1
|
Feng J, Yang G, Yu J, Zhang D. Pancreatoduodenectomy combined with radical rectal cancer resection for the treatment of multiple cancer foci in lynch syndrome: A case report. Asian J Surg 2024:S1015-9584(24)02392-3. [PMID: 39516154 DOI: 10.1016/j.asjsur.2024.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Juan Feng
- Department of Gastroenterology, Gansu Province Central Hospital, Lanzhou, 730000, China
| | - Gaosheng Yang
- General Surgery Department, Gansu Province Central Hospital, Lanzhou, 730000, China
| | - Jianping Yu
- General Surgery Department, Gansu Province Central Hospital, Lanzhou, 730000, China.
| | - Dawei Zhang
- General Surgery Department, Gansu Province Central Hospital, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Demirok A, Nagelkerke SCJ, Benninga MA, Jonkers-Schuitema CF, van Zundert SMC, Werner XW, Sovran B, Tabbers MM. Pediatric Chronic Intestinal Failure: Something Moving? Nutrients 2024; 16:2966. [PMID: 39275281 PMCID: PMC11397488 DOI: 10.3390/nu16172966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Pediatric chronic intestinal failure (PIF) is a rare and heterogeneous condition characterized by the inability of the patient's intestine to adequately absorb the required fluids and/or nutrients for growth and homeostasis. As a result, patients will become dependent on home parenteral nutrition (HPN). A MEDLINE search was performed in May 2024 with keywords "intestinal failure", "parenteral nutrition" and "pediatric". Different underlying conditions which may result in PIF include short bowel syndrome, intestinal neuromuscular motility disorders and congenital enteropathies. Most common complications associated with HPN are catheter-related bloodstream infections, catheter-related thrombosis, intestinal failure-associated liver disease, small intestinal bacterial overgrowth, metabolic bone disease and renal impairment. Treatment for children with PIF has markedly improved with a great reduction in morbidity and mortality. Centralization of care in specialist centers and international collaboration between centers is paramount to further improve care for this vulnerable patient group. A recently promising medical therapy has become available for children with short bowel syndrome which includes glucagon-like peptide 2, a naturally occurring hormone which is known to delay gastric emptying and induce epithelial proliferation. Despite advances in curative and supportive treatment, further research is necessary to improve nutritional, pharmacological and surgical care and prevention of complications associated with parenteral nutrition use.
Collapse
Affiliation(s)
- Aysenur Demirok
- Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sjoerd C J Nagelkerke
- Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marc A Benninga
- Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Cora F Jonkers-Schuitema
- Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Suzanne M C van Zundert
- Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Xavier W Werner
- Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bruno Sovran
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Pediatric Surgery, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Merit M Tabbers
- Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development and Amsterdam Gastroenterology Endocrinology Metabolism Research Institutes, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Köglmeier J, Lindley KJ. Congenital Diarrhoeas and Enteropathies. Nutrients 2024; 16:2971. [PMID: 39275287 PMCID: PMC11397474 DOI: 10.3390/nu16172971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Congenital diarrhoeas and enteropathies (CODE) are a heterogeneous group of disorders. Many affected infants present with catastrophic dehydration in the first few days of life, although the clinical phenotype is variable. Advances in the understanding of underlying pathomechanisms and genetic testing, as well as improved management, in particular intravenous nutrition support, have allowed affected patients to survive well beyond childhood. Awareness and understanding of these rare diseases are hence needed, both amongst paediatricians and adult physicians. In this review, we discuss the different groups of disorders based on a review of the current literature and provide a diagnostic and therapeutic approach. Many of the subtypes of CODE result in the need for prolonged or indefinite parenteral nutrition. Further research is needed to identify new CODE to improve the recognition and management of these children, which can assist in developing new targeted therapies and potentially a long-term cure.
