of OC-MAC, and the importance of genes related to ciliopathies in this phenotype.
Collapse
Affiliation(s)
- Milena Atique Tacla
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Matheus de Mello Copelli
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eleonore Pairet
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Isabella Lopes Monlleó
- Clinical Genetics Service, University Hospital, Medical Genetics Sector, Faculty of Medicine, Federal University of Alagoas - UFAL, Maceió, AL, Brazil
| | | | | | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Tarsis Paiva Vieira
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Vera Lúcia Gil-da-Silva-Lopes
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
3
|
Villacis RAR, Côrtes L, Basso TR, do Canto LM, Souza JS, Aagaard MM, da Cruz Formiga MN, Aguiar S, Achatz MI, Rogatto SR. Germline DNA Damage Repair Gene Alterations in Patients with Metachronous Breast and Colorectal Cancer. Int J Mol Sci 2024; 25:10275. [PMID: 39408606 PMCID: PMC11476855 DOI: 10.3390/ijms251910275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
A hereditary component of breast (BC) and colorectal cancer (CRC) has been described in approximately one-third of these tumor types. BC patients have an increased risk of developing CRC as a second primary tumor and vice versa. Germline genomic variants (NextSeq550, Illumina) were investigated in 24 unrelated BC and/or CRC patients and 7 relatives from 3 index patients. Fifty-six pathogenic or likely pathogenic variants were identified in 19 of 24 patients. We detected single-nucleotide variants (SNVs) in CRC predisposition genes (MLH1 and MUTYH) and other promising candidates (CDK5RAP3, MAD1L1, NOS3, and POLM). Eighteen patients presented SNVs or copy number variants (CNVs) in DNA damage repair genes. We also identified SNVs recently associated with BC or CRC predisposition (PABPC1, TYRO3, MAP3K1, SLC15A4, and LAMA1). The PABPC1c.1255C>T variant was detected in nine unrelated patients. Each patient presented at least one SNV/CNV in a candidate gene, and most had alterations in more than one gene, reinforcing a polygenic model for BC/CRC predisposition. A significant fraction of BC/CRC patients with a family history of these tumors harbored deleterious germline variants in DNA repair genes. Our findings can lead to strategies to improve the diagnosis, genetic counseling, and treatment of patients and their relatives.
Collapse
Affiliation(s)
- Rolando André Rios Villacis
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília-UnB, Brasília 70910-900, DF, Brazil
| | - Luiza Côrtes
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Tocogynecology Graduation Program, Medical School, São Paulo State University UNESP, Botucatu 18618-687, SP, Brazil
| | - Tatiane Ramos Basso
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | - Luisa Matos do Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | | | - Mads Malik Aagaard
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | | | - Samuel Aguiar
- Colorectal Cancer Reference Center, A.C. Camargo Cancer Center, São Paulo 01509-010, SP, Brazil;
| | - Maria Isabel Achatz
- Cancer Genetics Unit, Oncology Branch, Hospital Sirio-Libanês, São Paulo 01308-050, SP, Brazil;
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
- Botucatu Medical School Hospital, São Paulo State University UNESP, Botucatu 18618-687, SP, Brazil
| |
Collapse
|
4
|
Silva AL, Stumpf IMDS, Lacroix LP, Alves DMF, Silveira ALD, Costa SSD, Rosito LPS. Language development in children from a public cochlear implant program. Braz J Otorhinolaryngol 2024; 90:101458. [PMID: 39032465 PMCID: PMC11315129 DOI: 10.1016/j.bjorl.2024.101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE To evaluate the rate of loss to follow-up in a cochlear implant program from the public health system in Southern Brazil as well as the characteristics of hearing loss, sociodemographic, sociocultural and the development of oral language in children with prelingual deafness. METHODS Retrospective cohort study with children who underwent CI surgery between 2010 and 2020. Data was collected through of interviews and review of medical records. The language development assessment was performed using the MUSS, MAIS and IT-MAIS scales. For the classification of language development, we used as parameters the values (mean ± SD) found in a previous national study. From those values, the Z-score for each patient at each hearing age (time of experience with the cochlear implant) was calculated. RESULTS Of the 225 children implanted between 2010-2020, 129 were included in this study. The rate of loss to follow-up in the program was 42.6%. The mean age at first surgery was 40.5 (±16.9) months, with 77.5% of patients having received a unilateral implant. Language results below the expected for hearing age ( CONCLUSIONS Most patients had an elevated mean age at cochlear implantation and there was a high rate of loss to follow-up and low attendance to speech and programming sessions. An overall poor language performance was found for this pediatric cochlear implant program from the public health system in Southern Brazil. LEVEL OF EVIDENCE Level 3 (Non-randomized cohort study).
Collapse
Affiliation(s)
- Alice Lang Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Porto Alegre, RS, Brazil.
| | | | - Laura Prolla Lacroix
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Medicina, Porto Alegre, RS, Brazil
| | | | | | - Sady Selaimen da Costa
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Otorrinolaringologia, Porto Alegre, RS, Brazil
| | - Letícia Petersen Schmidt Rosito
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Otorrinolaringologia, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Medicina, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Tresbach RH, Sperb-Ludwig F, Ligabue-Braun R, Bitencourt FHD, Tonon T, Souza CFMD, Poswar FDO, Leite MEDQ, Amorim T, Porta G, Seda Neto J, Miura IK, Steiner CE, Martins AM, Pessoa ALS, Ribeiro EM, Schwartz IVD. Maple syrup urine disease diagnosis in Brazilian patients by massive parallel sequencing. Mol Genet Metab 2024; 143:108569. [PMID: 39270351 DOI: 10.1016/j.ymgme.2024.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Biallelic pathogenic variants cause maple syrup urine disease (MSUD) in one of the branched-chain α-keto acid dehydrogenase (BCKDH) complex genes (BCKDHA, BCKDHB, DBT, DLD, and PPM1K) leading to the accumulation of leucine, isoleucine, and valine. This study aimed to perform a molecular diagnosis of Brazilian patients with MSUD using gene panels and massive parallel sequencing. Eighteen Brazilian patients with a biochemical diagnosis of MSUD were analyzed by massive parallel sequencing in the Ion PGM Torrent Server using a gene panel with the BCKDHA, BCKDHB, and DBT genes. The American College of Medical Genetics and Genomics guidelines were used to determine variant pathogenicity. Thirteen patients had both variants found by massive parallel sequencing, whereas 3 patients had only one variant found. In 2 patients, the variants were not found by this analysis. These 5 patients required additional Sanger sequencing to confirm their genotype. Twenty-five pathogenic variants were identified in the 3 MSUD-related genes (BCKDHA, BCKDHB, and DBT). Most variants were present in the BCKDHB gene, and no common variants were found. Nine novel variants were observed: c.922 A > G, c.964C > A, and c.1237 T > C in the BCKDHA gene; and c.80_90dup, c.384delA, c.478 A > T, c.528C > G, c.977 T > C, and c.1039-2 A > G in the BCKDHB gene. All novel variants were classified as pathogenic. Molecular modeling of the novel variants indicated that the binding of monomers was affected in the BCKDH complex tetramer, which could lead to a change in the stability and activity of the enzyme. Massive parallel sequencing with targeted gene panels seems to be a cost-effective method that can provide a molecular diagnosis of MSUD.
Collapse
Affiliation(s)
- Rafael Hencke Tresbach
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Fernanda Hendges de Bitencourt
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tássia Tonon
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carolina Fischinger Moura de Souza
- Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano de Oliveira Poswar
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Efigênia de Queiroz Leite
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Tatiana Amorim
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Gilda Porta
- Pedro de Alcântara Children's Institute - Hospital das Clínicas, Medical School, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - João Seda Neto
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Irene Kazumi Miura
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Carlos Eduardo Steiner
- Department of Translational Medicine, School of Medical Sciences, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Ana Maria Martins
- Reference Center for Inborn Errors of Metabolism, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - André Luiz Santos Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, CE, Brazil; Department of Pediatrics, Universidade Estadual do Ceará (UECE), Fortaleza, CE, Brazil
| | | | - Ida Vanessa Doederlein Schwartz
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; InRaras, National Institute of Rare Diseases, Brazil
| |
Collapse
|
6
|
Tolezano GC, Bastos GC, da Costa SS, Scliar MDO, de Souza CFM, Van Der Linden H, Fernandes WLM, Otto PA, Vianna-Morgante AM, Haddad LA, Honjo RS, Yamamoto GL, Kim CA, Rosenberg C, Jorge AADL, Bertola DR, Krepischi ACV. Clinical Characterization and Underlying Genetic Findings in Brazilian Patients with Syndromic Microcephaly Associated with Neurodevelopmental Disorders. Mol Neurobiol 2024; 61:5230-5247. [PMID: 38180615 DOI: 10.1007/s12035-023-03894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Microcephaly is characterized by an occipitofrontal circumference at least two standard deviations below the mean for age and sex. Neurodevelopmental disorders (NDD) are commonly associated with microcephaly, due to perturbations in brain development and functioning. Given the extensive genetic heterogeneity of microcephaly, managing patients is hindered by the broad spectrum of diagnostic possibilities that exist before conducting molecular testing. We investigated the genetic basis of syndromic microcephaly accompanied by NDD in a Brazilian cohort of 45 individuals and characterized associated clinical features, as well as evaluated the effectiveness of whole-exome sequencing (WES) as a diagnostic tool for this condition. Patients previously negative for pathogenic copy number variants underwent WES, which was performed using a trio approach for isolated index cases (n = 31), only the index in isolated cases with parental consanguinity (n = 8) or affected siblings in familial cases (n = 3). Pathogenic/likely pathogenic variants were identified in 19 families (18 genes) with a diagnostic yield of approximately 45%. Nearly 86% of the individuals had global developmental delay/intellectual disability and 51% presented with behavioral disturbances. Additional frequent clinical features included facial dysmorphisms (80%), brain malformations (67%), musculoskeletal (71%) or cardiovascular (47%) defects, and short stature (54%). Our findings unraveled the underlying genetic basis of microcephaly in half of the patients, demonstrating a high diagnostic yield of WES for microcephaly and reinforcing its genetic heterogeneity. We expanded the phenotypic spectrum associated with the condition and identified a potentially novel gene (CCDC17) for congenital microcephaly.
Collapse
Affiliation(s)
- Giovanna Cantini Tolezano
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Giovanna Civitate Bastos
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Marília de Oliveira Scliar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Carolina Fischinger Moura de Souza
- Postgraduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Paulo Alberto Otto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Angela M Vianna-Morgante
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Luciana Amaral Haddad
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rachel Sayuri Honjo
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Guilherme Lopes Yamamoto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Chong Ae Kim
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Alexander Augusto de Lima Jorge
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
7
|
Silva NSB, Bourguiba-Hachemi S, Ciriaco VAO, Knorst SHY, Carmo RT, Masotti C, Meyer D, Naslavsky MS, Duarte YAO, Zatz M, Gourraud PA, Limou S, Castelli EC, Vince N. A multi-ethnic reference panel to impute HLA classical and non-classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil. HLA 2024; 103:e15543. [PMID: 38837862 DOI: 10.1111/tan.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome-wide association studies have identified numerous disease-associated SNPs within this region. However, these associations do not fully capture the immune-biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi-ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole-genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross-validation of these reference panels, the multi-ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non-classical, MICA, MICB and HLA-H genes, previously unavailable for multi-ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA-B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.
Collapse
Affiliation(s)
- Nayane S B Silva
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University, Botucatu, State of São Paulo, Brazil
- Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, State of São Paulo, Brazil
| | - Sonia Bourguiba-Hachemi
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Viviane A O Ciriaco
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University, Botucatu, State of São Paulo, Brazil
| | - Stefan H Y Knorst
- Department of Molecular Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Ramon T Carmo
- Department of Molecular Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Cibele Masotti
- Department of Molecular Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Michel S Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Yeda A O Duarte
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
- Medical-Surgical Nursing Department, School of Nursing, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Pierre-Antoine Gourraud
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Sophie Limou
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University, Botucatu, State of São Paulo, Brazil
- Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, State of São Paulo, Brazil
| | - Nicolas Vince
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| |
Collapse
|
8
|
Riccio C, Jansen ML, Guo L, Ziegler A. Variant effect predictors: a systematic review and practical guide. Hum Genet 2024; 143:625-634. [PMID: 38573379 PMCID: PMC11098935 DOI: 10.1007/s00439-024-02670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Large-scale association analyses using whole-genome sequence data have become feasible, but understanding the functional impacts of these associations remains challenging. Although many tools are available to predict the functional impacts of genetic variants, it is unclear which tool should be used in practice. This work provides a practical guide to assist in selecting appropriate tools for variant annotation. We conducted a MEDLINE search up to November 10, 2023, and included tools that are applicable to a broad range of phenotypes, can be used locally, and have been recently updated. Tools were categorized based on the types of variants they accept and the functional impacts they predict. Sequence Ontology terms were used for standardization. We identified 118 databases and software packages, encompassing 36 variant types and 161 functional impacts. Combining only three tools, namely SnpEff, FAVOR, and SparkINFERNO, allows predicting 99 (61%) distinct functional impacts. Thirty-seven tools predict 89 functional impacts that are not supported by any other tool, while 75 tools predict pathogenicity and can be used within the ACMG/AMP guidelines in a clinical context. We launched a website allowing researchers to select tools based on desired variants and impacts. In summary, more than 100 tools are already available to predict approximately 160 functional impacts. About 60% of the functional impacts can be predicted by the combination of three tools. Unexpectedly, recent tools do not predict more impacts than older ones. Future research should allow predicting the functionality of so far unsupported variant types, such as gene fusions.URL: https://cardio-care.shinyapps.io/VEP_Finder/ .Registration: OSF Registries on November 10, 2023, https://osf.io/s2gct .
