1
|
Seifert BA, Reddi HV, Kang BE, Bean LJH, Shealy A, Rose NC. Myotonic dystrophy type 1 testing, 2024 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2024; 26:101145. [PMID: 38836869 PMCID: PMC11298302 DOI: 10.1016/j.gim.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a form of muscular dystrophy causing progressive muscle loss and weakness. Although clinical features can manifest at any age, it is the most common form of muscular dystrophy with onset in adulthood. DM1 is an autosomal dominant condition, resulting from an unstable CTG expansion in the 3'-untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. The age of onset and the severity of the phenotype are roughly correlated with the size of the CTG expansion. Multiple methodologies can be used to diagnose affected individuals with DM1, including polymerase chain reaction, Southern blot, and triplet repeat-primed polymerase chain reaction. Recently, triplet repeat interruptions have been described, which may affect clinical outcomes of a fully-variable allele in DMPK. This document supersedes the Technical Standards and Guidelines for Myotonic Dystrophy originally published in 2009 and reaffirmed in 2015. It is designed for genetic testing professionals who are already familiar with the disease and the methods of analysis.
Collapse
Affiliation(s)
- Bryce A Seifert
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Honey V Reddi
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Benjamin E Kang
- Department of Pathology and Pediatrics, University of Michigan Medical School, Ann Arbor, MI; Vanderbilt University Medical Center, Nashville, TN
| | | | - Amy Shealy
- Cleveland Clinic Center for Personalized Genetic Healthcare, Cleveland, OH
| | - Nancy C Rose
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT
| |
Collapse
|
2
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Taylor A, Barros D, Gobet N, Schuepbach T, McAllister B, Aeschbach L, Randall E, Trofimenko E, Heuchan E, Barszcz P, Ciosi M, Morgan J, Hafford-Tear N, Davidson A, Massey T, Monckton D, Jones L, network REGISTRYH, Xenarios I, Dion V. Repeat Detector: versatile sizing of expanded tandem repeats and identification of interrupted alleles from targeted DNA sequencing. NAR Genom Bioinform 2022; 4:lqac089. [PMID: 36478959 PMCID: PMC9719798 DOI: 10.1093/nargab/lqac089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022] Open
Abstract
Targeted DNA sequencing approaches will improve how the size of short tandem repeats is measured for diagnostic tests and preclinical studies. The expansion of these sequences causes dozens of disorders, with longer tracts generally leading to a more severe disease. Interrupted alleles are sometimes present within repeats and can alter disease manifestation. Determining repeat size mosaicism and identifying interruptions in targeted sequencing datasets remains a major challenge. This is in part because standard alignment tools are ill-suited for repetitive and unstable sequences. To address this, we have developed Repeat Detector (RD), a deterministic profile weighting algorithm for counting repeats in targeted sequencing data. We tested RD using blood-derived DNA samples from Huntington's disease and Fuchs endothelial corneal dystrophy patients sequenced using either Illumina MiSeq or Pacific Biosciences single-molecule, real-time sequencing platforms. RD was highly accurate in determining repeat sizes of 609 blood-derived samples from Huntington's disease individuals and did not require prior knowledge of the flanking sequences. Furthermore, RD can be used to identify alleles with interruptions and provide a measure of repeat instability within an individual. RD is therefore highly versatile and may find applications in the diagnosis of expanded repeat disorders and in the development of novel therapies.
Collapse
Affiliation(s)
- Alysha S Taylor
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Dinis Barros
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Nastassia Gobet
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Thierry Schuepbach
- Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Newbiologix, Ch. De la corniche 6-8, 1066 Epalinges, Switzerland
| | - Branduff McAllister
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorene Aeschbach
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Emma L Randall
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Evgeniya Trofimenko
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Eleanor R Heuchan
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Paula Barszcz
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Joanne Morgan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | | | - Alice E Davidson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Thomas H Massey
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | | | - Ioannis Xenarios
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
- Health2030 Genome Center, Ch des Mines 14, 1202 Genève, Switzerland
| | - Vincent Dion
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
4
|
Identification of a CCG-Enriched Expanded Allele in Patients with Myotonic Dystrophy Type 1 Using Amplification-Free Long-Read Sequencing. J Mol Diagn 2022; 24:1143-1154. [PMID: 36084803 DOI: 10.1016/j.jmoldx.2022.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) exhibits highly heterogeneous clinical manifestations caused by an unstable CTG repeat expansion reaching up to 4000 CTG. The clinical variability depends on CTG repeat number, CNG repeat interruptions, and somatic mosaicism. Currently, none of these factors are simultaneously and accurately determined due to the limitations of gold standard methods used in clinical and research laboratories. An amplicon method for targeting the DMPK locus using single-molecule real-time sequencing was recently developed to accurately analyze expanded alleles. However, amplicon-based sequencing still depends on PCR, and the inherent bias toward preferential amplification of smaller repeats can be problematic in DM1. Thus, an amplification-free long-read sequencing method was developed by using CRISPR/Cas9 technology in DM1. This method was used to sequence the DMPK locus in patients with CTG repeat expansion ranging from 130 to >1000 CTG. We showed that elimination of PCR amplification improves the accuracy of measurement of inherited repeat number and somatic repeat variations, two key factors in DM1 severity and age at onset. For the first time, an expansion composed of >85% CCG repeats was identified by using this innovative method in a DM1 family with an atypical clinical profile. No-amplification targeted sequencing represents a promising method that can overcome research and diagnosis shortcomings, with translational implications for clinical and genetic counseling in DM1.
Collapse
|
5
|
Văcăraș V, Elian H, Isachi ID, Văcăraș C, Mureșanu DF. Steinert's disease, from assumption to certainty in neurological practice. BALNEO AND PRM RESEARCH JOURNAL 2022. [DOI: 10.12680/balneo.2022.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Steinert’s disease, or myotonic dystrophy type 1 (MD1), is the most prevalent myopathy in adults. We report the case of a patient who was admitted to the Neurology Department for the progressive decrease in muscle strength in the lower limbs bilaterally. Symptoms began about 18 months before the presentation to the Neurology Department. On the elec-troneurographic examination, specific features for myotonic dystrophy type 1 were described, confirmed later by the genetic test.
Keywords: Steinert’s disease, Paraparesis, Multisystemic Disease, Neurology.