Collapse
Affiliation(s)
- Jutta Köglmeier
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
| | - Keith James Lindley
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
4
|
Wang SN, Fu YJ, Lu XL, Miao SJ, Zhang P, Wang L, Huang Y, Wang YH. Three patients with new mutations in the EPCAM variant gene for congenital tufting enteropathy and a mutation review in China: a case report. Transl Pediatr 2024; 13:1486-1495. [PMID: 39263299 PMCID: PMC11384436 DOI: 10.21037/tp-24-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Background Congenital tufting enteropathy (CTE) is a rare cause of intractable congenital diarrhea in children, always resulting in parenteral nutrition (PN) dependency. We aimed to report novel mutations in Chinese patients and to illustrate the clinical, histopathological, and molecular features of CTE in China. Case Description We report three cases of CTE diagnosed with whole-exome sequencing (WES) and MOC31 [a monoclonal antibody of epithelial cell adhesion molecule (EPCAM)] immunohistochemistry. The main manifestations in the three patients were watery diarrhea and growth retardation. Upper endoscopy in three patients revealed villous atrophy of the duodenal mucosa. Histological examination revealed villus abnormalities and two patients with focal tufting. All of the three patients revealed a complete absence of EPCAM expression through MOC31 immunohistochemistry. Five novel mutations, including c.319delG, c.505_507delGAG, c.491+1G>C, c.60del (p.F20Lfs*17), and c.353G>A, in EPCAM were identified through molecular analysis. In our review, there were 18 different mutations in 11 patients from nine studies, with 12 mutations reported only once. In China, 73% of the patients were compound heterozygotes, and most of the pathogenic variants were in exon 3. All patients presented with congenital diarrhea and needed PN because of growth retardation, even when diarrhea was improved. Of the 11 patients, 3 (27%) died. Conclusions CTE is rare and fatal, and lacks characteristic changes during endoscopy. Patients with CTE require early diagnosis via histological examination and genetic detection to improve survival.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Yu-Juan Fu
- Department of Pathology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital (Shao Yifu Hospital), Hangzhou, China
| | - Xiao-Lan Lu
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Shi-Jian Miao
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Ping Zhang
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Wang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Yu-Huan Wang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Fan WX, Su F, Zhang Y, Zhang XL, Du YY, Gao YJ, Li WL, Hu WQ, Zhao J. Oncological characteristics, treatments and prognostic outcomes in MMR-deficient colorectal cancer. Biomark Res 2024; 12:89. [PMID: 39183366 PMCID: PMC11346251 DOI: 10.1186/s40364-024-00640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally. It's recognized that the molecular subtype of CRC, characterized by mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H), plays a critical role in determining appropriate treatment strategies. This review examines the current molecular classifications, focusing on dMMR/MSI-H CRC and its subtypes: Lynch syndrome (LS), Lynch-like syndrome (LLS), and sporadic cases. Despite advances in understanding of these genetic backgrounds, clinical trials have not conclusively differentiated the efficacy of immune checkpoint inhibitors among these subgroups. Therefore, while this review details the molecular characteristics and their general implications for treatment and prognosis, it also highlights the limitations and the need for more refined clinical studies to ascertain tailored therapeutic strategies for each subtype. Furthermore, this review summarizes completed and ongoing clinical studies, emphasizing the importance of developing treatments aligned more closely with molecular profiles. By discussing these aspects, the review seeks to provide a comprehensive analysis of oncological characteristics, presenting a detailed understanding of their implications for treatment and prognosis in dMMR/MSI-H CRC.
Collapse
Affiliation(s)
- Wen-Xuan Fan
- Graduate School of Shanxi Medical University, Taiyuan, Shanxi, 030607, China
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Fei Su
- Graduate School of Shanxi Medical University, Taiyuan, Shanxi, 030607, China
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yan Zhang
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
- Graduate School of Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Xiao-Ling Zhang
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yun-Yi Du
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yang-Jun Gao
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Wei-Ling Li
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
- Graduate School of Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Wen-Qing Hu
- Department of Gastrointestinal Surgery, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jun Zhao
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China.
| |
Collapse
|
6
|
Ouahed JD, Griffith A, Collen LV, Snapper SB. Breaking Down Barriers: Epithelial Contributors to Monogenic IBD Pathogenesis. Inflamm Bowel Dis 2024; 30:1189-1206. [PMID: 38280053 PMCID: PMC11519031 DOI: 10.1093/ibd/izad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 01/29/2024]
Abstract
Monogenic causes of inflammatory bowel diseases (IBD) are increasingly being discovered. To date, much attention has been placed in those resulting from inborn errors of immunity. Therapeutic efforts have been largely focused on offering personalized immune modulation or curative bone marrow transplant for patients with IBD and underlying immune disorders. To date, less emphasis has been placed on monogenic causes of IBD that pertain to impairment of the intestinal epithelial barrier. Here, we provide a comprehensive review of monogenic causes of IBD that result in impaired intestinal epithelial barrier that are categorized into 6 important functions: (1) epithelial cell organization, (2) epithelial cell intrinsic functions, (3) epithelial cell apoptosis and necroptosis, (4) complement activation, (5) epithelial cell signaling, and (6) control of RNA degradation products. We illustrate how impairment of any of these categories can result in IBD. This work reviews the current understanding of the genes involved in maintaining the intestinal barrier, the inheritance patterns that result in dysfunction, features of IBD resulting from these disorders, and pertinent translational work in this field.