Collapse
Affiliation(s)
- Cristian Riccio
- Cardio-CARE, Medizincampus Davos, Herman-Burchard-Str. 1, Davos Wolfgang, 7265, Davos, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Max L Jansen
- Cardio-CARE, Medizincampus Davos, Herman-Burchard-Str. 1, Davos Wolfgang, 7265, Davos, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Linlin Guo
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- University Center of Cardiovascular Science & Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Ziegler
- Cardio-CARE, Medizincampus Davos, Herman-Burchard-Str. 1, Davos Wolfgang, 7265, Davos, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- University Center of Cardiovascular Science & Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
9
|
Nunes N, Carvalho Nunes B, Zamariolli M, Cordeiro de Queiroz Soares D, Caires dos Santos L, Gollo Dantas A, Ayres Meloni V, Iole Belangero S, Gil-Da-Silva-Lopes VL, Ae Kim C, Melaragno MI. Variants in Candidate Genes for Phenotype Heterogeneity in Patients with the 22q11.2 Deletion Syndrome. Genet Res (Camb) 2024; 2024:5549592. [PMID: 38586596 PMCID: PMC10998724 DOI: 10.1155/2024/5549592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome with a broad and heterogeneous phenotype, even though most of the deletions present similar sizes, involving ∼3 Mb of DNA. In a relatively large population of a Brazilian 22q11.2DS cohort (60 patients), we investigated genetic variants that could act as genetic modifiers and contribute to the phenotypic heterogeneity, using a targeted NGS (Next Generation Sequencing) with a specific Ion AmpliSeq panel to sequence nine candidate genes (CRKL, MAPK1, HIRA, TANGO2, PI4KA, HDAC1, ZDHHC8, ZFPM2, and JAM3), mapped in and outside the 22q11.2 hemizygous deleted region. In silico prediction was performed, and the whole-genome sequencing annotation analysis package (WGSA) was used to predict the possible pathogenic effect of single nucleotide variants (SNVs). For the in silico prediction of the indels, we used the genomic variants filtered by a deep learning model in NGS (GARFIELD-NGS). We identified six variants, 4 SNVs and 2 indels, in MAPK1, JAM3, and ZFPM2 genes with possibly synergistic deleterious effects in the context of the 22q11.2 deletion. Our results provide the opportunity for the discovery of the co-occurrence of genetic variants with 22q11.2 deletions, which may influence the patients´ phenotype.
Collapse
Affiliation(s)
- Natalia Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz Carvalho Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Leonardo Caires dos Santos
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Anelisa Gollo Dantas
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Lúcia Gil-Da-Silva-Lopes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Chong Ae Kim
- Genetics Unit, Instituto da Criança, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
de Lima Pizzico F, Beatriz Máximo R, Hirata MH, Monteiro Ferreira G. Mapping the APOE structurally on missense variants in elderly Brazilians. J Biomol Struct Dyn 2024:1-9. [PMID: 38520131 DOI: 10.1080/07391102.2024.2328743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat, with familial hypercholesterolemia (FH) being a key genetic contributor. The apolipoprotein E (APOE) gene plays a vital role in lipid metabolism, and its variants are associated with CVD risk. This study explores prevalent APOE variants (p.R163C, p.R176C, p.R246C and p.V254E) using genetic and structural analyses. The research, initiated by identifying high-frequency APOE variants through the ABraOM database, utilizes homology modeling and molecular dynamics (MD) simulations to understand the structural consequences. The major lipid-binding region, a critical domain for lipid metabolism, was a focal point. Structural dynamics, including principal component analyses and domain movement analyses, highlighted distinct patterns in APOE variants compared to the wild type (WT). Results revealed significant differences in the structural behavior of variants, particularly in the Major lipid-binding region. The identification of an 'elbow' structure with two states (Elbow I and Elbow II) provided insights into conformational changes. Notably, variants exhibited unique patterns in hydrogen bonding (hb) and hydrophobic interactions, indicating potential functional consequences. The study further associated APOE variants with clinical outcomes, including cognitive impairment and cholesterol levels. Specific variants demonstrated correlations with cognitive decline and variations in lipid profiles, emphasizing their relevance to cardiovascular and neurobiological health. In conclusion, this integrated approach enhances our understanding of APOE variants, shedding light on their role in lipid metabolism and cardiovascular health. The identified structural 'elbows' and their association with clinical outcomes offer a nuanced perspective, guiding future research toward targeted interventions for diseases linked to lipid metabolism and neurobiology.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Filipe de Lima Pizzico
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rebeca Beatriz Máximo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Vieira IA, Pezzi EH, Bandeira IC, Reis LB, de Araújo Rocha YM, Fernandes BV, Siebert M, Miyamoto KN, Siqueira MB, Achatz MI, Galvão HDCR, Garcia FADO, Campacci N, Carraro DM, Formiga MN, Vianna FSL, Palmero EI, Macedo GS, Ashton-Prolla P. Functional pri-miR-34b/c rs4938723 and KRAS 3'UTR rs61764370 SNPs: Novel phenotype modifiers in Li-Fraumeni Syndrome? Gene 2024; 898:148069. [PMID: 38070788 DOI: 10.1016/j.gene.2023.148069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE Li-Fraumeni Syndrome (LFS) is a rare cancer predisposing condition caused by germline pathogenic TP53 variants, in which core tumors comprise sarcomas, breast, brain and adrenocortical neoplasms. Clinical manifestations are highly variable in carriers of the Brazilian germline founder variant TP53 p.R337H, possibly due to the influence of modifier genes such as miRNA genes involved in the regulation of the p53 pathway. Herein, we investigated the potential phenotypic effects of two miRNA-related functional SNPs, pri-miR-34b/c rs4938723 and 3'UTR KRAS rs61764370, in a cohort of 273 LFS patients from Southern and Southeastern Brazil. METHODS The genotyping of selected SNPs was performed by TaqMan® allelic discrimination and subsequently custom TaqMan® genotyping results were confirmed by Sanger sequencing in all SNP-positive LFS patients. RESULTS Although the KRAS SNP showed no effect as a phenotype modulator, the rs4938723 CC genotype was significantly associated with development of LFS non-core tumors (first tumor diagnosis) in p.R337H carriers (p = 0.039). Non-core tumors were also more frequently diagnosed in carriers of germline TP53 DNA binding domain variants harboring the rs4938723 C variant allele. Previous studies described pri-miR-34b/c rs4938723 C as a risk allele for sporadic occurrence of thyroid and prostate cancers (non-core tumors of the LFS spectrum). CONCLUSION With this study, we presented additional evidence about the importance of analyzing miRNA genes that could indirectly regulate p53 expression, and, therefore, may modulate the LFS phenotype, such as those of the miR-34 family.
Collapse
Affiliation(s)
- Igor Araujo Vieira
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Health School, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, Brazil.
| | - Eduarda Heidrich Pezzi
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Larissa Brussa Reis
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Yasminne Marinho de Araújo Rocha
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Vieira Fernandes
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Siebert
- Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Monique Banik Siqueira
- Health School, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, Brazil
| | - Maria I Achatz
- Centro de Oncologia, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | - Natalia Campacci
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Genomic Medicine Service from Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | | | | | - Fernanda Sales Luiz Vianna
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Genetics, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Edenir Inez Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Department of Genetics, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Gabriel S Macedo
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Hospital Moinhos de Vento (HMV), Porto Alegre, Rio Grande do Sul, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Ashton-Prolla
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Genetics, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Medical Genetics Service, HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Agaoglu NB, Unal B, Hayes CP, Walker M, Ng OH, Doganay L, Can ND, Rana HQ, Ghazani AA. Genomic disparity impacts variant classification of cancer susceptibility genes in Turkish breast cancer patients. Cancer Med 2024; 13:e6852. [PMID: 38308423 PMCID: PMC10905328 DOI: 10.1002/cam4.6852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE Turkish genome is underrepresented in large genomic databases. This study aims to evaluate the effect of allele frequency in the Turkish population in determining the clinical utility of germline findings in breast cancer, including invasive lobular carcinoma (ILC), mixed invasive ductal and lobular carcinoma (IDC-L), and ductal carcinoma (DC). METHODS Two clinic-based cohorts from the Umraniye Research and Training Hospital (URTH) were used in this study: a cohort consisting of 132 women with breast cancer and a non-cancer cohort consisting of 492 participants. The evaluation of the germline landscape was performed by analysis of 27 cancer genes. The frequency and type of variants in the breast cancer cohort were compared to those in the non-cancer cohort to investigate the effect of population genetics. The variant allele frequencies in Turkish Variome and gnomAD were statistically evaluated. RESULTS The genetic analysis identified 121 variants in the breast cancer cohort (actionable = 32, VUS = 89) and 223 variants in the non-cancer cohort (actionable = 25, VUS = 188). The occurrence of 21 variants in both suggested a possible genetic population effect. Evaluation of allele frequency of 121 variants from the breast cancer cohort showed 22% had a significantly higher value in Turkish Variome compared to gnomAD (p < 0.0001, 95% CI) with a mean difference of 60 times (ranging from 1.37-354.4). After adjusting for variant allele frequency using the ancestry-appropriate database, 6.7% (5/75) of VUS was reclassified to likely benign. CONCLUSION To our knowledge, this is the first study of population genetic effects in breast cancer subtypes in Turkish women. Our findings underscore the need for a large genomic database representing Turkish population-specific variants. It further highlights the significance of the ancestry-appropriate population database for accurate variant assessment in clinical settings.
Collapse
Affiliation(s)
- Nihat B. Agaoglu
- Department of Medical Genetics, Division of Cancer GeneticsUmraniye Training and Research HospitalIstanbulTurkey
| | - Busra Unal
- Department of Medical Genetics, Division of Cancer GeneticsUmraniye Training and Research HospitalIstanbulTurkey
- Division of GeneticsBrigham and Women's HospitalBostonMassachusettsUSA
| | - Connor P. Hayes
- Division of GeneticsBrigham and Women's HospitalBostonMassachusettsUSA
| | - McKenzie Walker
- Division of GeneticsBrigham and Women's HospitalBostonMassachusettsUSA
| | - Ozden Hatirnaz Ng
- Department of Medical Biology, School of MedicineAcibadem UniversityIstanbulTurkey
| | - Levent Doganay
- Department of Medical Genetics, Division of Cancer GeneticsUmraniye Training and Research HospitalIstanbulTurkey
| | - Nisan D. Can
- Department of Molecular Biology Genetics and BiotechnologyIstanbul Technical UniversityIstanbulTurkey
| | - Huma Q. Rana
- Division of Cancer Genetics and PreventionDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Arezou A. Ghazani
- Division of GeneticsBrigham and Women's HospitalBostonMassachusettsUSA
- Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
13
|
Vieira IA, Viola GD, Pezzi EH, Kowalski TW, Fernandes BV, Andreis TF, Bom N, Sonnenstrahl G, Rocha YMDA, Corrêa BDS, Donatti LM, Sant’Anna GDS, Corleta HVE, Brum IS, Rosset C, Vianna FSL, Macedo GS, Palmero EI, Ashton-Prolla P. Exploring the frequency of a TP53 polyadenylation signal variant in tumor DNA from patients diagnosed with lung adenocarcinomas, sarcomas and uterine leiomyomas. Genet Mol Biol 2024; 46:e20230133. [PMID: 38252059 PMCID: PMC10802224 DOI: 10.1590/1678-4685-gmb-2023-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 01/23/2024] Open
Abstract
The TP53 3'UTR variant rs78378222 A>C has been detected in different tumor types as a somatic alteration that reduces p53 expression through modification of polyadenylation and miRNA regulation. Its prevalence is not yet known in all tumors. Herein, we examine tumor tissue prevalence of rs7837822 in Brazilian cohorts of patients from south and southeast regions diagnosed with lung adenocarcinoma (LUAD, n=586), sarcoma (SARC, n=188) and uterine leiomyoma (ULM, n=41). The minor allele (C) was identified in heterozygosity in 6/586 LUAD tumors (prevalence = 1.02 %) and none of the SARC and ULM samples. Additionally, next generation sequencing analysis revealed that all variant-positive tumors (n=4) with sample availability had additional pathogenic or likely pathogenic somatic variants in the TP53 coding regions. Among them, 3/4 (75 %) had the same pathogenic or likely pathogenic sequence variant (allele frequency <0.05 in tumor DNA) namely c.751A>C (p.Ile251Leu). Our results indicate a low somatic prevalence of rs78378222 in LUAD, ULM and SARC tumors from Brazilian patients, which suggests that no further analysis of this variant in the specific studied regions of Brazil is warranted. However, these findings should not exclude tumor molecular testing of this TP53 3'UTR functional variant for different populations.