Collapse
Affiliation(s)
- Vitalie Văcăraș
- Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania 2 Cluj-Napoca County Emergency Hospital, Neurology II Department, Cluj-Napoca, Romania
| | - Hapca Elian
- Cluj-Napoca County Emergency Hospital, Neurology II Department, Cluj-Napoca, Romania
| | - Ionuț-Dănuț Isachi
- Cluj-Napoca County Emergency Hospital, Neurology II Department, Cluj-Napoca, Romania
| | - Cristiana Văcăraș
- Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dafin Fior Mureșanu
- Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania 2 Cluj-Napoca County Emergency Hospital, Neurology II Department, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Alfano M, De Antoni L, Centofanti F, Visconti VV, Maestri S, Degli Esposti C, Massa R, D'Apice MR, Novelli G, Delledonne M, Botta A, Rossato M. Characterization of full-length CNBP expanded alleles in myotonic dystrophy type 2 patients by Cas9-mediated enrichment and nanopore sequencing. eLife 2022; 11:80229. [PMID: 36018009 PMCID: PMC9462847 DOI: 10.7554/elife.80229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Myotonic dystrophy type 2 (DM2) is caused by CCTG repeat expansions in the CNBP gene, comprising 75 to >11,000 units and featuring extensive mosaicism, making it challenging to sequence fully expanded alleles. To overcome these limitations, we used PCR-free Cas9-mediated nanopore sequencing to characterize CNBP repeat expansions at the single-nucleotide level in nine DM2 patients. The length of normal and expanded alleles can be assessed precisely using this strategy, agreeing with traditional methods, and revealing the degree of mosaicism. We also sequenced an entire ~50 kbp expansion, which has not been achieved previously for DM2 or any other repeat-expansion disorders. Our approach precisely counted the repeats and identified the repeat pattern for both short interrupted and uninterrupted alleles. Interestingly, in the expanded alleles, only two DM2 samples featured the expected pure CCTG repeat pattern, while the other seven presented also TCTG blocks at the 3′ end, which have not been reported before in DM2 patients, but confirmed hereby with orthogonal methods. The demonstrated approach simultaneously determines repeat length, structure/motif, and the extent of somatic mosaicism, promising to improve the molecular diagnosis of DM2 and achieve more accurate genotype–phenotype correlations for the better stratification of DM2 patients in clinical trials.
Collapse
Affiliation(s)
| | - Luca De Antoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Federica Centofanti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Simone Maestri
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Roberto Massa
- Department of Systems Medicine (Neurology), University of Rome Tor Vergata, Rome, Italy
| | | | - Giuseppe Novelli
- Laboratory of Medical Genetics, University of Rome Tor Vergata, Rome, Italy
| | | | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Intergenerational Influence of Gender and the DM1 Phenotype of the Transmitting Parent in Korean Myotonic Dystrophy Type 1. Genes (Basel) 2022; 13:genes13081465. [PMID: 36011377 PMCID: PMC9408469 DOI: 10.3390/genes13081465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common autosomal-dominant disorder caused by the CTG repeat expansion of the DMPK, and it has been categorized into three phenotypes: mild, classic, and congenital DM1. Here, we reviewed the intergenerational influence of gender and phenotype of the transmitting parent on the occurrence of Korean DM1. A total of 44 parent–child pairs matched for the gender of the transmitting parent and the affected child and 29 parent–child pairs matched for the gender and DM1 phenotype of the transmitting parent were reviewed. The CTG repeat size of the DMPK in the affected child was found to be significantly greater when transmitted by a female parent to a female child (DM1-FF) (median, 1309 repeats; range, 400–2083) than when transmitted by a male parent to a male child (650; 160–1030; p = 0.038 and 0.048 using the Tukey HSD and the Bonferroni test) or by a male parent to a female child (480; 94–1140; p = 0.003). The difference in the CTG repeat size of the DMPK between the transmitting parent and the affected child was also lower when transmitted from a male parent with classic DM1 (−235; −280 to 0) compared to when it was transmitted from a female parent with mild DM1 (866; 612–905; p = 0.015 and 0.019) or from a female parent with classic DM1 (DM1-FC) (605; 10–1393; p = 0.005). This study highlights that gender and the DM1 phenotype of the transmitting parent had an impact on the CTG repeat size of the DMPK in the affected child, with greater increases being inherited from the DM1-FF or DM1-FC situations in Korean DM1.
Collapse
|
8
|
Rasmussen A, Hildonen M, Vissing J, Duno M, Tümer Z, Birkedal U. High Resolution Analysis of DMPK Hypermethylation and Repeat Interruptions in Myotonic Dystrophy Type 1. Genes (Basel) 2022; 13:genes13060970. [PMID: 35741732 PMCID: PMC9222588 DOI: 10.3390/genes13060970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic neuromuscular disorder caused by the expansion of a CTG repeat in the 3′-UTR of DMPK, which is transcribed to a toxic gain-of-function RNA that affects splicing of a range of genes. The expanded repeat is unstable in both germline and somatic cells. The variable age at disease onset and severity of symptoms have been linked to the inherited CTG repeat length, non-CTG interruptions, and methylation levels flanking the repeat. In general, the genetic biomarkers are investigated separately with specific methods, making it tedious to obtain an overall characterisation of the repeat for a given individual. In the present study, we employed Oxford nanopore sequencing in a pilot study to simultaneously determine the repeat lengths, investigate the presence and nature of repeat interruptions, and quantify methylation levels in the regions flanking the CTG-repeats in four patients with DM1. We determined the repeat lengths, and in three patients, we observed interruptions which were not detected using repeat-primed PCR. Interruptions may thus be more common than previously anticipated and should be investigated in larger cohorts. Allele-specific analyses enabled characterisation of aberrant methylation levels specific to the expanded allele, which greatly increased the sensitivity and resolved cases where the methylation levels were ambiguous.
Collapse
Affiliation(s)
- Astrid Rasmussen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| | - Mathis Hildonen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Duno
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Ulf Birkedal
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| |
Collapse
|
9
|
de Pontual L, Tomé S. Overview of the Complex Relationship between Epigenetics Markers, CTG Repeat Instability and Symptoms in Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:ijms23073477. [PMID: 35408837 PMCID: PMC8998570 DOI: 10.3390/ijms23073477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Among the trinucleotide repeat disorders, myotonic dystrophy type 1 (DM1) is one of the most complex neuromuscular diseases caused by an unstable CTG repeat expansion in the DMPK gene. DM1 patients exhibit high variability in the dynamics of CTG repeat instability and in the manifestations and progression of the disease. The largest expanded alleles are generally associated with the earliest and most severe clinical form. However, CTG repeat length alone is not sufficient to predict disease severity and progression, suggesting the involvement of other factors. Several data support the role of epigenetic alterations in clinical and genetic variability. By highlighting epigenetic alterations in DM1, this review provides a new avenue on how these changes can serve as biomarkers to predict clinical features and the mutation behavior.