Collapse
Affiliation(s)
- Jodie D Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Griffith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren V Collen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Mohsin N, Hunt D, Yan J, Jabbour AJ, Nghiem P, Choi J, Zhang Y, Freeman AF, Bergerson JRE, Dell’Orso S, Lachance K, Kulikauskas R, Collado L, Cao W, Lack J, Similuk M, Seifert BA, Ghosh R, Walkiewicz MA, Brownell I. Genetic Risk Factors for Early-Onset Merkel Cell Carcinoma. JAMA Dermatol 2024; 160:172-178. [PMID: 38170500 PMCID: PMC10765310 DOI: 10.1001/jamadermatol.2023.5362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024]
Abstract
Importance Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Of the patients who develop MCC annually, only 4% are younger than 50 years. Objective To identify genetic risk factors for early-onset MCC via genomic sequencing. Design, Setting, and Participants The study represents a multicenter collaboration between the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Institute of Allergy and Infectious Diseases (NIAID), and the University of Washington. Participants with early-onset and later-onset MCC were prospectively enrolled in an institutional review board-approved study at the University of Washington between January 2003 and May 2019. Unrelated controls were enrolled in the NIAID Centralized Sequencing Program (CSP) between September 2017 and September 2021. Analysis was performed from September 2021 and March 2023. Early-onset MCC was defined as disease occurrence in individuals younger than 50 years. Later-onset MCC was defined as disease occurrence at age 50 years or older. Unrelated controls were evaluated by the NIAID CSP for reasons other than familial cancer syndromes, including immunological, neurological, and psychiatric disorders. Results This case-control analysis included 1012 participants: 37 with early-onset MCC, 45 with later-onset MCC, and 930 unrelated controls. Among 37 patients with early-onset MCC, 7 (19%) had well-described variants in genes associated with cancer predisposition. Six patients had variants associated with hereditary cancer syndromes (ATM = 2, BRCA1 = 2, BRCA2 = 1, and TP53 = 1) and 1 patient had a variant associated with immunodeficiency and lymphoma (MAGT1). Compared with 930 unrelated controls, the early-onset MCC cohort was significantly enriched for cancer-predisposing pathogenic or likely pathogenic variants in these 5 genes (odds ratio, 30.35; 95% CI, 8.89-106.30; P < .001). No germline disease variants in these genes were identified in 45 patients with later-onset MCC. Additional variants in DNA repair genes were also identified among patients with MCC. Conclusions and Relevance Because variants in certain DNA repair and cancer predisposition genes are associated with early-onset MCC, genetic counseling and testing should be considered for patients presenting at younger than 50 years.