Collapse
Affiliation(s)
- Igor Araujo Vieira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade do Vale do Rio dos Sinos (UNISINOS), Escola de Saúde, São Leopoldo, RS, Brazil
| | - Guilherme Danielski Viola
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Eduarda Heidrich Pezzi
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Genética Médica e Populacional, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Sistema Nacional de Informações sobre Agentes Teratogênicos (SIAT), Porto Alegre, RS, Brazil
- Complexo de Ensino Superior de Cachoeirinha (CESUCA), Cachoeirinha, RS, Brazil
| | - Bruna Vieira Fernandes
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Tiago Finger Andreis
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Natascha Bom
- Universidade do Vale do Rio dos Sinos (UNISINOS), Curso de Graduação em Biomedicina, São Leopoldo, RS, Brazil
| | - Giulianna Sonnenstrahl
- Universidade do Vale do Rio dos Sinos (UNISINOS), Curso de Graduação em Biomedicina, São Leopoldo, RS, Brazil
| | - Yasminne Marinho de Araújo Rocha
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Bruno da Silveira Corrêa
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Luiza Mezzomo Donatti
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Porto Alegre, RS, Brazil
| | - Gabriela dos Santos Sant’Anna
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
| | - Helena von Eye Corleta
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Ginecologia e Obstetrícia, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Ginecologia e Obstetrícia, Porto Alegre, RS, Brazil
| | - Ilma Simoni Brum
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Porto Alegre, RS, Brazil
| | - Clévia Rosset
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Unidade de Pesquisa Laboratorial (UPL), Porto Alegre, RS, Brazil
| | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Genética Médica e Populacional, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Sistema Nacional de Informações sobre Agentes Teratogênicos (SIAT), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| | - Gabriel S. Macedo
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Programa de Medicina Personalizada, Porto Alegre, RS, Brazil
| | - Edenir Inez Palmero
- Instituto Nacional de Câncer (INCA), Departamento de Genética, Rio de Janeiro, RJ, Brazil
- Hospital de Câncer de Barretos, Centro de Pesquisa em Oncologia Molecular, Barretos, SP, Brazil
| | - Patricia Ashton-Prolla
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Programa de Medicina Personalizada, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Bertani-Torres W, Lezirovitz K, Alencar-Coutinho D, Pardono E, da Costa SS, Antunes LDN, de Oliveira J, Otto PA, Pingault V, Mingroni-Netto RC. Waardenburg Syndrome: The Contribution of Next-Generation Sequencing to the Identification of Novel Causative Variants. Audiol Res 2023; 14:9-25. [PMID: 38391765 PMCID: PMC10886116 DOI: 10.3390/audiolres14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/24/2024] Open
Abstract
Waardenburg syndrome (WS) is characterized by hearing loss and pigmentary abnormalities of the eyes, hair, and skin. The condition is genetically heterogeneous, and is classified into four clinical types differentiated by the presence of dystopia canthorum in type 1 and its absence in type 2. Additionally, limb musculoskeletal abnormalities and Hirschsprung disease differentiate types 3 and 4, respectively. Genes PAX3, MITF, SOX10, KITLG, EDNRB, and EDN3 are already known to be associated with WS. In WS, a certain degree of molecularly undetected patients remains, especially in type 2. This study aims to pinpoint causative variants using different NGS approaches in a cohort of 26 Brazilian probands with possible/probable diagnosis of WS1 (8) or WS2 (18). DNA from the patients was first analyzed by exome sequencing. Seven of these families were submitted to trio analysis. For inconclusive cases, we applied a targeted NGS panel targeting WS/neurocristopathies genes. Causative variants were detected in 20 of the 26 probands analyzed, these being five in PAX3, eight in MITF, two in SOX10, four in EDNRB, and one in ACTG1 (type 2 Baraitser-Winter syndrome, BWS2). In conclusion, in our cohort of patients, the detection rate of the causative variant was 77%, confirming the superior detection power of NGS in genetically heterogeneous diseases.
Collapse
Affiliation(s)
- William Bertani-Torres
- Centro de Estudos sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
- Department of Embryology and Genetics of Malformations, INSERM (Institut National de la Santé et de la Recherche Médicale) UMR (Unité Mixte de Recherche) 1163, Université Paris-Cité and Institut Imagine, 75015 Paris, France
| | - Karina Lezirovitz
- Otorhinolaryngology Lab-LIM 32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Danillo Alencar-Coutinho
- Otorhinolaryngology Lab-LIM 32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Eliete Pardono
- Instituto de Ciências da Saúde, Universidade Paulista UNIP, São Paulo 04026-002, Brazil
- Colégio Miguel de Cervantes, São Paulo 05618-001, Brazil
| | - Silvia Souza da Costa
- Centro de Estudos sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Larissa do Nascimento Antunes
- Centro de Estudos sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Judite de Oliveira
- Médecine Génomique des Maladies Rares, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Paulo Alberto Otto
- Centro de Estudos sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Véronique Pingault
- Department of Embryology and Genetics of Malformations, INSERM (Institut National de la Santé et de la Recherche Médicale) UMR (Unité Mixte de Recherche) 1163, Université Paris-Cité and Institut Imagine, 75015 Paris, France
- Médecine Génomique des Maladies Rares, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Regina Célia Mingroni-Netto
- Centro de Estudos sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
15
|
Maciel VAZ, Maximiano-Alves G, Frezatti RSS, Alves ALDM, Andrade BMA, Leal RDCC, Tomaselli PJ, Reilly MM, Marques W. Unveiling the clinical and electrophysiological profile of CMTX6: Insights from two Brazilian families. J Peripher Nerv Syst 2023; 28:614-619. [PMID: 37849068 DOI: 10.1111/jns.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND AIMS X-linked Charcot-Marie-Tooth disease type 6 (CMTX6) is an extremely rare condition associated with mutations in the PDK3 gene. To date, only three families from different countries have been reported (Australia, South Korea, and Germany). In this study, we sought to provide a comprehensive clinical and electrophysiological characterization of two Brazilian families. METHODS We conducted comprehensive clinical assessments, extensive electrophysiological evaluations, and performed whole-exome sequencing in the probands to investigate the genetic basis of the disease. RESULTS Males in the family carrying the Arg162His mutation displayed early-onset motor and/or sensory axonal neuropathy, absence of tendon jerks, pes cavus, and frequently reported pain. Females in the same family exhibited a milder phenotype of the disease with later onset and some remained asymptomatic into their 50s. In the unrelated family with a single affected male, the clinical presentation was characterized by severe progressive sensorimotor polyneuropathy accompanied by neuropathic pain. INTERPRETATION We report two Brazilian families with CMTX6 including one harboring a previously unpublished variant in the PDK3 gene, which co-segregates with the disease as expected in a X-linked disease. Notably, the clinical presentations across the five families with available descriptions, including our study, share striking similarities. Furthermore, the proximity of the three reported mutations suggests potential functional similarities and common underlying mechanisms. This study contributes to the growing knowledge of CMTX6 and underscores the importance of international collaborations in studying rare genetic disorders.
Collapse
Affiliation(s)
- Victor Augusto Zanesi Maciel
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Gustavo Maximiano-Alves
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Rodrigo Siqueira Soares Frezatti
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Anna Letícia De Moraes Alves
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Bianca Mara Alves Andrade
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Rita De Cassia Carvalho Leal
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Pedro José Tomaselli
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Wilson Marques
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Soares de Sá BC, Moredo LF, Torrezan GT, Fidalgo F, de Araújo ÉSS, Formiga MN, Duprat JP, Carraro DM. Characterization of Potential Melanoma Predisposition Genes in High-Risk Brazilian Patients. Int J Mol Sci 2023; 24:15830. [PMID: 37958811 PMCID: PMC10649559 DOI: 10.3390/ijms242115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Increased genetic risk for melanoma can occur in the context of germline pathogenic variants in high-penetrance genes, such as CDKN2A and CDK4, risk variants in low- to moderate-penetrance genes (MC1R and MITF), and possibly due to variants in emerging genes, such as ACD, TERF2IP, and TERT. We aimed to identify germline variants in high- and low- to moderate-penetrance melanoma risk genes in Brazilian patients with clinical criteria for familial melanoma syndrome. We selected patients with three or more melanomas or melanoma patients from families with three tumors (melanoma and pancreatic cancer) in first- or second-degree relatives. Genetic testing was performed with a nine-gene panel (ACD, BAP1, CDK4, CDKN2A, POT1, TERT, TERF2IP, MC1R, and MITF). In 36 patients, we identified 2 (5.6%) with germline pathogenic variants in CDKN2A and BAP1 and 4 (11.1%) with variants of uncertain significance in the high-penetrance genes. MC1R variants were found in 86.5%, and both red hair color variants and unknown risk variants were enriched in patients compared to a control group. The low frequency of germline pathogenic variants in the high-penetrance genes and the high prevalence of MC1R variants found in our cohort show the importance of the MC1R genotype in determining the risk of melanoma in the Brazilian melanoma-prone families.
Collapse
Affiliation(s)
- Bianca Costa Soares de Sá
- Skin Cancer Department, A.C. Camargo Cancer Center, São Paulo 01529-001, Brazil; (B.C.S.d.S.); (L.F.M.); (J.P.D.)
| | - Luciana Facure Moredo
- Skin Cancer Department, A.C. Camargo Cancer Center, São Paulo 01529-001, Brazil; (B.C.S.d.S.); (L.F.M.); (J.P.D.)
| | - Giovana Tardin Torrezan
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C. Camargo Cancer Center, 440 Taguá St., São Paulo 01508-010, Brazil; (G.T.T.); (F.F.); (É.S.S.d.A.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, 440 Taguá St., São Paulo 01508-010, Brazil
| | - Felipe Fidalgo
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C. Camargo Cancer Center, 440 Taguá St., São Paulo 01508-010, Brazil; (G.T.T.); (F.F.); (É.S.S.d.A.)
| | - Érica Sara Souza de Araújo
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C. Camargo Cancer Center, 440 Taguá St., São Paulo 01508-010, Brazil; (G.T.T.); (F.F.); (É.S.S.d.A.)
| | | | - João Pereira Duprat
- Skin Cancer Department, A.C. Camargo Cancer Center, São Paulo 01529-001, Brazil; (B.C.S.d.S.); (L.F.M.); (J.P.D.)
| | - Dirce Maria Carraro
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C. Camargo Cancer Center, 440 Taguá St., São Paulo 01508-010, Brazil; (G.T.T.); (F.F.); (É.S.S.d.A.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, 440 Taguá St., São Paulo 01508-010, Brazil
| |
Collapse
|
17
|
Dantas NCB, Funari MFA, Lerário AM, Andrade NLM, Rezende RC, Cellin LP, Alves C, Crisostomo LG, Arnhold IJP, Mendonca B, Scalco RC, Jorge AAL. Identification of a second genetic alteration in patients with SHOX deficiency individuals: a potential explanation for phenotype variability. Eur J Endocrinol 2023; 189:387-395. [PMID: 37695807 DOI: 10.1093/ejendo/lvad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Our study aimed to assess the impact of genetic modifiers on the significant variation in phenotype that is observed in individuals with SHOX deficiency, which is the most prevalent monogenic cause of short stature. DESIGN AND METHODS We performed a genetic analysis in 98 individuals from 48 families with SHOX deficiency with a target panel designed to capture the entire SHOX genomic region and 114 other genes that modulate growth and/or SHOX action. We prioritized rare potentially deleterious variants. RESULTS We did not identify potential deleterious variants in the promoter or intronic regions of the SHOX genomic locus. In contrast, we found eight heterozygous variants in 11 individuals from nine families in genes with a potential role as genetic modifiers. In addition to a previously described likely pathogenic (LP) variant in CYP26C1 observed in two families, we identified LP variants in PTHLH and ACAN, and variants of uncertain significance in NPR2, RUNX2, and TP53 in more affected individuals from families with SHOX deficiency. Families with a SHOX alteration restricted to the regulatory region had a higher prevalence of a second likely pathogenic variant (27%) than families with an alteration compromising the SHOX coding region (2.9%, P = .04). CONCLUSION In conclusion, variants in genes related to the growth plate have a potential role as genetic modifiers of the phenotype in individuals with SHOX deficiency. In individuals with SHOX alterations restricted to the regulatory region, a second alteration could be critical to determine the penetrance and expression of the phenotype.