Collapse
Affiliation(s)
| | - Stéphanie Tomé
- Correspondence: ; Tel.: +33-1-42-16-57-16; Fax: +33-1-42-16-57-00
| |
Collapse
|
10
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
11
|
Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 23:ijms23010354. [PMID: 35008780 PMCID: PMC8745394 DOI: 10.3390/ijms23010354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is one of the most variable monogenic diseases at phenotypic, genetic, and epigenetic level. The disease is multi-systemic with the age at onset ranging from birth to late age. The underlying mutation is an unstable expansion of CTG repeats in the DMPK gene, varying in size from 50 to >1000 repeats. Generally, large expansions are associated with an earlier age at onset. Additionally, the most severe, congenital DM1 form is typically associated with local DNA methylation. Genetic variability of DM1 mutation is further increased by its structural variations due to presence of other repeats (e.g., CCG, CTC, CAG). These variant repeats or repeat interruptions seem to confer an additional level of epigenetic variability since local DNA methylation is frequently associated with variant CCG repeats independently of the expansion size. The effect of repeat interruptions on DM1 molecular pathogenesis is not investigated enough. Studies on patients indicate their stabilizing effect on DMPK expansions because no congenital cases were described in patients with repeat interruptions, and the age at onset is frequently later than expected. Here, we review the clinical relevance of repeat interruptions in DM1 and genetic and epigenetic characteristics of interrupted DMPK expansions based on patient studies.
Collapse
|
12
|
Deshmukh AL, Caron MC, Mohiuddin M, Lanni S, Panigrahi GB, Khan M, Engchuan W, Shum N, Faruqui A, Wang P, Yuen RKC, Nakamori M, Nakatani K, Masson JY, Pearson CE. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability. Cell Rep 2021; 37:110078. [PMID: 34879276 DOI: 10.1016/j.celrep.2021.110078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ongoing inchworm-like CAG and CGG repeat expansions in brains, arising by aberrant processing of slipped DNAs, may drive Huntington's disease, fragile X syndrome, and autism. FAN1 nuclease modifies hyper-expansion rates by unknown means. We show that FAN1, through iterative cycles, binds, dimerizes, and cleaves slipped DNAs, yielding striking exo-nuclease pauses along slip-outs: 5'-C↓A↓GC↓A↓G-3' and 5'-C↓T↓G↓C↓T↓G-3'. CAG excision is slower than CTG and requires intra-strand A·A and T·T mismatches. Fully paired hairpins arrested excision, whereas disease-delaying CAA interruptions further slowed excision. Endo-nucleolytic cleavage is insensitive to slip-outs. Rare FAN1 variants are found in individuals with autism with CGG/CCG expansions, and CGG/CCG slip-outs show exo-nuclease pauses. The slip-out-specific ligand, naphthyridine-azaquinolone, which induces contractions of expanded repeats in vivo, requires FAN1 for its effect, and protects slip-outs from FAN1 exo-, but not endo-, nucleolytic digestion. FAN1's inchworm pausing of slip-out excision rates is well suited to modify inchworm expansion rates, which modify disease onset and progression.
Collapse
Affiliation(s)
- Amit Laxmikant Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 3S3, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Gagan B Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Mahreen Khan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Worrawat Engchuan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Natalie Shum
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aisha Faruqui
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peixiang Wang
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Ryan K C Yuen
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, the Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 3S3, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Arning L, Nguyen HP. Huntington disease update: new insights into the role of repeat instability in disease pathogenesis. MED GENET-BERLIN 2021; 33:293-300. [PMID: 38835439 PMCID: PMC11006308 DOI: 10.1515/medgen-2021-2101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2021] [Indexed: 06/06/2024]
Abstract
The causative mutation for Huntington disease (HD), an expanded trinucleotide repeat sequence in the first exon of the huntingtin gene (HTT) is naturally polymorphic and inevitably associated with disease symptoms above 39 CAG repeats. Although symptomatic medical therapies for HD can improve the motor and non-motor symptoms for affected patients, these drugs do not stop the ongoing neurodegeneration and progression of the disease, which results in severe motor and cognitive disability and death. To date, there is still an urgent need for the development of effective disease-modifying therapies to slow or even stop the progression of HD. The increasing ability to intervene directly at the roots of the disease, namely HTT transcription and translation of its mRNA, makes it necessary to understand the pathogenesis of HD as precisely as possible. In addition to the long-postulated toxicity of the polyglutamine-expanded mutant HTT protein, there is increasing evidence that the CAG repeat-containing RNA might also be directly involved in toxicity. Recent studies have identified cis- (DNA repair genes) and trans- (loss/duplication of CAA interruption) acting variants as major modifiers of age at onset (AO) and disease progression. More and more extensive data indicate that somatic instability functions as a driver for AO as well as disease progression and severity, not only in HD but also in other polyglutamine diseases. Thus, somatic expansions of repetitive DNA sequences may be essential to promote respective repeat lengths to reach a threshold leading to the overt neurodegenerative symptoms of trinucleotide diseases. These findings support somatic expansion as a potential therapeutic target in HD and related repeat expansion disorders.