Collapse
Affiliation(s)
- Noreen Mohsin
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Devin Hunt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Jia Yan
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | | | - Paul Nghiem
- Division of Dermatology, University of Washington, Seattle
| | - Jaehyuk Choi
- Northwestern University Department of Dermatology and Department of Biochemistry and Molecular Genetics, Chicago, Illinois
| | - Yue Zhang
- Northwestern University Department of Dermatology and Department of Biochemistry and Molecular Genetics, Chicago, Illinois
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland
| | | | | | | | | | - Loren Collado
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Wenjia Cao
- Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, Maryland
| | - Justin Lack
- Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, Maryland
| | - Morgan Similuk
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Bryce A. Seifert
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Rajarshi Ghosh
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Magdalena A. Walkiewicz
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
8
|
Zhang L, Yu L, Shu X, Ding J, Zhou J, Zhong C, Pan B, Guo W, Zhang C, Wang B. Whole exome sequencing reveal 83 novel Mendelian disorders carrier P/LP variants in Chinese adult patients. J Hum Genet 2023; 68:737-743. [PMID: 37386068 DOI: 10.1038/s10038-023-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Carrier screening can identify people at risk of conceiving pregnancies affected with inherited genetic disorders or who have a genetic disorder with late or variable onset. Carrier screening based on whole exome sequencing (WES) data can offer more comprehensive assessment than on-target carrier screening tests. A total of 224 Chinese adult patients WES data was analyzed, except positive variants associated with the patients' major complaint, 378 pathogenic (P) and "likely pathogenic" (LP) variants from 175 adult patients were identified. Whole exome-wide frequency of carriers for Mendelian disorders in Chinese adult patients was about 78.13% in this study, which was lower than the previously reported carrier frequency in healthy population. Contrary to expectations, the number of P or LP variants did not increase with larger chromosome size or decrease with smaller chromosome size. Totally 83 novel P or LP variants were identified which could further expand the carrier variants spectrum of the Chinese population. GJB2: NM_004004.6:c.299_300delAT:p.His100fs*14 and C6:NM_000065.4:c.654T>A:p.Cys218* were found in two or more patients, which might be two underestimated carrier variants in Chinese population. We also found 9 late-onset or atypical symptoms autosomal/X-linked dominant Mendelian disorders causative genes, which were easily overlooked during pathogenicity analysis. These results can provide a strong basis for preventing and avoiding the prevalence rates of birth defects and reducing social and family burdens. By comparing with three different expanded carrier screening gene panels, we further confirmed carrier screening based on WES could offer more comprehensive assessment and WES was applicable for carrier screening.
Collapse
Affiliation(s)
- Li Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Yu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xianhong Shu
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, State Key Laboratory, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Szabo R, Kawaguchi M, Kataoka H, Bugge TH. Early-onset tufting enteropathy in HAI-2-deficient mice is independent of matriptase-mediated cleavage of EpCAM. Development 2023; 150:dev201801. [PMID: 37539662 PMCID: PMC10482385 DOI: 10.1242/dev.201801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Congenital tufting enteropathy (CTE) is a life-threatening intestinal disorder resulting from loss-of-function mutations in EPCAM and SPINT2. Mice deficient in Spint2, encoding the protease inhibitor HAI-2, develop CTE-like intestinal failure associated with a progressive loss of the EpCAM protein, which is caused by unchecked activity of the serine protease matriptase (ST14). Here, we show that loss of HAI-2 leads to increased proteolytic processing of EpCAM. Elimination of the reported matriptase cleavage site strongly suppressed proteolytic processing of EpCAM in vitro and in vivo. Unexpectedly, expression of cleavage-resistant EpCAM failed to prevent intestinal failure and postnatal lethality in Spint2-deficient mice. In addition, genetic inactivation of intestinal matriptase (St14) counteracted the effect of Spint2 deficiency in mice expressing cleavage-resistant EpCAM, indicating that matriptase does not drive intestinal dysfunction by excessive proteolysis of EpCAM. Interestingly, mice expressing cleavage-resistant EpCAM developed late-onset intestinal defects and exhibited a shortened lifespan even in the presence of HAI-2, suggesting that EpCAM cleavage is indispensable for EpCAM function. Our findings provide new insights into the role of EpCAM and the etiology of the enteropathies driven by Spint2 deficiency.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Stefan-van Staden RI, Bratei AA, Ilie-Mihai RM, Gheorghe DC, Tuchiu BM, Gurzu S. Bioanalysis of MMR and KRAS - a key factor in diagnosis of colorectal cancer. RSC Adv 2023; 13:24086-24092. [PMID: 37577090 PMCID: PMC10415748 DOI: 10.1039/d3ra04260j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Two miniaturized electrochemical devices were designed for the simultaneous bioanalysis of MMR (MLH1, MSH2, MSH6, PMS2), and of KRAS in whole blood, urine, saliva, and tumoral tissues. The devices comprised besides the electronic part of the potentiostat a combined 3D stochastic microsensor (combined microplatform) with the sensing part based on the modification of graphene decorated with nitrogen, sulfur and boron (NSB-EGR) modified with two types of frutafit: FTEX and FHD. For the assay of MSH2, MSH6, KRAS, and PMS2 higher sensitivities were recorded when the microdevice based on FHD was used, while for the assay of MLH1 the best sensitivity was achieved by using the microdevice based on FTEX. While the limits of quantification for MLH1, MSH2, and PMS2 were not influenced by the modifier, the microdevice based on FHD provided the lowest limit of quantification for KRAS, the microdevice based on FTEX provided the lowest limit of quantification for MSH6. The validation tests performed proved that recoveries of MLH1, MSH2, MSH6, PMS2, and of KRAS in whole blood, urine, saliva, and tumoral tissues higher than 98.50% with RSD (%) values lower than 0.10% were recorded.