Collapse
Affiliation(s)
- Naiara C B Dantas
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo, SP, Brazil
| | - Antonio M Lerário
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Nathalia L M Andrade
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Raíssa C Rezende
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Laurana P Cellin
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Crésio Alves
- Pediatric Endocrinology Unit, Hospital Universitario Prof. Edgard Santos, Faculdade de Medicina, Universidade Federal da Bahia, 40026-010 Salvador, BA, Brazil
| | - Lindiane G Crisostomo
- Department of Pediatrics, Centro Universitário Sao Camilo, 04263-200 Sao Paulo SP, Brazil
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo, SP, Brazil
| | - Berenice Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo, SP, Brazil
| | - Renata C Scalco
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
- Disciplina de Endocrinologia, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, 01221-020 Sao Paulo SP, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| |
Collapse
|
18
|
Corradi C, Vilar JB, Buzatto VC, de Souza TA, Castro LP, Munford V, De Vecchi R, Galante PAF, Orpinelli F, Miller TLA, Buzzo JL, Sotto MN, Saldiva P, de Oliveira JW, Chaibub SCW, Sarasin A, Menck CFM. Mutational signatures and increased retrotransposon insertions in xeroderma pigmentosum variant skin tumors. Carcinogenesis 2023; 44:511-524. [PMID: 37195263 DOI: 10.1093/carcin/bgad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/06/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023] Open
Abstract
Xeroderma pigmentosum variant (XP-V) is an autosomal recessive disease with an increased risk of developing cutaneous neoplasms in sunlight-exposed regions. These cells are deficient in the translesion synthesis (TLS) DNA polymerase eta, responsible for bypassing different types of DNA lesions. From the exome sequencing of 11 skin tumors of a genetic XP-V patients' cluster, classical mutational signatures related to sunlight exposure, such as C>T transitions targeted to pyrimidine dimers, were identified. However, basal cell carcinomas also showed distinct C>A mutation spectra reflecting a mutational signature possibly related to sunlight-induced oxidative stress. Moreover, four samples carry different mutational signatures, with C>A mutations associated with tobacco chewing or smoking usage. Thus, XP-V patients should be warned of the risk of these habits. Surprisingly, higher levels of retrotransposon somatic insertions were also detected when the tumors were compared with non-XP skin tumors, revealing other possible causes for XP-V tumors and novel functions for the TLS polymerase eta in suppressing retrotransposition. Finally, the expected high mutation burden found in most of these tumors renders these XP patients good candidates for checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Camila Corradi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Juliana B Vilar
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Vanessa C Buzatto
- Molecular Oncology Center, Bioinformatics Laboratory, Hospital Sírio-Libanês, São Paulo, SP 01308-060, Brazil
| | - Tiago A de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
- Tau GC Bioinformatics, Cotia, SP 06711-020, Brazil
| | - Ligia P Castro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Pedro A F Galante
- Molecular Oncology Center, Bioinformatics Laboratory, Hospital Sírio-Libanês, São Paulo, SP 01308-060, Brazil
| | - Fernanda Orpinelli
- Molecular Oncology Center, Bioinformatics Laboratory, Hospital Sírio-Libanês, São Paulo, SP 01308-060, Brazil
| | - Thiago L A Miller
- Molecular Oncology Center, Bioinformatics Laboratory, Hospital Sírio-Libanês, São Paulo, SP 01308-060, Brazil
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - José L Buzzo
- Molecular Oncology Center, Bioinformatics Laboratory, Hospital Sírio-Libanês, São Paulo, SP 01308-060, Brazil
| | - Mirian N Sotto
- Medical School, University of Sao Paulo, Sao Paulo, SP 01246-903, Brazil
| | - Paulo Saldiva
- Medical School, University of Sao Paulo, Sao Paulo, SP 01246-903, Brazil
| | - Jocelânio W de Oliveira
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP 05508-090, Brazil
| | | | - Alain Sarasin
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
19
|
Côrtes L, Basso TR, Villacis RAR, Souza JDS, Jørgensen MMA, Achatz MI, Rogatto SR. Co-Occurrence of Germline Genomic Variants and Copy Number Variations in Hereditary Breast and Colorectal Cancer Patients. Genes (Basel) 2023; 14:1580. [PMID: 37628631 PMCID: PMC10454294 DOI: 10.3390/genes14081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is an autosomal dominant disease associated with a high risk of developing breast, ovarian, and other malignancies. Lynch syndrome is caused by mutations in mismatch repair genes predisposing to colorectal and endometrial cancers, among others. A rare phenotype overlapping hereditary colorectal and breast cancer syndromes is poorly characterized. Three breast and colorectal cancer unrelated patients fulfilling clinical criteria for HBOC were tested by whole exome sequencing. A family history of colorectal cancer was reported in two patients (cases 2 and 3). Several variants and copy number variations were identified, which potentially contribute to the cancer risk or prognosis. All patients presented copy number imbalances encompassing PMS2 (two deletions and one duplication), a known gene involved in the DNA mismatch repair pathway. Two patients showed gains covering the POLE2 (cases 1 and 3), which is associated with DNA replication. Germline potentially damaging variants were found in PTCH1 (patient 3), MAT1A, and WRN (patient 2). Overall, concurrent genomic alterations were described that may increase the risk of cancer appearance in HBOC patients with breast and colorectal cancers.
Collapse
Affiliation(s)
- Luiza Côrtes
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
- Tocogynecoly Graduation Program, Botucatu Medical School, University of São Paulo State—UNESP, Botucatu 18618-687, SP, Brazil
| | - Tatiane Ramos Basso
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
| | - Rolando André Rios Villacis
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília—UnB, Brasília 70910-900, DF, Brazil;
| | | | - Mads Malik Aagaard Jørgensen
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
| | - Maria Isabel Achatz
- Cancer Genetics Unit, Oncology Branch, Hospital Sirio-Libanês, São Paulo 01308-050, SP, Brazil;
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| |
Collapse
|
20
|
Pires SF, Barros JSD, Costa SSD, Carmo GBD, Scliar MDO, Lengert AVH, Boldrini É, Silva SRMD, Vidal DO, Maschietto M, Krepischi ACV. Analysis of the Mutational Landscape of Osteosarcomas Identifies Genes Related to Metastasis and Prognosis and Disrupted Biological Pathways of Immune Response and Bone Development. Int J Mol Sci 2023; 24:10463. [PMID: 37445641 DOI: 10.3390/ijms241310463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
Osteosarcoma (OS) is the most prevalent type of bone tumor, but slow progress has been achieved in disentangling the full set of genomic events involved in its initiation and progression. We assessed by NGS the mutational spectrum of 28 primary OSs from Brazilian patients, and identified 445 potentially deleterious SNVs/indels and 1176 copy number alterations (CNAs). TP53 was the most recurrently mutated gene, with an overall rate of ~60%, considering SNVs/indels and CNAs. The most frequent CNAs (~60%) were gains at 1q21.2q21.3, 6p21.1, and 8q13.3q24.22, and losses at 10q26 and 13q14.3q21.1. Seven cases presented CNA patterns reminiscent of complex events (chromothripsis and chromoanasynthesis). Putative RB1 and TP53 germline variants were found in five samples associated with metastasis at diagnosis along with complex genomic patterns of CNAs. PTPRQ, KNL1, ZFHX4, and DMD alterations were prevalent in metastatic or deceased patients, being potentially indicative of poor prognosis. TNFRSF11B, involved in skeletal system development and maintenance, emerged as a candidate for osteosarcomagenesis due to its biological function and a high frequency of copy number gains. A protein-protein network enrichment highlighted biological pathways involved in immunity and bone development. Our findings reinforced the high genomic OS instability and heterogeneity, and led to the identification of novel disrupted genes deserving further evaluation as biomarkers due to their association with poor outcomes.
Collapse
Affiliation(s)
- Sara Ferreira Pires
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Juliana Sobral de Barros
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Silvia Souza da Costa
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Gabriel Bandeira do Carmo
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Marília de Oliveira Scliar
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | | | - Érica Boldrini
- Barretos Children's Cancer Hospital, Barretos 14784-400, Brazil
| | | | - Daniel Onofre Vidal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos 14784-384, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-884, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
21
|
Tinano FR, Canton APM, Montenegro LR, de Castro Leal A, Faria AG, Seraphim CE, Brauner R, Jorge AA, Mendonca BB, Argente J, Brito VN, Latronico AC. Clinical and Genetic Characterization of Familial Central Precocious Puberty. J Clin Endocrinol Metab 2023; 108:1758-1767. [PMID: 36611250 DOI: 10.1210/clinem/dgac763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
CONTEXT Central precocious puberty (CPP) can have a familial form in approximately one-quarter of the children. The recognition of this inherited condition increased after the identification of autosomal dominant CPP with paternal transmission caused by mutations in the MKRN3 and DLK1 genes. OBJECTIVE We aimed to characterize the inheritance and estimate the prevalence of familial CPP in a large multiethnic cohort; to compare clinical and hormonal features, as well as treatment response to GnRH analogs (GnRHa), in children with distinct modes of transmission; and to investigate the genetic basis of familial CPP. METHODS We retrospectively studied 586 children with a diagnosis of CPP. Patients with familial CPP (n = 276) were selected for clinical and genetic analysis. Data from previous studies were grouped, encompassing sequencing of MKRN3 and DLK1 genes in 204 patients. Large-scale parallel sequencing was performed in 48 individuals from 34 families. RESULTS The prevalence of familial CPP was estimated at 22%, with a similar frequency of maternal and paternal transmission. Pedigree analyses of families with maternal transmission suggested an autosomal dominant inheritance. Clinical and hormonal features, as well as treatment response to GnRHa, were similar among patients with different forms of transmission of familial CPP. MKRN3 loss-of-function mutations were the most prevalent cause of familial CPP, followed by DLK1 loss-of-function mutations, affecting, respectively, 22% and 4% of the studied families; both affected exclusively families with paternal transmission. Rare variants of uncertain significance were identified in CPP families with maternal transmission. CONCLUSION We demonstrated a similar prevalence of familial CPP with maternal and paternal transmission. MKRN3 and DLK1 loss-of-function mutations were the major causes of familial CPP with paternal transmission.
Collapse
Affiliation(s)
- Flávia Rezende Tinano
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Ana Pinheiro Machado Canton
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Luciana R Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Andrea de Castro Leal
- Departamento de Saúde Integrada, Universidade do Estado do Pará (UEPA), Santarém, 68040-090 Pará, Brasil
| | - Aline G Faria
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Carlos E Seraphim
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Raja Brauner
- Pediatric Endocrinology Unit, Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, 75019 Paris, France
| | - Alexander A Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM/25, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departments of Paediatrics and Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain
- Instituto de Investigación La Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IMDEA Food Institute, CEIUAM+CSIC, 28049 Madrid, Spain
| | - Vinicius N Brito
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| |
Collapse
|
22
|
Hussain A, Acharya A, Bharadwaj T, Genomics UOWCFM, Leal SM, Khaliq A, Mir A, Schrauwen I. A Novel Variant in VPS13B Underlying Cohen Syndrome. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9993801. [PMID: 37090188 PMCID: PMC10115529 DOI: 10.1155/2023/9993801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 04/25/2023]
Abstract
Pathogenic variants in vacuolar protein sorting 13 homolog B (VPS13B) cause Cohen syndrome (CS), a clinically diverse neurodevelopmental disorder. We used whole exome and Sanger sequencing to identify disease-causing variants in a Pakistani family with intellectual disability, microcephaly, facial dysmorphism, neutropenia, truncal obesity, speech delay, motor delay, and insomnia. We identified a novel homozygous nonsense variant c.8841G > A: p.(W2947∗) in VPS13B (NM_017890.5) which segregated with the disease. Sleep disturbances are commonly seen in neurodevelopmental disorders and can exacerbate medical issues if left untreated. We demonstrate that individuals with Cohen syndrome may also be affected by sleep disturbances. In conclusion, we expand the genetic and phenotypic features of Cohen syndrome in the Pakistani population.
Collapse
Affiliation(s)
- Abrar Hussain
- Human Molecular Genetics Lab, Department of Biological Science, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York 10032, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York 10032, USA
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York 10032, USA
| | | | - Suzanne M. Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York 10032, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, 10032 NY, USA
| | - Abdul Khaliq
- Human Molecular Genetics Lab, Department of Biological Science, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Asif Mir
- Human Molecular Genetics Lab, Department of Biological Science, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York 10032, USA
| |
Collapse
|
23
|
Pires SF, de Barros JS, da Costa SS, de Oliveira Scliar M, Van Helvoort Lengert A, Boldrini É, da Silva SRM, Tasic L, Vidal DO, Krepischi ACV, Maschietto M. DNA methylation patterns suggest the involvement of DNMT3B and TET1 in osteosarcoma development. Mol Genet Genomics 2023; 298:721-733. [PMID: 37020053 DOI: 10.1007/s00438-023-02010-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
DNA methylation may be involved in the development of osteosarcomas. Osteosarcomas commonly arise during the bone growth and remodeling in puberty, making it plausible to infer the involvement of epigenetic alterations in their development. As a highly studied epigenetic mechanism, we investigated DNA methylation and related genetic variants in 28 primary osteosarcomas aiming to identify deregulated driver alterations. Methylation and genomic data were obtained using the Illumina HM450K beadchips and the TruSight One sequencing panel, respectively. Aberrant DNA methylation was spread throughout the osteosarcomas genomes. We identified 3146 differentially methylated CpGs comparing osteosarcomas and bone tissue samples, with high methylation heterogeneity, global hypomethylation and focal hypermethylation at CpG islands. Differentially methylated regions (DMR) were detected in 585 loci (319 hypomethylated and 266 hypermethylated), mapped to the promoter regions of 350 genes. These DMR genes were enriched for biological processes related to skeletal system morphogenesis, proliferation, inflammatory response, and signal transduction. Both methylation and expression data were validated in independent groups of cases. Six tumor suppressor genes harbored deletions or promoter hypermethylation (DLEC1, GJB2, HIC1, MIR149, PAX6, and WNT5A), and four oncogenes presented gains or hypomethylation (ASPSCR1, NOTCH4, PRDM16, and RUNX3). Our analysis also revealed hypomethylation at 6p22, a region that contains several histone genes. Copy-number changes in DNMT3B (gain) and TET1 (loss), as well as overexpression of DNMT3B in osteosarcomas provide a possible explanation for the observed phenotype of CpG island hypermethylation. While the detected open-sea hypomethylation likely contributes to the well-known osteosarcoma genomic instability, enriched CpG island hypermethylation suggests an underlying mechanism possibly driven by overexpression of DNMT3B likely resulting in silencing of tumor suppressors and DNA repair genes.