Collapse
Affiliation(s)
- Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum 44780, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum 44780, Germany
| |
Collapse
|
14
|
Morales F, Vásquez M, Corrales E, Vindas-Smith R, Santamaría-Ulloa C, Zhang B, Sirito M, Estecio MR, Krahe R, Monckton DG. Longitudinal increases in somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 are associated with variation in age-at-onset. Hum Mol Genet 2021; 29:2496-2507. [PMID: 32601694 DOI: 10.1093/hmg/ddaa123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
In myotonic dystrophy type 1 (DM1), somatic mosaicism of the (CTG)n repeat expansion is age-dependent, tissue-specific and expansion-biased. These features contribute toward variation in disease severity and confound genotype-to-phenotype analyses. To investigate how the (CTG)n repeat expansion changes over time, we collected three longitudinal blood DNA samples separated by 8-15 years and used small pool and single-molecule PCR in 43 DM1 patients. We used the lower boundary of the allele length distribution as the best estimate for the inherited progenitor allele length (ePAL), which is itself the best predictor of disease severity. Although in most patients the lower boundary of the allele length distribution was conserved over time, in many this estimate also increased with age, suggesting samples for research studies and clinical trials should be obtained as early as possible. As expected, the modal allele length increased over time, driven primarily by ePAL, age-at-sampling and the time interval. As expected, small expansions <100 repeats did not expand as rapidly as larger alleles. However, the rate of expansion of very large alleles was not obviously proportionally higher. This may, at least in part, be a result of the allele length-dependent increase in large contractions that we also observed. We also determined that individual-specific variation in the increase of modal allele length over time not accounted for by ePAL, age-at-sampling and time was inversely associated with individual-specific variation in age-at-onset not accounted for by ePAL, further highlighting somatic expansion as a therapeutic target in DM1.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Rebeca Vindas-Smith
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | | | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos R Estecio
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Wenninger S, Cumming SA, Gutschmidt K, Okkersen K, Jimenez-Moreno AC, Daidj F, Lochmüller H, Hogarth F, Knoop H, Bassez G, Monckton DG, van Engelen BGM, Schoser B. Associations Between Variant Repeat Interruptions and Clinical Outcomes in Myotonic Dystrophy Type 1. NEUROLOGY-GENETICS 2021; 7:e572. [PMID: 33884298 PMCID: PMC8054967 DOI: 10.1212/nxg.0000000000000572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Objective To assess the association between variant repeat (VR) interruptions in patients with myotonic dystrophy type 1 (DM1) and clinical symptoms and outcome measures after cognitive behavioral therapy (CBT) intervention. Methods Adult patients with DM1 were recruited within the OPTIMISTIC trial (NCT02118779). Disease-related history, current clinical symptoms and comorbidities, functional assessments, and disease- and health-related questionnaires were obtained at baseline and after 5 and 10 months. After genetic analysis, we assessed the association between the presence of VR interruptions and clinical symptoms' long-term outcomes and compared the effects of CBT in patients with and without VR interruptions. Core trial outcome measures analyzed were: 6-minute walking test, DM1-Activ-C, Checklist Individual Strength Fatigue Score, Myotonic Dystrophy Health Index, McGill-Pain questionnaire, and Beck Depression inventory—fast screen. Blood samples for DNA testing were obtained at the baseline visit for determining CTG length and detection of VR interruptions. Results VR interruptions were detectable in 21/250 patients (8.4%)—12 were assigned to the standard-of-care group (control group) and 9 to the CBT group. Patients with VR interruptions were significantly older when the first medical problem occurred and had a significantly shorter disease duration at baseline. We found a tendency toward a milder disease severity in patients with VR interruptions, especially in ventilation status, mobility, and cardiac symptoms. Changes in clinical outcome measures after CBT were not associated with the presence of VR interruptions. Conclusions The presence of VR interruptions is associated with a later onset of the disease and a milder phenotype. However, based on the OPTIMISTIC trial data, the presence of VR interruptions was not associated with significant changes on outcome measures after CBT intervention. Trial Registration Information ClinicalTrials.gov NCT02118779.
Collapse
Affiliation(s)
- Stephan Wenninger
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Sarah A Cumming
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Kristina Gutschmidt
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Kees Okkersen
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Aura Cecilia Jimenez-Moreno
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Ferroudja Daidj
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Hanns Lochmüller
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Fiona Hogarth
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Hans Knoop
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Guillaume Bassez
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Darren G Monckton
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Benedikt Schoser
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Mangin A, de Pontual L, Tsai YC, Monteil L, Nizon M, Boisseau P, Mercier S, Ziegle J, Harting J, Heiner C, Gourdon G, Tomé S. Robust Detection of Somatic Mosaicism and Repeat Interruptions by Long-Read Targeted Sequencing in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:2616. [PMID: 33807660 PMCID: PMC7962047 DOI: 10.3390/ijms22052616] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most complex and variable trinucleotide repeat disorder caused by an unstable CTG repeat expansion, reaching up to 4000 CTG in the most severe cases. The genetic and clinical variability of DM1 depend on the sex and age of the transmitting parent, but also on the CTG repeat number, presence of repeat interruptions and/or on the degree of somatic instability. Currently, it is difficult to simultaneously and accurately determine these contributing factors in DM1 patients due to the limitations of gold standard methods used in molecular diagnostics and research laboratories. Our study showed the efficiency of the latest PacBio long-read sequencing technology to sequence large CTG trinucleotides, detect multiple and single repeat interruptions and estimate the levels of somatic mosaicism in DM1 patients carrying complex CTG repeat expansions inaccessible to most methods. Using this innovative approach, we revealed the existence of de novo CCG interruptions associated with CTG stabilization/contraction across generations in a new DM1 family. We also demonstrated that our method is suitable to sequence the DM1 locus and measure somatic mosaicism in DM1 families carrying more than 1000 pure CTG repeats. Better characterization of expanded alleles in DM1 patients can significantly improve prognosis and genetic counseling, not only in DM1 but also for other tandem DNA repeat disorders.
Collapse
Affiliation(s)
- Antoine Mangin
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
- Dementia Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - Laure de Pontual
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| | - Yu-Chih Tsai
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Laetitia Monteil
- Genetics Department of the Hospital of Toulouse, F-31059 Toulouse, France;
| | - Mathilde Nizon
- CHU de Nantes, Service de Génétique Médicale, Laboratoire de Génétique Moléculaire, F-44000 Nantes, France; (M.N.); (P.B.)
| | - Pierre Boisseau
- CHU de Nantes, Service de Génétique Médicale, Laboratoire de Génétique Moléculaire, F-44000 Nantes, France; (M.N.); (P.B.)
| | - Sandra Mercier
- CHU Nantes, Service de Génétique Médicale, Centre de Référence des Maladies Neuromusculaires AOC, F-44000 Nantes, France;
| | - Janet Ziegle
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - John Harting
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Cheryl Heiner
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Geneviève Gourdon
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| | - Stéphanie Tomé
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| |
Collapse
|
17
|
Cumming SA, Oliwa A, Stevens G, Ballantyne B, Mann C, Razvi S, Longman C, Monckton DG, Farrugia ME. A DM1 patient with CCG variant repeats: Reaching the diagnosis. Neuromuscul Disord 2021; 31:232-238. [PMID: 33546847 DOI: 10.1016/j.nmd.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
We report the case of a male patient presenting in his 50s with ptosis, facial and distal limb muscle weakness, clinical and electrical myotonia, and a prior history of cataract extraction. He had a dominant family history in keeping with a similar phenotype. Myotonic dystrophy type 1 was clinically suspected. Triplet-primed polymerase chain reaction in a diagnostic laboratory did not identify a typical CTG repeat expansion on two separate blood samples. However, subsequent genetic testing on a research basis identified a heterozygous repeat expansion containing CCG variant repeats. Our case highlights the point that variant repeats are not detectable on triplet-primed polymerase chain reaction and result in a milder phenotype of myotonic dystrophy. It is crucial to maintain a high clinical index of suspicion of this common neuromuscular condition.