Collapse
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40213163113 +40751507779
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest Bucharest Romania
| | - Alexandru Adrian Bratei
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40213163113 +40751507779
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest Bucharest Romania
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology Targu-Mures Romania
| | - Ruxandra-Maria Ilie-Mihai
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40213163113 +40751507779
| | - Damaris-Cristina Gheorghe
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40213163113 +40751507779
| | - Bianca Maria Tuchiu
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40213163113 +40751507779
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology Targu-Mures Romania
| |
Collapse
|
11
|
Greco L, Rubbino F, Dal Buono A, Laghi L. Microsatellite Instability and Immune Response: From Microenvironment Features to Therapeutic Actionability-Lessons from Colorectal Cancer. Genes (Basel) 2023; 14:1169. [PMID: 37372349 DOI: 10.3390/genes14061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Microsatellite instability (MSI) can be found in 15-20% of all colorectal cancers (CRC) and is the key feature of a defective DNA mismatch repair (MMR) system. Currently, MSI has been established as a unique and pivotal biomarker in the diagnosis, prognosis, and treatment of CRC. MSI tumors display a strong lymphocytic activation and a shift toward a tumoral microenvironment restraining metastatic potential and ensuing in a high responsiveness to immunotherapy of MSI CRC. Indeed, neoplastic cells with an MMR defect overexpress several immune checkpoint proteins, such as programmed death-1 (PD-1) and programmed death-ligand 1(PD-L1), that can be pharmacologically targeted, allowing for the revival the cytotoxic immune response toward the tumor. This review aims to illustrate the role of MSI in the tumor biology of colorectal cancer, focusing on the immune interactions with the microenvironment and their therapeutic implications.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Arianna Dal Buono
- Division of Gastroenterology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
12
|
Babcock SJ, Flores-Marin D, Thiagarajah JR. The genetics of monogenic intestinal epithelial disorders. Hum Genet 2023; 142:613-654. [PMID: 36422736 PMCID: PMC10182130 DOI: 10.1007/s00439-022-02501-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
Abstract
Monogenic intestinal epithelial disorders, also known as congenital diarrheas and enteropathies (CoDEs), are a group of rare diseases that result from mutations in genes that primarily affect intestinal epithelial cell function. Patients with CoDE disorders generally present with infantile-onset diarrhea and poor growth, and often require intensive fluid and nutritional management. CoDE disorders can be classified into several categories that relate to broad areas of epithelial function, structure, and development. The advent of accessible and low-cost genetic sequencing has accelerated discovery in the field with over 45 different genes now associated with CoDE disorders. Despite this increasing knowledge in the causal genetics of disease, the underlying cellular pathophysiology remains incompletely understood for many disorders. Consequently, clinical management options for CoDE disorders are currently limited and there is an urgent need for new and disorder-specific therapies. In this review, we provide a general overview of CoDE disorders, including a historical perspective of the field and relationship to other monogenic disorders of the intestine. We describe the genetics, clinical presentation, and known pathophysiology for specific disorders. Lastly, we describe the major challenges relating to CoDE disorders, briefly outline key areas that need further study, and provide a perspective on the future genetic and therapeutic landscape.