Collapse
Affiliation(s)
- Sara Ferreira Pires
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marília de Oliveira Scliar
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ljubica Tasic
- Laboratory of Biological Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Daniel Onofre Vidal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
- Research Center, Boldrini Children's Hospital, Campinas, SP, Brazil.
| |
Collapse
|
24
|
Galvão Lopes V, Fernandes de Oliveira V, Mendonça Munhoz Dati L, Naslavsky MS, Ferreira GM, Hirata MH. Dynamics of the personalities of PCSK9 on missense variants (rs505151 and rs562556) from elderly cohort studies in Brazil. J Biomol Struct Dyn 2023; 41:15625-15633. [PMID: 37010997 DOI: 10.1080/07391102.2023.2191140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
The Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptors (LDLR). Gain-of-function (GOF) variants of PCSK9 significantly affects lipid metabolism leading to coronary artery disease (CAD), owing to the raising the plasma low-density lipoprotein (LDL). Considering the public health matter, large-scale genomic studies have been conducted worldwide to provide the genetic architecture of populations for the implementation of precision medicine actions. Nevertheless, despite the advances in genomic studies, non-European populations are still underrepresented in public genomic data banks. Despite this, we found two high-frequency variants (rs505151 and rs562556) in the ABraOM databank (Brazilian genomic variants) from a cohort SABE study conducted in the largest city of Brazil, São Paulo. Here, we assessed the structural and dynamical features of these variants against WT through a molecular dynamics study. We sought fundamental dynamical interdomain relations through Perturb Response Scanning (PRS) and we found an interesting change of dynamical relation between prodomain and Cysteine-Histidine-Rich-Domain (CHRD) in the variants. The results highlight the pivotal role of prodomain in the PCSK9 dynamic and the implications for the development of new drugs depending on patient group genotype.
Collapse
Affiliation(s)
- Vitor Galvão Lopes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Livia Mendonça Munhoz Dati
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Michel Satya Naslavsky
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, University of Sao Paulo, São Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Welsh H, Batalha CMPF, Li W, Mpye KL, Souza-Pinto NC, Naslavsky MS, Parra EJ. A systematic evaluation of normalization methods and probe replicability using infinium EPIC methylation data. Clin Epigenetics 2023; 15:41. [PMID: 36906598 PMCID: PMC10008016 DOI: 10.1186/s13148-023-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/24/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND The Infinium EPIC array measures the methylation status of > 850,000 CpG sites. The EPIC BeadChip uses a two-array design: Infinium Type I and Type II probes. These probe types exhibit different technical characteristics which may confound analyses. Numerous normalization and pre-processing methods have been developed to reduce probe type bias as well as other issues such as background and dye bias. METHODS This study evaluates the performance of various normalization methods using 16 replicated samples and three metrics: absolute beta-value difference, overlap of non-replicated CpGs between replicate pairs, and effect on beta-value distributions. Additionally, we carried out Pearson's correlation and intraclass correlation coefficient (ICC) analyses using both raw and SeSAMe 2 normalized data. RESULTS The method we define as SeSAMe 2, which consists of the application of the regular SeSAMe pipeline with an additional round of QC, pOOBAH masking, was found to be the best performing normalization method, while quantile-based methods were found to be the worst performing methods. Whole-array Pearson's correlations were found to be high. However, in agreement with previous studies, a substantial proportion of the probes on the EPIC array showed poor reproducibility (ICC < 0.50). The majority of poor performing probes have beta values close to either 0 or 1, and relatively low standard deviations. These results suggest that probe reliability is largely the result of limited biological variation rather than technical measurement variation. Importantly, normalizing the data with SeSAMe 2 dramatically improved ICC estimates, with the proportion of probes with ICC values > 0.50 increasing from 45.18% (raw data) to 61.35% (SeSAMe 2).
Collapse
Affiliation(s)
- H Welsh
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Canada.
| | - C M P F Batalha
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - W Li
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada
| | - K L Mpye
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Canada
| | - N C Souza-Pinto
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - M S Naslavsky
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - E J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Canada
| |
Collapse
|
26
|
Corcuff M, Garibal M, Desvignes JP, Guien C, Grattepanche C, Collod-Béroud G, Ménoret E, Salgado D, Béroud C. Protein domains provide a new layer of information for classifying human variations in rare diseases. FRONTIERS IN BIOINFORMATICS 2023; 3:1127341. [PMID: 36896423 PMCID: PMC9990413 DOI: 10.3389/fbinf.2023.1127341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction: Using the ACMG-AMP guidelines for the interpretation of sequence variants, it remains difficult to meet the criterion associated with the protein domain, PM1, which is assigned in only about 10% of cases, whereas the criteria related to variant frequency, PM2/BA1/BS1, is reported in 50% of cases. To improve the classification of human missense variants using protein domains information, we developed the DOLPHIN system (https://dolphin.mmg-gbit.eu). Methods: We used Pfam alignments of eukaryotes to define DOLPHIN scores to identify protein domain residues and variants that have a significant impact. In parallel, we enriched gnomAD variants frequencies for each domains' residue. These were validated using ClinVar data. Results: We applied this method to all potential human transcripts' variants, resulting in 30.0% being assigned a PM1 label, whereas 33.2% were eligible for a new benign support criterion, BP8. We also showed that DOLPHIN provides an extrapolated frequency for 31.8% of the variants, compared to the original frequency available in gnomAD for 7.6% of them. Discussion: Overall, DOLPHIN allows a simplified use of the PM1 criterion, an expanded application of the PM2/BS1 criteria and the creation of a new BP8 criterion. DOLPHIN could facilitate the classification of amino acid substitutions in protein domains that cover nearly 40% of proteins and represent the sites of most pathogenic variants.
Collapse
Affiliation(s)
- Mélanie Corcuff
- Aix Marseille University, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Marc Garibal
- Aix Marseille University, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | | | - Céline Guien
- Aix Marseille University, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Coralie Grattepanche
- Aix Marseille University, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | | | - Estelle Ménoret
- Aix Marseille University, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - David Salgado
- Aix Marseille University, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Christophe Béroud
- Aix Marseille University, INSERM, MMG, Bioinformatics & Genetics, Marseille, France.,Laboratoire de Génétique Médicale, APHM Hôpital d'Enfants de la Timone, Marseille, France
| |
Collapse
|
27
|
Franca MM, Condezo YB, Elzaiat M, Felipe-Medina N, Sánchez-Sáez F, Muñoz S, Sainz-Urruela R, Martín-Hervás MR, García-Valiente R, Sánchez-Martín MA, Astudillo A, Mendez J, Llano E, Veitia RA, Mendonca BB, Pendás AM. A truncating variant of RAD51B associated with primary ovarian insufficiency provides insights into its meiotic and somatic functions. Cell Death Differ 2022; 29:2347-2361. [PMID: 35624308 PMCID: PMC9751091 DOI: 10.1038/s41418-022-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/31/2023] Open
Abstract
Primary ovarian insufficiency (POI) causes female infertility by abolishing normal ovarian function. Although its genetic etiology has been extensively investigated, most POI cases remain unexplained. Using whole-exome sequencing, we identified a homozygous variant in RAD51B -(c.92delT) in two sisters with POI. In vitro studies revealed that this variant leads to translation reinitiation at methionine 64. Here, we show that this is a pathogenic hypomorphic variant in a mouse model. Rad51bc.92delT/c.92delT mice exhibited meiotic DNA repair defects due to RAD51 and HSF2BP/BMRE1 accumulation in the chromosome axes leading to a reduction in the number of crossovers. Interestingly, the interaction of RAD51B-c.92delT with RAD51C and with its newly identified interactors RAD51 and HELQ was abrogated or diminished. Repair of mitomycin-C-induced chromosomal aberrations was impaired in RAD51B/Rad51b-c.92delT human and mouse somatic cells in vitro and in explanted mouse bone marrow cells. Accordingly, Rad51b-c.92delT variant reduced replication fork progression of patient-derived lymphoblastoid cell lines and pluripotent reprogramming efficiency of primary mouse embryonic fibroblasts. Finally, Rad51bc.92delT/c.92delT mice displayed increased incidence of pituitary gland hyperplasia. These results provide new mechanistic insights into the role of RAD51B not only in meiosis but in the maintenance of somatic genome stability.
Collapse
Affiliation(s)
- Monica M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
- Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Maëva Elzaiat
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - M Rosario Martín-Hervás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Rodrigo García-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Manuel A Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus platform, Universidad de Salamanca, Salamanca, Spain
| | | | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Reiner A Veitia
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
- Université Paris-Saclay and Institut François Jacob, Comissariat à l'Energie Atomique, Gif-sur-Yvette, France.
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil.
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.
| |
Collapse
|
28
|
Andrade NLM, Funari MFDA, Malaquias AC, Collett-Solberg PF, Gomes NLRA, Scalco R, Dantas NCB, Rezende RC, Tiburcio AMFP, Souza MAR, Freire BL, Krepischi ACV, Longui CA, Lerario AM, Arnhold IJP, Jorge AAL, Vasques GA. Diagnostic yield of a multigene sequencing approach in children classified as idiopathic short stature. Endocr Connect 2022; 11:e220214. [PMID: 36373817 PMCID: PMC9716379 DOI: 10.1530/ec-22-0214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Objective Most children with short stature remain without an etiologic diagnosis after extensive clinical and laboratory evaluation and are classified as idiopathic short stature (ISS). This study aimed to determine the diagnostic yield of a multigene analysis in children classified as ISS. Design and methods We selected 102 children with ISS and performed the genetic analysis as part of the initial investigation. We developed customized targeted panel sequencing, including all genes already implicated in the isolated short-stature phenotype. Rare and deleterious single nucleotide or copy number variants were assessed by bioinformatic tools. Results We identified 20 heterozygous pathogenic (P) or likely pathogenic (LP) genetic variants in 17 of 102 patients (diagnostic yield = 16.7%). Three patients had more than one P/LP genetic alteration. Most of the findings were in genes associated with the growth plate differentiation: IHH (n = 4), SHOX (n = 3), FGFR3 (n = 2), NPR2 (n = 2), ACAN (n = 2), and COL2A1 (n = 1) or involved in the RAS/MAPK pathway: NF1 (n = 2), PTPN11 (n = 1), CBL (n = 1), and BRAF (n = 1). None of these patients had clinical findings to guide a candidate gene approach. The diagnostic yield was higher among children with severe short stature (35% vs 12.2% for height SDS ≤ or > -3; P = 0.034). The genetic diagnosis had an impact on clinical management for four children. Conclusion A multigene sequencing approach can determine the genetic etiology of short stature in up to one in six children with ISS, removing the term idiopathic from their clinical classification.
Collapse
Affiliation(s)
| | - Mariana Ferreira de Assis Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | | | - Paulo Ferrez Collett-Solberg
- Disciplina de Endocrinologia, Departamento de Medicina Interna, Faculdade de Ciências Medicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Nathalia L R A Gomes
- Serviço de Endocrinologia, Unidade de Crescimento, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brasil
| | - Renata Scalco
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
- Departamento de Medicina, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brasil
| | - Naiara Castelo Branco Dantas
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
| | - Raissa C Rezende
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
| | - Angelica M F P Tiburcio
- Serviço de Endocrinologia, Unidade de Crescimento, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brasil
| | - Micheline A R Souza
- Serviço de Endocrinologia do Instituto de Puericultura e Pediatria Martagao Gesteira/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bruna L Freire
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | - Ana C V Krepischi
- Centro de Pesquisa em Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de Sao Paulo, São Paulo, Brasil
| | - Carlos Alberto Longui
- Departamento de Pediatria, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brasil
| | - Antonio Marcondes Lerario
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | - Gabriela Andrade Vasques
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| |
Collapse
|
29
|
de Castro MV, Silva MVR, Naslavsky MS, Scliar MO, Nunes K, Passos-Bueno MR, Castelli EC, Magawa JY, Adami FL, Moretti AIS, de Oliveira VL, Boscardin SB, Cunha-Neto E, Kalil J, Jouanguy E, Bastard P, Casanova JL, Quiñones-Vega M, Sosa-Acosta P, Guedes JDS, de Almeida NP, Nogueira FCS, Domont GB, Santos KS, Zatz M. The oldest unvaccinated Covid-19 survivors in South America. Immun Ageing 2022; 19:57. [PMID: 36384671 PMCID: PMC9666972 DOI: 10.1186/s12979-022-00310-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated. RESULTS Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN. CONCLUSION These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.
Collapse
Affiliation(s)
- Mateus V de Castro
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Monize V R Silva
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michel S Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Erick C Castelli
- Department of Pathology, School of Medicine, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Jhosiene Y Magawa
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Flávia L Adami
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana I S Moretti
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
| | - Vivian L de Oliveira
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
| | - Silvia B Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica de S Guedes
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália P de Almeida
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Keity S Santos
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Fussiger H, Pedroso JL, Saute JAM. Diagnostic reasoning in neurogenetics: a general approach. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:944-952. [PMID: 36351420 PMCID: PMC9770073 DOI: 10.1055/s-0042-1755275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Establishing the definitive diagnosis of a neurogenetic disease is usually a complex task. However, like any type of clinical diagnostic reasoning, an organized process of development and consideration of diagnostic hypotheses may guide neurologists and medical geneticists to solve this difficult task. The aim of the present review is to propose a general method for diagnostic reasoning in neurogenetics, with the definition of the main neurological syndrome and its associated topographical diagnosis, followed by the identification of major and secondary neurological syndromes, extraneurological findings, and inheritance pattern. We also discuss general rules and knowledge requirements of the ordering physician to request genetic testing and information on how to interpret genetic variants in a genetic report. By guiding the requests for genetic testing according to an organized model of diagnostic reasoning and with the availability of specific treatments, clinicians may find greater resoluteness and efficacy in the diagnostic investigation, shortening the struggle of patients for a definitive diagnosis.