Collapse
Affiliation(s)
- Sarah A Cumming
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, United Kingdom
| | - Agata Oliwa
- Undergraduate Medical School, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Stevens
- West of Scotland Regional Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow G51 4TF, United Kingdom
| | - Bob Ballantyne
- West of Scotland Regional Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow G51 4TF, United Kingdom
| | - Cameron Mann
- Neurophysiology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345, Govan Road, Glasgow G51 4TF, United Kingdom
| | - Saif Razvi
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345, Govan Road, Glasgow G51 4TF, United Kingdom
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow G51 4TF, United Kingdom
| | - Darren G Monckton
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, United Kingdom
| | - Maria Elena Farrugia
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345, Govan Road, Glasgow G51 4TF, United Kingdom.
| |
Collapse
|
18
|
Monckton DG. The Contribution of Somatic Expansion of the CAG Repeat to Symptomatic Development in Huntington's Disease: A Historical Perspective. J Huntingtons Dis 2021; 10:7-33. [PMID: 33579863 PMCID: PMC7990401 DOI: 10.3233/jhd-200429] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery in the early 1990s of the expansion of unstable simple sequence repeats as the causative mutation for a number of inherited human disorders, including Huntington's disease (HD), opened up a new era of human genetics and provided explanations for some old problems. In particular, an inverse association between the number of repeats inherited and age at onset, and unprecedented levels of germline instability, biased toward further expansion, provided an explanation for the wide symptomatic variability and anticipation observed in HD and many of these disorders. The repeats were also revealed to be somatically unstable in a process that is expansion-biased, age-dependent and tissue-specific, features that are now increasingly recognised as contributory to the age-dependence, progressive nature and tissue specificity of the symptoms of HD, and at least some related disorders. With much of the data deriving from affected individuals, and model systems, somatic expansions have been revealed to arise in a cell division-independent manner in critical target tissues via a mechanism involving key components of the DNA mismatch repair pathway. These insights have opened new approaches to thinking about how the disease could be treated by suppressing somatic expansion and revealed novel protein targets for intervention. Exciting times lie ahead in turning these insights into novel therapies for HD and related disorders.
Collapse
Affiliation(s)
- Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Tomé S, Gourdon G. Fast Assays to Detect Interruptions in CTG.CAG Repeat Expansions. Methods Mol Biol 2020; 2056:11-23. [PMID: 31586339 DOI: 10.1007/978-1-4939-9784-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Different interrupted repeat expansions have been found in several trinucleotide repeat (TNR) diseases such as fragile X syndrome (FXS), spinocerebellar ataxias (SCAs), and myotonic dystrophies (DMs). Their origins and roles remain poorly understood, especially in myotonic dystrophy type 1 (DM1). We present here the triplet repeat primed polymerase chain reaction (TP-PCR) and restriction enzyme-digested PCR to detect and identify interrupted triplet repeat alleles in DM1. TP-PCR consists of a PCR amplification using a fluoresceinated (FAM) primer flanking the repeat region and a primer pair in CTG.CAG repeats. A detailed analysis of interrupted triplet repeat tracts is essential to fully understand the role of interruptions in the pathogenesis and molecular mechanisms observed in TNR diseases.
Collapse
Affiliation(s)
- Stéphanie Tomé
- Laboratory CTGDM, Inserm UMR1163, Paris, France. .,Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France. .,Centre de Recherche en Myologie, CRM, Association Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France.
| | - Geneviève Gourdon
- Laboratory CTGDM, Inserm UMR1163, Paris, France.,Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France.,Centre de Recherche en Myologie, CRM, Association Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Hildonen M, Knak KL, Dunø M, Vissing J, Tümer Z. Stable Longitudinal Methylation Levels at the CpG Sites Flanking the CTG Repeat of DMPK in Patients with Myotonic Dystrophy Type 1. Genes (Basel) 2020; 11:genes11080936. [PMID: 32823742 PMCID: PMC7465187 DOI: 10.3390/genes11080936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystem disorder mainly characterized by gradual muscle loss, weakness, and delayed relaxation after muscle contraction. It is caused by an expanded CTG repeat in the 3′ UTR of DMPK, which is transcribed into a toxic gain-of-function mRNA that affects the splicing of a range of other genes. The repeat is unstable, with a bias towards expansions both in somatic cells and in the germline, which results in a tendency for earlier onset with each generation, as longer repeat lengths generally correlate with earlier onset. Previous studies have found hypermethylation in the regions flanking the repeat in congenital onset DM1 and in some patients with non-congenital DM1. We used pyrosequencing to investigate blood methylation levels in 68 patients with non-congenital DM1, compare the methylation levels between the blood and muscle, and assess whether methylation levels change over time in the blood. We found higher methylation levels in the blood of DM1 patients than in healthy controls and especially in the patients who had inherited the disease allele maternally. The methylation levels remained relatively stable over time and are a strong biomarker of the disease, as well as of the maternal inheritance of the disease.
Collapse
Affiliation(s)
- Mathis Hildonen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Kirsten Lykke Knak
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.L.K.); (J.V.)
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - John Vissing
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.L.K.); (J.V.)
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-2920-4855
| |
Collapse
|
21
|
Wansink DG, Gourdon G, van Engelen BGM, Schoser B. 248th ENMC International Workshop: Myotonic dystrophies: Molecular approaches for clinical purposes, framing a European molecular research network, Hoofddorp, the Netherlands, 11-13 October 2019. Neuromuscul Disord 2020; 30:521-531. [PMID: 32417002 DOI: 10.1016/j.nmd.2020.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Geneviève Gourdon
- Inserm UMR 974, Sorbonne Université, Centre de Recherche en Myologie, Association Institut de Myologie, 75013 Paris, France
| | - Baziel G M van Engelen
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, 6525 GC Nijmegen, the Netherlands
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This article describes the clinical features, pathogenesis, prevalence, diagnosis, and management of myotonic dystrophy type 1 and myotonic dystrophy type 2. RECENT FINDINGS The prevalence of myotonic dystrophy type 1 is better understood than the prevalence of myotonic dystrophy type 2, and new evidence indicates that the risk of cancer is increased in patients with the myotonic dystrophies. In addition, descriptions of the clinical symptoms and relative risks of comorbidities such as cardiac arrhythmias associated with myotonic dystrophy type 1 have been improved. SUMMARY Myotonic dystrophy type 1 and myotonic dystrophy type 2 are both characterized by progressive muscle weakness, early-onset cataracts, and myotonia. However, both disorders have multisystem manifestations that require a comprehensive management plan. While no disease-modifying therapies have yet been identified, advances in therapeutic development have a promising future.
Collapse
|
23
|
Fontana L, Santoro M, D'Apice MR, Peluso F, Gori G, Morrone A, Novelli G, Dosa L, Botta A. Identification, molecular characterization and segregation analysis of a variant DMPK pre-mutation allele in a three-generation Italian family. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:13-18. [PMID: 32607474 PMCID: PMC7315898 DOI: 10.36185/2532-1900-002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
Abstract
DM1 is an autosomal dominant multisystemic disease caused by an unstable CTG repeat expansion in the 3'-untranslated region (UTR) of the DMPK gene. The complex variant DMPK expanded the alleles containing CAG, CCG, CTC and/or GGC interruptions repetition sequences have been reported in 3-8% of DM1 patients. To date, very few information is available about the frequency and clinical consequences of pre-mutated DMPK variant allele. In this study, we describe a three-generation Italian family showing the segregation of an interrupted DMPK allele within the premutation range. TP-PCR with primers complementary to CCG repetitions and direct sequencing allow us to identify a hetero-triplet (CTG)6(CCGCTG)15(CTG)5 repeat structure. The haplotype analysis demonstrated that this variant allele is associated with the European founder DM1 haplotype. The pyrosequencing analysis of the CpG islands contained in the flanking regions of the CTG array, did not show the presence of a cis effect of the CCG interruptions on the methylation profile of the DM1 locus. The analysis of both meiotic transmissions, one maternal and one paternal, revealed the intrafamilial stability of the DM1 premutation among relatives. Our findings further support the hypothesis of a stabilizing effect of CCG interruptions on the mutational dynamics of the DM1 locus, also in intermediate DMPK alleles.
Collapse
Affiliation(s)
- Luana Fontana
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Francesca Peluso
- Medical Genetics Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giulia Gori
- Medical Genetics Section, Tor Vergata Hospital, Rome, Italy
| | - Amelia Morrone
- Neuroscience Department, Meyer Children's Hospital, Florence, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Medical Genetics Section, Tor Vergata Hospital, Rome, Italy.,Neuromed IRCCS Institute, Pozzilli, Isernia, Italy
| | - Laura Dosa
- Medical Genetics Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
24
|
Tomé S, Gourdon G. DM1 Phenotype Variability and Triplet Repeat Instability: Challenges in the Development of New Therapies. Int J Mol Sci 2020; 21:ijms21020457. [PMID: 31936870 PMCID: PMC7014087 DOI: 10.3390/ijms21020457] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disease caused by an unstable cytosine thymine guanine (CTG) repeat expansion in the DMPK gene. This disease is characterized by high clinical and genetic variability, leading to some difficulties in the diagnosis and prognosis of DM1. Better understanding the origin of this variability is important for developing new challenging therapies and, in particular, for progressing on the path of personalized treatments. Here, we reviewed CTG triplet repeat instability and its modifiers as an important source of phenotypic variability in patients with DM1.
Collapse
|
25
|
Ballester-Lopez A, Koehorst E, Almendrote M, Martínez-Piñeiro A, Lucente G, Linares-Pardo I, Núñez-Manchón J, Guanyabens N, Cano A, Lucia A, Overend G, Cumming SA, Monckton DG, Casadevall T, Isern I, Sánchez-Ojanguren J, Planas A, Rodríguez-Palmero A, Monlleó-Neila L, Pintos-Morell G, Ramos-Fransi A, Coll-Cantí J, Nogales-Gadea G. A DM1 family with interruptions associated with atypical symptoms and late onset but not with a milder phenotype. Hum Mutat 2019; 41:420-431. [PMID: 31608518 DOI: 10.1002/humu.23932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2019] [Accepted: 10/06/2019] [Indexed: 12/16/2022]
Abstract
Carriage of interruptions in CTG repeats of the myotonic dystrophy protein kinase gene has been associated with a broad spectrum of myotonic dystrophy type 1 (DM1) phenotypes, mostly mild. However, the data available on interrupted DM1 patients and their phenotype are scarce. We studied 49 Spanish DM1 patients, whose clinical phenotype was evaluated in depth. Blood DNA was obtained and analyzed through triplet-primed polymerase chain reaction (PCR), long PCR-Southern blot, small pool PCR, AciI digestion, and sequencing. Five patients of our registry (10%), belonging to the same family, carried CCG interruptions at the 3'-end of the CTG expansion. Some of them presented atypical traits such as very late onset of symptoms ( > 50 years) and a severe axial and proximal weakness requiring walking assistance. They also showed classic DM1 symptoms including cardiac and respiratory dysfunction, which were severe in some of them. Sizes and interrupted allele patterns were determined, and we found a contraction and an expansion in two intergenerational transmissions. Our study contributes to the observation that DM1 patients carrying interruptions present with atypical clinical features that can make DM1 diagnosis difficult, with a later than expected age of onset and a previously unreported aging-related severe disease manifestation.