Collapse
Affiliation(s)
- Helena Fussiger
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Medicina: Ciências Médicas, Porto Alegre RS, Brazil.
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, Unidade de Ataxias, São Paulo SP, Brazil.
| | - Jonas Alex Morales Saute
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Medicina: Ciências Médicas, Porto Alegre RS, Brazil.,Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Neurogenética, Porto Alegre RS, Brazil.,Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brazil.,Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Porto Alegre RS, Brazil.,Address for correspondence Jonas Alex Morales Saute
| |
Collapse
|
31
|
Nemaline Myopathy in Brazilian Patients: Molecular and Clinical Characterization. Int J Mol Sci 2022; 23:ijms231911995. [PMID: 36233295 PMCID: PMC9569467 DOI: 10.3390/ijms231911995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the “typical” form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation.
Collapse
|
32
|
Chagas Disease Megaesophagus Patients Carrying Variant MRPS18B P260A Display Nitro-Oxidative Stress and Mitochondrial Dysfunction in Response to IFN-γ Stimulus. Biomedicines 2022; 10:biomedicines10092215. [PMID: 36140315 PMCID: PMC9496350 DOI: 10.3390/biomedicines10092215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, affects 8 million people, and around 1/3 develop chronic cardiac (CCC) or digestive disease (megaesophagus/megacolon), while the majority remain asymptomatic, in the indeterminate form of Chagas disease (ASY). Most CCC cases in families with multiple Chagas disease patients carry damaging mutations in mitochondrial genes. We searched for exonic mutations associated to chagasic megaesophagus (CME) in genes essential to mitochondrial processes. We performed whole exome sequencing of 13 CME and 45 ASY patients. We found the damaging variant MRPS18B 688C > G P230A, in five out of the 13 CME patients (one of them being homozygous; 38.4%), while the variant appeared in one out of 45 ASY patients (2.2%). We analyzed the interferon (IFN)-γ-induced nitro-oxidative stress and mitochondrial function of EBV-transformed lymphoblastoid cell lines. We found the CME carriers of the mutation displayed increased levels of nitrite and nitrated proteins; in addition, the homozygous (G/G) CME patient also showed increased mitochondrial superoxide and reduced levels of ATP production. The results suggest that pathogenic mitochondrial mutations may contribute to cytokine-induced nitro-oxidative stress and mitochondrial dysfunction. We hypothesize that, in mutation carriers, IFN-γ produced in the esophageal myenteric plexus might cause nitro-oxidative stress and mitochondrial dysfunction in neurons, contributing to megaesophagus.
Collapse
|
33
|
Quaio CRDAC, Coelho AVC, Moura LMS, Guedes RLM, Chen K, Ceroni JRM, Minillo RM, Caraciolo MP, Reis RDS, de Azevedo BMC, Nobrega MS, Teixeira ACB, Martinelli Lima M, da Mota TR, da Matta MC, Colichio GBC, Roncalho AL, Ferreira AFM, Campilongo GP, Perrone E, Virmond LDA, Moreno CA, Prota JRM, de França M, Cervato MC, de Almeida TF, de Oliveira Filho JB. Genomic study of nonsyndromic hearing loss in unaffected individuals: Frequency of pathogenic and likely pathogenic variants in a Brazilian cohort of 2,097 genomes. Front Genet 2022; 13:921324. [PMID: 36147510 PMCID: PMC9486813 DOI: 10.3389/fgene.2022.921324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hearing loss (HL) is a common sensory deficit in humans and represents an important clinical and social burden. We studied whole-genome sequencing data of a cohort of 2,097 individuals from the Brazilian Rare Genomes Project who were unaffected by hearing loss to investigate pathogenic and likely pathogenic variants associated with nonsyndromic hearing loss (NSHL). We found relevant frequencies of individuals harboring these alterations: 222 heterozygotes (10.59%) for sequence variants, 54 heterozygotes (2.58%) for copy-number variants (CNV), and four homozygotes (0.19%) for sequence variants. The top five most frequent genes and their corresponding combined allelic frequencies (AF) were GJB2 (AF = 1.57%), STRC (AF = 1%), OTOA (AF = 0.69%), TMPRSS3 (AF = 0.41%), and OTOF (AF = 0.29%). The most frequent sequence variant was GJB2:c.35del (AF = 0.72%), followed by OTOA:p. (Glu787Ter) (AF = 0.61%), while the most recurrent CNV was a microdeletion of 57.9 kb involving the STRC gene (AF = 0.91%). An important fraction of these individuals (n = 104; 4.96%) presented variants associated with autosomal dominant forms of NSHL, which may imply the development of some hearing impairment in the future. Using data from the heterozygous individuals for recessive forms and the Hardy–Weinberg equation, we estimated the population frequency of affected individuals with autosomal recessive NSHL to be 1:2,222. Considering that the overall prevalence of HL in adults ranges from 4–15% worldwide, our data indicate that an important fraction of this condition may be associated with a monogenic origin and dominant inheritance.
Collapse
Affiliation(s)
- Caio Robledo D’ Angioli Costa Quaio
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Instituto da Criança (Children’s Hospital), Hospital Das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Caio Robledo D’ Angioli Costa Quaio, ; Joao Bosco de Oliveira Filho,
| | | | - Livia Maria Silva Moura
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | - Rafael Lucas Muniz Guedes
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | - Kelin Chen
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | - Marcel Pinheiro Caraciolo
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | - Rodrigo de Souza Reis
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | | | | | | | | | - Thamara Rayssa da Mota
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Programa de Pós Graduação em Tecnologias Energéticas e Nucleares (PROTEN), UFPE, Recife, Brazil
| | | | | | | | | | | | - Eduardo Perrone
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Carolina Araujo Moreno
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Departamento de Medicina Translacional, Área de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Joana Rosa Marques Prota
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Departamento de Medicina Translacional, Área de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Murilo Castro Cervato
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | | | - Joao Bosco de Oliveira Filho
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- *Correspondence: Caio Robledo D’ Angioli Costa Quaio, ; Joao Bosco de Oliveira Filho,
| |
Collapse
|
34
|
Kotan LD. Comparative Analyses of Turkish Variome and Widely Used Genomic Variation Databases for the Evaluation of Rare Sequence Variants in Turkish Individuals: Idiopathic Hypogonadotropic Hypogonadism as a Disease Model. J Clin Res Pediatr Endocrinol 2022; 14:293-301. [PMID: 35438269 PMCID: PMC9422916 DOI: 10.4274/jcrpe.galenos.2022.2022-3-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022] Open
Abstract
Objective With the increasing use of whole-exome sequencing, one of the challenges in identifying the causal allele for a Mendelian disease is the lack of availability of population-specific human genetic variation reference databases. The people of Turkey were not represented in GnomAD or other publicly available large databases until recently, when the first comprehensive genomic variation database, Turkish Variome (TRV), was published. The aim of this study was to evaluate whether TRV or other publicly available large genomic variation databases can reliably be used for rare disease variant evaluation in Turkish individuals. Methods Sixty non-disease-causing, non-synonymous variants (minor allele frequencies >1%) were identified in 58 genes that are known to be associated with idiopathic hypogonadotropic hypogonadism from a large Turkish patient cohort. The allelic frequencies of these variants were then compared with those in various public genomic variation databases, including TRV. Results Our cohort variants showed the highest correlations with those in the TRV, Iranome, and The Greater Middle East Variome, in decreasing order. Conclusion These results suggest that the TRV is the appropriate database to use for rare genomic variant evaluations in the Turkish population. Our data also suggest that variomes from geographic neighborhoods may serve as substitute references for populations devoid of their own genomic variation databases.
Collapse
Affiliation(s)
- Leman Damla Kotan
- Çukurova University Faculty of Medicine, Department of
Pediatric Endocrinology, Adana, Turkey
| |
Collapse
|
35
|
Crespo RP, Rocha TP, Montenegro LR, Nishi MY, Jorge AAL, Maciel GAR, Baracat E, Latronico AC, Mendonca BB, Gomes LG. High Throughput Sequencing to Identify Monogenic Etiologies in a Preselected Polycystic Ovary Syndrome Cohort. J Endocr Soc 2022; 6:bvac106. [PMID: 35898701 PMCID: PMC9309801 DOI: 10.1210/jendso/bvac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Context Polycystic ovary syndrome (PCOS) etiology remains to be elucidated, but familial clustering and twin studies have shown a strong heritable component. Objective The purpose of this study was to identify rare genetic variants that are associated with the etiology of PCOS in a preselected cohort. Methods This prospective study was conducted among a selected group of women with PCOS. The study’s inclusion criteria were patients with PCOS diagnosed by the Rotterdam criteria with the following phenotypes: severe insulin resistance (IR), normoandrogenic–normometabolic phenotype, adrenal hyperandrogenism, primary amenorrhea, and familial PCOS. Forty-five patients were studied by target sequencing, while 8 familial cases were studied by whole exome sequencing. Results Patients were grouped according to the inclusion criteria with the following distribution: 22 (41.5%) with severe IR, 13 (24.5%) with adrenal hyperandrogenism, 7 (13.2%) with normoandrogenic phenotype, 3 (5.7%) with primary amenorrhea, and 8 (15.1%) familial cases. DNA sequencing analysis identified 1 pathogenic variant in LMNA, 3 likely pathogenic variants in INSR, PIK3R1, and DLK1, and 6 variants of uncertain significance level with interesting biologic rationale in 5 genes (LMNA, GATA4, NR5A1, BMP15, and FSHR). LMNA was the most prevalent affected gene in this cohort (3 variants). Conclusion Several rare variants in genes related to IR were identified in women with PCOS. Although IR is a common feature of PCOS, patients with extreme or atypical phenotype should be carefully evaluated to rule out monogenic conditions.
Collapse
Affiliation(s)
- Raiane P Crespo
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Thais P Rocha
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Luciana R Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética (LIM 25), Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Gustavo A R Maciel
- Disciplina de Ginecologia, Faculdade de Medicina da Universidade de São Paulo , Brasil
| | - Edmund Baracat
- Disciplina de Ginecologia, Faculdade de Medicina da Universidade de São Paulo , Brasil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Larissa G Gomes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| |
Collapse
|
36
|
Environmental Contaminants Modulate Breast Cancer Development and Outcome in TP53 p.R337H Carriers and Noncarriers. Cancers (Basel) 2022; 14:cancers14123014. [PMID: 35740679 PMCID: PMC9221344 DOI: 10.3390/cancers14123014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Two major concerns associated with cancer development in Paraná state, South Brazil, are environmental pollution and the germline TP53 p.R337H variant found in 0.27−0.30% of the population. We assessed breast cancer (BC) risk in rural (C1 and C2) and industrialized (C3) subregions, previously classified by geochemistry, agricultural productivity, and population density. C2 presents lower organochloride levels in rivers and lower agricultural outputs than C1, and lower levels of chlorine anions in rivers and lower industrial activities than C3. TP53 p.R337H status was assessed in 4658 women aged >30 years from C1, C2, and C3, subsequent to a genetic screening (Group 1, longitudinal study). BC risk in this group was 4.58 times higher among TP53 p.R337H carriers. BC prevalence and risk were significantly lower in C2 compared to that in C3. Mortality rate and risk associated with BC in women aged >30 years (n = 8181 deceased women; Group 2) were also lower in C2 than those in C3 and C1. These results suggest that environmental factors modulate BC risk and outcome in carriers and noncarriers.
Collapse
|
37
|
Rodrigues EDS, Griffith S, Martin R, Antonescu C, Posey JE, Coban‐Akdemir Z, Jhangiani SN, Doheny KF, Lupski JR, Valle D, Bamshad MJ, Hamosh A, Sheffer A, Chong JX, Einhorn Y, Cupak M, Sobreira N. Variant-level matching for diagnosis and discovery: Challenges and opportunities. Hum Mutat 2022; 43:782-790. [PMID: 35191117 PMCID: PMC9133151 DOI: 10.1002/humu.24359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Here we describe MyGene2, Geno2MP, VariantMatcher, and Franklin; databases that provide variant-level information and phenotypic features to researchers, clinicians, healthcare providers and patients. Following the footsteps of the Matchmaker Exchange project that connects exome, genome, and phenotype databases at the gene level, these databases have as one goal to facilitate connection to one another using Data Connect, a standard for discovery and search of biomedical data from the Global Alliance for Genomics and Health (GA4GH).