Collapse
Affiliation(s)
- Alfonsina Ballester-Lopez
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Koehorst
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Miriam Almendrote
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Giuseppe Lucente
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Ian Linares-Pardo
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Nicolau Guanyabens
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Antoni Cano
- Neurology Unit, Neuroscience Department, Hospital de Mataró, Barcelona, Spain
| | - Alejandro Lucia
- Universidad Europea (Faculty of Sport Sciences), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Gayle Overend
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Teresa Casadevall
- Neurology Service, Hospital Comarcal Sant Jaume de Calella, Barcelona, Spain
| | - Irina Isern
- Unitat de Neurologia, Hospital de l'Esperit Sant, Barcelona, Spain
| | | | - Albert Planas
- Servei de medicina interna, Secció de neurologia, Hospital Municipal de Badalona, Barcelona, Spain
| | - Agustí Rodríguez-Palmero
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuropediatric Unit, Pediatric Service, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Laura Monlleó-Neila
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuropediatric Unit, Pediatric Service, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Guillem Pintos-Morell
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Division of Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Alba Ramos-Fransi
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Jaume Coll-Cantí
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Cumming SA, Jimenez-Moreno C, Okkersen K, Wenninger S, Daidj F, Hogarth F, Littleford R, Gorman G, Bassez G, Schoser B, Lochmüller H, van Engelen BGM, Monckton DG. Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology 2019; 93:e995-e1009. [PMID: 31395669 PMCID: PMC6745735 DOI: 10.1212/wnl.0000000000008056] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 04/10/2019] [Indexed: 01/11/2023] Open
Abstract
Objective To evaluate the role of genetic variation at the DMPK locus on symptomatic diversity in 250 adult, ambulant patients with myotonic dystrophy type 1 (DM1) recruited to the Observational Prolonged Trial in Myotonic Dystrophy Type 1 to Improve Quality of Life—Standards, a Target Identification Collaboration (OPTIMISTIC) clinical trial. Methods We used small pool PCR to correct age at sampling biases and estimate the progenitor allele CTG repeat length and somatic mutational dynamics, and AciI digests and repeat primed PCR to test for the presence of variant repeats. Results We confirmed disease severity is driven by progenitor allele length, is further modified by age, and, in some cases, sex, and that patients in whom the CTG repeat expands more rapidly in the soma develop symptoms earlier than predicted. We revealed a key role for variant repeats in reducing disease severity and quantified their role in delaying age at onset by approximately 13.2 years (95% confidence interval 5.7–20.7, 2-tailed t test t = −3.7, p = 0.0019). Conclusions Careful characterization of the DMPK CTG repeat to define progenitor allele length and presence of variant repeats has increased utility in understanding clinical variability in a trial cohort and provides a genetic route for defining disease-specific outcome measures, and the basis of treatment response and stratification in DM1 trials.
Collapse
Affiliation(s)
- Sarah A Cumming
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Cecilia Jimenez-Moreno
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Kees Okkersen
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Stephan Wenninger
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Ferroudja Daidj
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Fiona Hogarth
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Roberta Littleford
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Gráinne Gorman
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Guillaume Bassez
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Benedikt Schoser
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Hanns Lochmüller
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Baziel G M van Engelen
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Darren G Monckton
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK.
| | | |
Collapse
|
27
|
De Antonio M, Dogan C, Daidj F, Eymard B, Puymirat J, Mathieu J, Gagnon C, Katsahian S, Hamroun D, Bassez G. The DM-scope registry: a rare disease innovative framework bridging the gap between research and medical care. Orphanet J Rare Dis 2019; 14:122. [PMID: 31159885 PMCID: PMC6547518 DOI: 10.1186/s13023-019-1088-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The relevance of registries as a key component for developing clinical research for rare diseases (RD) and improving patient care has been acknowledged by most stakeholders. As recent studies pointed to several limitations of RD registries our challenge was (1) to improve standardization and data comparability; (2) to facilitate interoperability between existing RD registries; (3) to limit the amount of incomplete data; (4) to improve data quality. This report describes the innovative concept of the DM-Scope Registry that was developed to achieve these objectives for Myotonic Dystrophy (DM), a prototypical example of highly heterogeneous RD. By the setting up of an integrated platform attractive for practitioners use, we aimed to promote DM epidemiology, clinical research and patients care management simultaneously. RESULTS The DM-Scope Registry is a result of the collaboration within the French excellence network established by the National plan for RDs. Inclusion criteria is all genetically confirmed DM individuals, independently of disease age of onset. The dataset includes social-demographic data, clinical features, genotype, and biomaterial data, and is adjustable for clinical trial data collection. To date, the registry has a nationwide coverage, composed of 55 neuromuscular centres, encompassing the whole disease clinical and genetic spectrum. This widely used platform gathers almost 3000 DM patients (DM1 n = 2828, DM2 n = 142), both children (n = 322) and adults (n = 2648), which accounts for > 20% of overall registered DM patients internationally. The registry supported 10 research studies of various type i.e. observational, basic science studies and patient recruitment for clinical trials. CONCLUSION The DM-Scope registry represents the largest collection of standardized data for the DM population. Our concept improved collaboration among health care professionals by providing annual follow-up of quality longitudinal data collection. The combination of clinical features and biomolecular materials provides a comprehensive view of the disease in a given population. DM-Scope registry proves to be a powerful device for promoting both research and medical care that is suitable to other countries. In the context of emerging therapies, such integrated platform contributes to the standardisation of international DM research and for the design of multicentre clinical trials. Finally, this valuable model is applicable to other RDs.
Collapse
Affiliation(s)
- Marie De Antonio
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne University, Paris Descartes University, Paris, France
| | - Céline Dogan
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Ferroudja Daidj
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Bruno Eymard
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | | | - Jean Mathieu
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), CIUSSS du Saguenay-Lac-St-Jean, Québec, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), CIUSSS du Saguenay-Lac-St-Jean, Québec, Canada
- Centre de recherche Charles-Le-Moyne-Saguenay-Lac-St-Jean sur les innovations en santé (CR-CSIS), Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada
| | - Sandrine Katsahian
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne University, Paris Descartes University, Paris, France
- Unit of Epidemiology and Clinical Research, AP-HP, Georges-Pompidou Hospital, Paris, France
| | - Dalil Hamroun
- University Institute of Clinical Research, CHU, Montpellier, France
| | - Guillaume Bassez
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- INSERM, Research Center in Myology, Sorbonne University, Paris, France
| |
Collapse
|
28
|
Analysis of mutational dynamics at the DMPK (CTG)n locus identifies saliva as a suitable DNA sample source for genetic analysis in myotonic dystrophy type 1. PLoS One 2019; 14:e0216407. [PMID: 31048891 PMCID: PMC6497304 DOI: 10.1371/journal.pone.0216407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/21/2019] [Indexed: 12/12/2022] Open
Abstract
Genotype-to-phenotype correlation studies in myotonic dystrophy type 1 (DM1) have been confounded by the age-dependent, tissue-specific and expansion-biased features of somatic mosaicism of the expanded CTG repeat. Previously, we showed that by controlling for the confounding effects of somatic instability to estimate the progenitor allele CTG length in blood DNA, age at onset correlations could be significantly improved. To determine the suitability of saliva DNA as a source for genotyping, we used small pool-PCR to perform a detailed quantitative study of the somatic mutational dynamics of the CTG repeat in saliva and blood DNA from 40 DM1 patients. Notably, the modal allele length in saliva was only moderately higher in saliva and not as large as previously observed in most other tissues. The lower boundary of the allele distribution was also slightly higher in saliva than it was in blood DNA. However, the progenitor allele length estimated in blood explained more of the variation in age at onset than that estimated from saliva. Interestingly, although the modal allele length was slightly higher in saliva, the overall degree of somatic variation was typically lower than in blood DNA, revealing new insights into the tissue-specific dynamics of somatic mosaicism. These data indicate that saliva constitutes an accessible, non-invasive and suitable DNA sample source for performing genetic studies in DM1.