Collapse
Affiliation(s)
- Eliete da S. Rodrigues
- McKusick‐Nathans Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sean Griffith
- McKusick‐Nathans Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Renan Martin
- McKusick‐Nathans Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Corina Antonescu
- McKusick‐Nathans Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jennifer E. Posey
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Zeynep Coban‐Akdemir
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Shalini N. Jhangiani
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTexasUSA
| | - Kimberly F. Doheny
- McKusick‐Nathans Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - James R. Lupski
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTexasUSA
- Department of PediatricsBaylor College of MedicineHoustonTexasUSA
- Texas Children's HospitalHoustonTexasUSA
| | - David Valle
- McKusick‐Nathans Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
- Brotman Baty Institute for Precision MedicineSeattleWashingtonUSA
| | - Ada Hamosh
- McKusick‐Nathans Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Jessica X. Chong
- Division of Genetic Medicine, Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
- Brotman Baty Institute for Precision MedicineSeattleWashingtonUSA
| | | | | | - Nara Sobreira
- McKusick‐Nathans Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
38
|
Takenaka IKTM, Bartelli TF, Defelicibus A, Sendoya JM, Golubicki M, Robbio J, Serpa MS, Branco GP, Santos LBC, Claro LCL, Dos Santos GO, Kupper BEC, da Silva IT, Llera AS, de Mello CAL, Riechelmann RP, Dias-Neto E, Iseas S, Aguiar S, Nunes DN. Exome and Tissue-Associated Microbiota as Predictive Markers of Response to Neoadjuvant Treatment in Locally Advanced Rectal Cancer. Front Oncol 2022; 12:809441. [PMID: 35392220 PMCID: PMC8982181 DOI: 10.3389/fonc.2022.809441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical and pathological responses to multimodal neoadjuvant therapy in locally advanced rectal cancers (LARCs) remain unpredictable, and robust biomarkers are still lacking. Recent studies have shown that tumors present somatic molecular alterations related to better treatment response, and it is also clear that tumor-associated bacteria are modulators of chemotherapy and immunotherapy efficacy, therefore having implications for long-term survivorship and a good potential as the biomarkers of outcome. Here, we performed whole exome sequencing and 16S ribosomal RNA (rRNA) amplicon sequencing from 44 pre-treatment LARC biopsies from Argentinian and Brazilian patients, treated with neoadjuvant chemoradiotherapy or total neoadjuvant treatment, searching for predictive biomarkers of response (responders, n = 17; non-responders, n = 27). In general, the somatic landscape of LARC was not capable to predict a response; however, a significant enrichment in mutational signature SBS5 was observed in non-responders (p = 0.0021), as well as the co-occurrence of APC and FAT4 mutations (p < 0.05). Microbiota studies revealed a similar alpha and beta diversity of bacteria between response groups. Yet, the linear discriminant analysis (LDA) of effect size indicated an enrichment of Hungatella, Flavonifractor, and Methanosphaera (LDA score ≥3) in the pre-treatment biopsies of responders, while non-responders had a higher abundance of Enhydrobacter, Paraprevotella (LDA score ≥3) and Finegoldia (LDA score ≥4). Altogether, the evaluation of these biomarkers in pre-treatment biopsies could eventually predict a neoadjuvant treatment response, while in post-treatment samples, it could help in guiding non-operative treatment strategies.
Collapse
Affiliation(s)
| | - Thais F Bartelli
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Alexandre Defelicibus
- Laboratory of Bioinformatics and Computational Biology, International Center for Research, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Juan M Sendoya
- Laboratorio de Terapia Molecular y Celular - Genomics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariano Golubicki
- Oncology Unit, Hospital de Gastroenterología Carlos Bonorino Udaondo, Buenos Aires, Argentina.,Clinical Oncology, Intergrupo Argentino para el Tratamiento de los Tumores Gastrointestinales (IATTGI), Buenos Aires, Argentina
| | - Juan Robbio
- Clinical Oncology, Intergrupo Argentino para el Tratamiento de los Tumores Gastrointestinales (IATTGI), Buenos Aires, Argentina
| | - Marianna S Serpa
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Gabriela P Branco
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Luana B C Santos
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Laura C L Claro
- Department of Pathology, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Bruna E C Kupper
- Colorectal Cancer Department, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Israel T da Silva
- Laboratory of Bioinformatics and Computational Biology, International Center for Research, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Andrea S Llera
- Laboratorio de Terapia Molecular y Celular - Genomics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Celso A L de Mello
- Department of Clinical Oncology, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Emmanuel Dias-Neto
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil.,Laboratory of Neurosciences (LIM-27) Alzira Denise Hertzog Silva, Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Soledad Iseas
- Oncology Unit, Hospital de Gastroenterología Carlos Bonorino Udaondo, Buenos Aires, Argentina
| | - Samuel Aguiar
- Colorectal Cancer Department, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Diana Noronha Nunes
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil.,National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
| |
Collapse
|
39
|
Tomar S, Klinzing DC, Chen CK, Gan LH, Moscarello T, Reuter C, Ashley EA, Foo R. Causative Variants for Inherited Cardiac Conditions in a Southeast Asian Population Cohort. Circ Genom Precis Med 2022; 15:e003536. [DOI: 10.1161/circgen.121.003536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Variable penetrance and late-onset phenotypes are key challenges for classifying causal as well as incidental findings in inherited cardiac conditions. Allele frequencies of variants in ancestry-specific populations, along with clinical variant analysis and interpretation, are critical to determine their true significance.
Methods:
Here, we carefully reviewed and classified variants in genes associated with inherited cardiac conditions based on a population whole-genome sequencing cohort of 4810 Singaporeans representing Southeast Asian ancestries.
Results:
Eighty-nine (1.85%) individuals carried either pathogenic or likely pathogenic variants across 25 genes. Forty-six (51.7%) had variants in causal genes for familial hyperlipidemia, but there were also recurrent variants in
SCN5A
and
MYBPC3
, causal genes for inherited arrhythmia and cardiomyopathy, which, despite previous reports, we determined to lack criteria for pathogenicity.
Conclusions:
Our findings highlight the incidence of disease-related variants in inherited cardiac conditions and emphasize the value of large-scale sequencing in specific ancestries. Follow-up detailed phenotyping and analysis of pedigrees are crucial because assigning pathogenicity will significantly affect clinical management for individuals and their family members.
Collapse
Affiliation(s)
- Swati Tomar
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore (S.T., D.C.K., C.K.C., L.H.G., R.F.)
- Cardiovascular Research Institute, National University Heart Centre (S.T., D.C.K., C.K.C., L.H.G., R.F.), National University Health System, Singapore
| | - David C. Klinzing
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore (S.T., D.C.K., C.K.C., L.H.G., R.F.)
- Cardiovascular Research Institute, National University Heart Centre (S.T., D.C.K., C.K.C., L.H.G., R.F.), National University Health System, Singapore
- Khoo Teck Puat National University Children’s Medical Institute (C.K.C.), National University Health System, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Singapore, Singapore (C.K.C.)
| | - Ching Kit Chen
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore (S.T., D.C.K., C.K.C., L.H.G., R.F.)
- Cardiovascular Research Institute, National University Heart Centre (S.T., D.C.K., C.K.C., L.H.G., R.F.), National University Health System, Singapore
| | - Louis Hanqiang Gan
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore (S.T., D.C.K., C.K.C., L.H.G., R.F.)
- Cardiovascular Research Institute, National University Heart Centre (S.T., D.C.K., C.K.C., L.H.G., R.F.), National University Health System, Singapore
| | - Tia Moscarello
- Centre for Inherited Cardiovascular Disease, Stanford University Medical Center, CA (T.M., C.R., E.A.A.)
| | - Chloe Reuter
- Centre for Inherited Cardiovascular Disease, Stanford University Medical Center, CA (T.M., C.R., E.A.A.)
| | - Euan A. Ashley
- Centre for Inherited Cardiovascular Disease, Stanford University Medical Center, CA (T.M., C.R., E.A.A.)
| | - Roger Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore (S.T., D.C.K., C.K.C., L.H.G., R.F.)
- Cardiovascular Research Institute, National University Heart Centre (S.T., D.C.K., C.K.C., L.H.G., R.F.), National University Health System, Singapore
- Genome Institute of Singapore (R.F.)
| |
Collapse
|
40
|
The 90 plus: longevity and COVID-19 survival. Mol Psychiatry 2022; 27:1936-1944. [PMID: 35136227 DOI: 10.1038/s41380-022-01461-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/08/2022]
Abstract
The world population is getting older and studies aiming to enhance our comprehension of the underlying mechanisms responsible for health span are of utmost interest for longevity and as a measure for health care. In this review, we summarized previous genetic association studies (GWAS) and next-generation sequencing (NGS) of elderly cohorts. We also present the updated hypothesis for the aging process, together with the factors associated with healthy aging. We discuss the relevance of studying older individuals and build databanks to characterize the presence and resistance against late-onset disorders. The identification of about 2 million novel variants in our cohort of more than 1000 elderly Brazilians illustrates the importance of studying highly admixed populations of non-European ancestry. Finally, the ascertainment of nonagenarians and particularly of centenarians who were recovered from COVID-19 or remained asymptomatic opens new avenues of research aiming to enhance our comprehension of biological mechanisms associated with resistance against pathogens.
Collapse
|
41
|
Whole-genome sequencing of 1,171 elderly admixed individuals from São Paulo, Brazil. Nat Commun 2022; 13:1004. [PMID: 35246524 PMCID: PMC8897431 DOI: 10.1038/s41467-022-28648-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
As whole-genome sequencing (WGS) becomes the gold standard tool for studying population genomics and medical applications, data on diverse non-European and admixed individuals are still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed elderly Brazilians from a census-based cohort, providing over 76 million variants, of which ~2 million are absent from large public databases. WGS enables identification of ~2,000 previously undescribed mobile element insertions without previous description, nearly 5 Mb of genomic segments absent from the human genome reference, and over 140 alleles from HLA genes absent from public resources. We reclassify and curate pathogenicity assertions for nearly four hundred variants in genes associated with dominantly-inherited Mendelian disorders and calculate the incidence for selected recessive disorders, demonstrating the clinical usefulness of the present study. Finally, we observe that whole-genome and HLA imputation could be significantly improved compared to available datasets since rare variation represents the largest proportion of input from WGS. These results demonstrate that even smaller sample sizes of underrepresented populations bring relevant data for genomic studies, especially when exploring analyses allowed only by WGS. Whole genome sequencing (WGS) data on non-European and admixed individuals remains scarce. Here, the authors analyse WGS data from 1,171 admixed elderly Brazilians from a census cohort, characterising population-specific genetic variation and exploring the clinical utility of this expanded dataset.
Collapse
|
42
|
Garcia FADO, de Andrade ES, de Campos Reis Galvão H, da Silva Sábato C, Campacci N, de Paula AE, Evangelista AF, Santana IVV, Melendez ME, Reis RM, Palmero EI. New insights on familial colorectal cancer type X syndrome. Sci Rep 2022; 12:2846. [PMID: 35181726 PMCID: PMC8857274 DOI: 10.1038/s41598-022-06782-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
Familial colorectal cancer type X (FCCTX) is a heterogeneous colorectal cancer predisposition syndrome that, although displays a cancer pattern similar to Lynch syndrome, is mismatch repair proficient and does not exhibit microsatellite instability. Besides, its genetic etiology remains to be elucidated. In this study we performed germline exome sequencing of 39 cancer-affected patients from 34 families at risk for FCCTX. Variant classification followed the American College of Medical Genetics and Genomics (ACMG) guidelines. Pathogenic/likely pathogenic variants were identified in 17.65% of the families. Rare and potentially pathogenic alterations were identified in known hereditary cancer genes (CHEK2), in putative FCCTX candidate genes (OGG1 and FAN1) and in other cancer-related genes such as ATR, ASXL1, PARK2, SLX4 and TREX1. This study provides novel important clues that can contribute to the understanding of FCCTX genetic basis.
Collapse
Affiliation(s)
- Felipe Antonio de Oliveira Garcia
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela Street, 1331, Barretos, São Paulo, CEP 14784-400, Brazil
| | - Edilene Santos de Andrade
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela Street, 1331, Barretos, São Paulo, CEP 14784-400, Brazil
| | | | | | - Natália Campacci
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela Street, 1331, Barretos, São Paulo, CEP 14784-400, Brazil
| | | | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela Street, 1331, Barretos, São Paulo, CEP 14784-400, Brazil
| | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela Street, 1331, Barretos, São Paulo, CEP 14784-400, Brazil.,Department of Molecular Carcinogenesis, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela Street, 1331, Barretos, São Paulo, CEP 14784-400, Brazil.,Center of Molecular Diagnosis, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Edenir Inez Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela Street, 1331, Barretos, São Paulo, CEP 14784-400, Brazil. .,Department of Genetics, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
43
|
Silva GCV, Borsatto T, Schwartz IVD, Sperb-Ludwig F. Characterization of the 3'UTR of the BTD gene and identification of regulatory elements and microRNAs. Genet Mol Biol 2022; 45:e20200432. [PMID: 35167647 PMCID: PMC8846296 DOI: 10.1590/1678-4685-gmb-2020-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 08/22/2021] [Indexed: 12/05/2022] Open
Abstract
Reduced biotinidase activity is associated with a spectrum of deficiency ranging
from total deficiency to heterozygous levels, a finding that is not always
explained by the pathogenic variants observed in the BTD gene.
The investigation of miRNAs, regulatory elements and variants in the 3’UTR
region may present relevance in understanding the genotype-phenotype
association. The aims of the study were to characterize the regulatory elements
of the 3’UTR of the BTD gene and identify variants and miRNAs
which may explain the discrepancies observed between genotype and biochemical
phenotype. We evaluated 92 individuals with reduced biotinidase activity (level
of heterozygotes = 33, borderline = 35, partial DB = 20 or total DB= 4) with
previously determined BTD genotype. The 3’UTR of the
BTD gene was Sanger sequenced. In silico
analysis was performed to identify miRNAs and regulatory elements. No variants
were found in the 3’UTR. We found 97 possible miRNAs associated with the
BTD gene, 49 predicted miRNAs involved in the alanine,
biotin, citrate and pyruvate metabolic pathways and 5 genes involved in biotin
metabolism. Six AU-rich elements were found. Our data suggest variants in the
3'UTR of BTD do not explain the genotype-phenotype
discrepancies found in Brazilian individuals with reduced biotinidase.
Collapse
Affiliation(s)
- Gerda Cristal Villalba Silva
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório BRAIN, Porto Alegre, RS, Brazil
| | - Taciane Borsatto
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório BRAIN, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório BRAIN, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Fernanda Sperb-Ludwig
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório BRAIN, Porto Alegre, RS, Brazil
| |
Collapse
|
44
|
Galisa SLG, Jacob PL, de Farias AA, Lemes RB, Alves LU, Nóbrega JCL, Zatz M, Santos S, Weller M. Haplotypes of single cancer driver genes and their local ancestry in a highly admixed long-lived population of Northeast Brazil. Genet Mol Biol 2022; 45:e20210172. [PMID: 35112701 PMCID: PMC8811751 DOI: 10.1590/1678-4685-gmb-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Admixed populations have not been examined in detail in cancer genetic studies. Here, we inferred the local ancestry of cancer-associated single nucleotide polymorphisms (SNPs) and haplotypes of a highly admixed Brazilian population. SNP array was used to genotype 73 unrelated individuals aged 80-102 years. Local ancestry inference was performed by merging genotyped regions with phase three data from the 1000 Genomes Project Consortium using RFmix. The average ancestry tract length was 9.12-81.71 megabases. Strong linkage disequilibrium was detected in 48 haplotypes containing 35 SNPs in 10 cancer driver genes. All together, 19 risk and eight protective alleles were identified in 23 out of 48 haplotypes. Homozygous individuals were mainly of European ancestry, whereas heterozygotes had at least one Native American and one African ancestry tract. Native-American ancestry for homozygous individuals with risk alleles for HNF1B, CDH1, and BRCA1 was inferred for the first time. Results indicated that analysis of SNP polymorphism in the present admixed population has a high potential to identify new ancestry-associated alleles and haplotypes that modify cancer susceptibility differentially in distinct human populations. Future case-control studies with populations with a complex history of admixture could help elucidate ancestry-associated biological differences in cancer incidence and therapeutic outcomes.
Collapse
Affiliation(s)
- Steffany Larissa Galdino Galisa
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Priscila Lima Jacob
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Allysson Allan de Farias
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Renan Barbosa Lemes
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Leandro Ucela Alves
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Júlia Cristina Leite Nóbrega
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Mayana Zatz
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Silvana Santos
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| | - Mathias Weller
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| |
Collapse
|
45
|
Polymorphisms at CYP enzymes, NR1I2 and NR1I3 in association with virologic response to antiretroviral therapy in Brazilian HIV-positive individuals. THE PHARMACOGENOMICS JOURNAL 2022; 22:33-38. [PMID: 34504302 DOI: 10.1038/s41397-021-00254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Virologic failure of antiretroviral therapy (ART) may be explained by single nucleotide polymorphisms (SNPs) in drug absorption and metabolism genes. Here, we characterized the associations between polymorphisms in cytochrome P450 enzymes' genes CYP2B6 and CYP3A4/A5, nuclear receptor genes NR1I2/3, and initial ART efficacy among 203 HIV-positive individuals from Rio de Janeiro. Association between SNPs and virologic control was evaluated after 6 and 12 months of follow-up using Cox regression models. The SNP rs2307424 (NR1I3) was associated with increased virologic response after 12 months of treatment, while rs1523127 (NR1I2), rs3003596, and rs2502815 (NR1I3) were associated with decreased response. Increased virologic response after 12 months (adjHR = 1.54; p = 0.02) was also observed among carriers of the NR1I3 haplotype rs2502815G-rs3003596A-rs2307424A versus the reference haplotype G-A-G. Our results suggest that NR1I2 and NR1I3 variants are associated with virologic responses to ART among Brazilians.
Collapse
|
46
|
Carneiro P, de Freitas MV, Matte U. In silico analysis of potential off-target sites to gene editing for Mucopolysaccharidosis type I using the CRISPR/Cas9 system: Implications for population-specific treatments. PLoS One 2022; 17:e0262299. [PMID: 35073349 PMCID: PMC8786118 DOI: 10.1371/journal.pone.0262299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by alpha-L-iduronidase deficiency encoded by the IDUA gene. Therapy with CRISPR/Cas9 is being developed for treatment, however a detailed investigation of off-target effects must be performed. This study aims to evaluate possible off-targets for a sgRNA aiming to correct the most common variant found in MPS I patients (p.Trp402*). A total of 272 potential off-target sequences was obtained and 84 polymorphic sites were identified in these sequences with a frequency equal to or greater than 1% in at least one of the populations. In the majority of cases, polymorphic sites decrease the chance of off-target cleavage and a new PAM was created, which indicates the importance of such analysis. This study highlights the importance of screening off-targets in a population-specific context using Mucopolysaccharidosis type I as an example of a problem that concerns all therapeutic treatments. Our results can have broader applications for other targets already clinically in use, as they could affect CRISPR/Cas9 safety and efficiency.
Collapse
Affiliation(s)
- Paola Carneiro
- Post-Graduation Program on Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Bioinformatics Core, Experimental Research Center, Hospital de Clínicas, Porto Alegre, Rio Grande do Sul, Brazil
- Cell, Tissue and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Martiela Vaz de Freitas
- Post-Graduation Program on Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Bioinformatics Core, Experimental Research Center, Hospital de Clínicas, Porto Alegre, Rio Grande do Sul, Brazil
- Cell, Tissue and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ursula Matte
- Post-Graduation Program on Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Bioinformatics Core, Experimental Research Center, Hospital de Clínicas, Porto Alegre, Rio Grande do Sul, Brazil
- Cell, Tissue and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
47
|
Suarez-Kurtz G, de Araújo GS. Pharmacogenetic differentiation across Latin America. Pharmacogenomics 2022; 23:225-233. [PMID: 35042408 DOI: 10.2217/pgs-2021-0152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the pharmacogenetic differentiation across Latin American populations, using the fixation index statistics (FST). Materials & methods: FST analyses were applied to 1519 pharmacogenetic markers in the 1000 Genomes Admixed American superpopulation (1KG_AMR) and an admixed Brazilian sample. Results: Allele-specific FST values for the overall cohort point to little overall pharmacogenetic differentiation (average FST = 0.017); however, moderate differentiation (FST = 0.05-0.15) was observed for 83 markers, while large differentiation (FST = 0.15-0.25) was restricted to three markers. Pairwise FST analysis identified three markers with very large differentiation (FST >0.25). Conclusion: The present study verifies and extends previous reports of little overall pharmacogenetic divergence across Latin America, although a number of markers display substantial differentiation.
Collapse
Affiliation(s)
- Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Gilderlanio Santana de Araújo
- Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Pará, Brazil
| |
Collapse
|
48
|
Moreira DDP, Suzuki AM, Silva ALTE, Varella-Branco E, Meneghetti MCZ, Kobayashi GS, Fogo M, Ferrari MDFR, Cardoso RR, Lourenço NCV, Griesi-Oliveira K, Zachi EC, Bertola DR, Weinmann KDS, de Lima MA, Nader HB, Sertié AL, Passos-Bueno MR. Neuroprogenitor Cells From Patients With TBCK Encephalopathy Suggest Deregulation of Early Secretory Vesicle Transport. Front Cell Neurosci 2022; 15:803302. [PMID: 35095425 PMCID: PMC8793280 DOI: 10.3389/fncel.2021.803302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Biallelic pathogenic variants in TBCK cause encephaloneuropathy, infantile hypotonia with psychomotor retardation, and characteristic facies 3 (IHPRF3). The molecular mechanisms underlying its neuronal phenotype are largely unexplored. In this study, we reported two sisters, who harbored biallelic variants in TBCK and met diagnostic criteria for IHPRF3. We provided evidence that TBCK may play an important role in the early secretory pathway in neuroprogenitor cells (iNPC) differentiated from induced pluripotent stem cells (iPSC). Lack of functional TBCK protein in iNPC is associated with impaired endoplasmic reticulum-to-Golgi vesicle transport and autophagosome biogenesis, as well as altered cell cycle progression and severe impairment in the capacity of migration. Alteration in these processes, which are crucial for neurogenesis, neuronal migration, and cytoarchitecture organization, may represent an important causative mechanism of both neurodevelopmental and neurodegenerative phenotypes observed in IHPRF3. Whether reduced mechanistic target of rapamycin (mTOR) signaling is secondary to impaired TBCK function over other secretory transport regulators still needs further investigation.
Collapse
Affiliation(s)
- Danielle de Paula Moreira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Angela May Suzuki
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Elisa Varella-Branco
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gerson Shigeru Kobayashi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana Fogo
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | | | - Rafaela Regina Cardoso
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Naila Cristina Vilaça Lourenço
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Karina Griesi-Oliveira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | - Elaine Cristina Zachi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Débora Romeo Bertola
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto da Criança do Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Karina de Souza Weinmann
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Andrade de Lima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andrea Laurato Sertié
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Maria Rita Passos-Bueno,
| |
Collapse
|
49
|
Ali TM, Linnenkamp BDW, Yamamoto GL, Honjo RS, Cabral de Menezes Filho H, Kim CA, Bertola DR. The recurrent homozygous translation start site variant in CCDC134 in an individual with severe osteogenesis imperfecta of non-Morrocan ancestry. Am J Med Genet A 2022; 188:1545-1549. [PMID: 35019224 DOI: 10.1002/ajmg.a.62651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/25/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022]
Abstract
Osteogenesis imperfecta (OI) is a rare low-bone mass skeletal Mendelian disorder characterized by bone fragility leading to bone fractures, with deformities and stunted growth in the more severe phenotypes. Other common, nonskeletal findings include blue sclerae and dentinogenesis imperfecta. It is caused mainly by quantitative or structural defects in type I collagen, although dysregulation of different signaling pathways that play a role in bone morphogenesis has been described to be associated with a small fraction of individuals with OI. Recently, a homozygous variant in the translation start site of CCDC134, showing increased activation of the RAS/MAPK signaling pathway, has been reported in three families of Moroccan origin with a severe, deforming form of OI. We report on a 9-year-old Brazilian boy, harboring the same homozygous variant in CCDC134, also presenting severe bone involvement. This report contributes to the phenotypic delineation of this novel autosomal recessive form of OI, which presents with high prevalence of nonunion fractures considered rare events in OI in general. In addition, it expands the phenotype to include base skull anomalies, potentially leading to serious complications, as seen in severe forms of OI. A poor response to bisphosphonate therapy was observed in these individuals. As the variant in CCDC134 leads to dysregulation of the RAS/MAPK signaling pathway, drugs targeted to this pathway could be an alternative to achieve a better management of these individuals.
Collapse
Affiliation(s)
- Taccyanna M Ali
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca D W Linnenkamp
- Unidade de Genética, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme L Yamamoto
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Unidade de Genética, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Diagnóstico das Américas SA, DASA, São Paulo, Brazil
| | - Rachel S Honjo
- Unidade de Genética, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Hamilton Cabral de Menezes Filho
- Unidade de Endocrinologia Pediátrica, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Chong Ae Kim
- Unidade de Genética, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Débora R Bertola
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Unidade de Genética, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Abreu GDM, Tarantino RM, da Fonseca ACP, Andrade JRFDO, de Souza RB, Soares CDAPD, Cambraia A, Cabello PH, Rodacki M, Zajdenverg L, Zembrzuski VM, Campos Junior M. Identification of Variants Responsible for Monogenic Forms of Diabetes in Brazil. Front Endocrinol (Lausanne) 2022; 13:827325. [PMID: 35592779 PMCID: PMC9110842 DOI: 10.3389/fendo.2022.827325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 12/25/2022] Open
Abstract
Monogenic forms of diabetes mellitus may affect a significant number of patients of this disease, and it is an important molecular cause to be investigated. However, studies of the genetic causes of monogenic diabetes, especially in populations with mixed ethnic backgrounds, such as the one in Brazil, are scarce. The aim of this study was to screen several genes associated with monogenic diabetes in fifty-seven Brazilian patients with recurrence of the disease in their families and thirty-four relatives. Inclusion criteria were: Age of onset ≤ 40 years old, BMI < 30 kg/m², at least two affected generations and negative anti-GAD and anti-IA2 antibodies. MODY genes HNF4A, GCK, HNF1A, HNF1B, NEUROD1, KLF11, PAX4, INS, KCNJ11, and MT-TL1 were sequenced by Sanger sequencing. We identified a total of 20 patients with variants, 13 GCK-MODY, four HNF1A-MODY, and one variant in each of the following genes, HNF4A, HNF1B and MT-TL1. Segregation analysis was performed in 13 families. Four variants were novel, two in GCK (p.(Met115Val) [c.343A>G] and p.(Asp365GlufsTer95) [c.1094_1095insGCGA]) and two in HNF1A (p.(Tyr163Ter) [c.489C>G] and p.(Val380CysfsTer39) [c.1136_1137insC]). Here we highlight the importance of screening for monogenic diabetes in admixed populations.
Collapse
Affiliation(s)
- Gabriella de Medeiros Abreu
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Gabriella de Medeiros Abreu,
| | - Roberta Magalhães Tarantino
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Proença da Fonseca
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana Rosa Ferreira de Oliveira Andrade
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Genetics, School of Health Science, University of Grande Rio, Rio de Janeiro, Brazil
| | - Ritiele Bastos de Souza
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Amanda Cambraia
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pedro Hernan Cabello
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Genetics, School of Health Science, University of Grande Rio, Rio de Janeiro, Brazil
| | - Melanie Rodacki
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lenita Zajdenverg
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mário Campos Junior
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|