Collapse
|
29
|
van Cruchten RTP, Wieringa B, Wansink DG. Expanded CUG repeats in DMPK transcripts adopt diverse hairpin conformations without influencing the structure of the flanking sequences. RNA (NEW YORK, N.Y.) 2019; 25:481-495. [PMID: 30700578 PMCID: PMC6426290 DOI: 10.1261/rna.068940.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disorder caused by expansion of a CTG repeat in the 3'-untranslated region (UTR) of the DMPK gene. Mutant DMPK transcripts form aberrant structures and anomalously associate with RNA-binding proteins (RBPs). As a first step toward better understanding of the involvement of abnormal DMPK mRNA folding in DM1 manifestation, we used SHAPE, DMS, CMCT, and RNase T1 structure probing in vitro for modeling of the topology of the DMPK 3'-UTR with normal and pathogenic repeat lengths of up to 197 CUG triplets. The resulting structural information was validated by disruption of base-pairing with LNA antisense oligonucleotides (AONs) and used for prediction of therapeutic AON accessibility and verification of DMPK knockdown efficacy in cells. Our model for DMPK RNA structure demonstrates that the hairpin formed by the CUG repeat has length-dependent conformational plasticity, with a structure that is guided by and embedded in an otherwise rigid architecture of flanking regions in the DMPK 3'-UTR. Evidence is provided that long CUG repeats may form not only single asymmetrical hairpins but also exist as branched structures. These newly identified structures have implications for DM1 pathogenic mechanisms, like sequestration of RBPs and repeat-associated non-AUG (RAN) translation.
Collapse
Affiliation(s)
- Remco T P van Cruchten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| |
Collapse
|
30
|
Kim EY, Barefield DY, Vo AH, Gacita AM, Schuster EJ, Wyatt EJ, Davis JL, Dong B, Sun C, Page P, Dellefave-Castillo L, Demonbreun A, Zhang HF, McNally EM. Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes. JCI Insight 2019; 4:122686. [PMID: 30730308 DOI: 10.1172/jci.insight.122686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/31/2019] [Indexed: 01/06/2023] Open
Abstract
Myotonic dystrophy (DM) is the most common autosomal dominant muscular dystrophy and encompasses both skeletal muscle and cardiac complications. DM is nucleotide repeat expansion disorder in which type 1 (DM1) is due to a trinucleotide repeat expansion on chromosome 19 and type 2 (DM2) arises from a tetranucleotide repeat expansion on chromosome 3. Developing representative models of DM in animals has been challenging due to instability of nucleotide repeat expansions, especially for DM2, which is characterized by nucleotide repeat expansions often greater than 5,000 copies. To investigate mechanisms of human DM, we generated cellular models of DM1 and DM2. We used regulated MyoD expression to reprogram urine-derived cells into myotubes. In this myogenic cell model, we found impaired dystrophin expression, in the presence of muscleblind-like 1 (MBNL1) foci, and aberrant splicing in DM1 but not in DM2 cells. We generated induced pluripotent stem cells (iPSC) from healthy controls and DM1 and DM2 subjects, and we differentiated these into cardiomyocytes. DM1 and DM2 cells displayed an increase in RNA foci concomitant with cellular differentiation. iPSC-derived cardiomyocytes from DM1 but not DM2 had aberrant splicing of known target genes and MBNL sequestration. High-resolution imaging revealed tight association between MBNL clusters and RNA foci in DM1. Ca2+ transients differed between DM1- and DM2 iPSC-derived cardiomyocytes, and each differed from healthy control cells. RNA-sequencing from DM1- and DM2 iPSC-derived cardiomyocytes revealed distinct misregulation of gene expression, as well as differential aberrant splicing patterns. Together, these data support that DM1 and DM2, despite some shared clinical and molecular features, have distinct pathological signatures.
Collapse
Affiliation(s)
- Ellis Y Kim
- Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, Illinois, USA
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andy H Vo
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Anthony M Gacita
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emma J Schuster
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Biqin Dong
- Department of Biomedical Engineering and.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Patrick Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lisa Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexis Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
31
|
Pešović J, Perić S, Brkušanin M, Brajušković G, Rakočević-Stojanović V, Savić-Pavićević D. Repeat Interruptions Modify Age at Onset in Myotonic Dystrophy Type 1 by Stabilizing DMPK Expansions in Somatic Cells. Front Genet 2018; 9:601. [PMID: 30546383 PMCID: PMC6278776 DOI: 10.3389/fgene.2018.00601] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
CTG expansions in DMPK gene, causing myotonic dystrophy type 1 (DM1), are characterized by pronounced somatic instability. A large proportion of variability of somatic instability is explained by expansion size and patient's age at sampling, while individual-specific differences are attributed to additional factors. The age at onset is extremely variable in DM1, and inversely correlates with the expansion size and individual-specific differences in somatic instability. Three to five percent of DM1 patients carry repeat interruptions and some appear with later age at onset than expected for corresponding expansion size. Herein, we characterized somatic instability of interrupted DMPK expansions and the effect on age at onset in our previously described patients. Repeat-primed PCR showed stable structures of different types and patterns of repeat interruptions in blood cells over time and buccal cells. Single-molecule small-pool PCR quantification of somatic instability and mathematical modeling showed that interrupted expansions were characterized by lower level of somatic instability accompanied by slower progression over time. Mathematical modeling demonstrated that individual-specific differences in somatic instability had greater influence on age at onset in patients with interrupted expansions. Therefore, repeat interruptions have clinical importance for disease course in DM1 patients due to stabilizing effect on DMPK expansions in somatic cells.
Collapse
Affiliation(s)
- Jovan Pešović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Stojan Perić
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Miloš Brkušanin
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Goran Brajušković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vidosava Rakočević-Stojanović
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|