Collapse
Affiliation(s)
- Stephen J Babcock
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA
| | - David Flores-Marin
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Li Z, Zhang J, Zhong Q, Feng Z, Shi Y, Xu L, Zhang R, Yu F, Lv B, Yang T, Huang C, Cui F, Chen F. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study. Eur Radiol 2023; 33:1835-1843. [PMID: 36282309 DOI: 10.1007/s00330-022-09160-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To establish and validate a radiomics model based on multiparametric magnetic resonance imaging (MRI), and to predict microsatellite instability (MSI) status in rectal cancer patients. METHODS A total of 199 patients with pathologically confirmed rectal cancer were included. The MSI status was confirmed by immunohistochemistry (IHC) staining. Clinical factors and laboratory data associated with MSI status were analyzed. The imaging data of 100 patients from one of the hospitals were used as the training set. The remaining 99 patients from the other two hospitals were used as the external validation set. The regions of interest (ROIs) were delineated from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast-enhanced T1WI (CE-T1WI) sequence to extract the radiomics features. The Tree-based approach was used for feature selection. The models were constructed based on the four single sequences and a combination of the four sequences using the random forest (RF) algorithm. The external validation set was used to verify the generalization ability of each model. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were plotted to evaluate and compare the predictive performance of each model. RESULTS In the four single-series models, the CE-T1WI model performed the best. The AUCs of the T1WI, T2WI, DWI, and CE-T1WI prediction models in the training set were 0.74, 0.71, 0.71, and 0.78, respectively, while in the external validation set, the corresponding AUCs were 0.67, 0.66, 0.70, and 0.77. The prediction and generalization performance of the combined model of multi-sequences was comparable to that of the CE-T1WI model and it was better than that of the remaining three single-series models, with AUC values of 0.78 and 0.78 in the training and validation sets, respectively. CONCLUSION The established radiomics models based on CE-T1WI or multiparametric MRI have similar predictive performance. They have the potential to predict MSI status in rectal cancer patients. KEY POINTS • A radiomics model for the prediction of MSI status in patients with rectal cancer was established and validated using external validation. • The models based on CE-T1WI or multiparametric MRI have better predictive performance than those based on single unenhanced sequence images. • The radiomics model has the potential to suggest MSI status in rectal cancer patients; however, it is not yet a substitute for histological confirmation.
Collapse
Affiliation(s)
- Zhi Li
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Zhang
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhong
- Department of Radiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhan Feng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yushu Shi
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ligong Xu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rui Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Biao Lv
- Department of Radiology, The 903 Hospital of Joint Logistics Support Force of PLA, Hangzhou, Zhejiang, China
| | - Tian Yang
- Department of Radiology, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, China
| | - Feng Cui
- Department of Radiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Alkhalifa S, Darwish A, Awadh M, Alkhalifa SM, Darwish A. Congenital Tufting Enteropathy, a Rare Cause of Diarrhea and Malnourishment in Arab Child with Genetic and Histopathology Investigations. Case Rep Pediatr 2023; 2023:6301065. [PMID: 36743443 PMCID: PMC9891835 DOI: 10.1155/2023/6301065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/03/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Congenital tufting enteropathy (CTE), also known as intestinal epithelial dysplasia (IED), is a rare autosomal recessive disorder due to EPCAM gene mutation. It is a rare congenital enteropathy that presents in early infancy as an intractable diarrhea that is independent of breast formula feeding that requires life-long total parental nutrition (TPN) to acquire adequate calories and fluid intake or small bowel transplantation in severe cases. Here, we report a case of intestinal failure due to congenital tufting enteropathy in a 3-year-old girl who presented with loose stools and failure to thrive. This study aims to review the literature about CTE and discuss the clinicopathological aspects and to be able to distinguish it from other causes of congenital diarrheal disorders (CDDs).
Collapse
|
15
|
Das P, Malik R, Kaul S, Makharia GK. Tufting enteropathy: a rare anatomical cause of small bowel diarrhoea in infants with mild or no villous abnormality. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2023; 16:225-229. [PMID: 37554749 PMCID: PMC10404837 DOI: 10.22037/ghfbb.v16i1.2731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/01/2023] [Indexed: 08/10/2023]
Abstract
The causes of intractable diarrhoea in infancy are varied, and can be classified into enteropathic and non-enteropathic groups. Congenital tufting enteropathy (CTE) is a rare cause of enteropathic form of intractable diarrhoea in infants requiring nutritional supplementation. We herein report a case of CTE in a one-year-old female child who presented with recurrent abdominal distension, frequent watery diarrhoea and marked stunted growth soon after birth. A systematic clinical, laboratory and pathological evaluation brought out the etiology, followed by genotypic confirmation. Histological examination revealed mild villous abnormality with presence of epithelial tufts both in the villous and crypt surface, in the duodenum and rectal biopsies supported by complete loss of MOC31 staining. Deep sequencing revealed homozygous 3' splice mutation at intron 5 of the EPCAM gene (c.556-14A>G). She was given TPN support and discharged with weight gain under home-based parenteral nutrition supplement. This case brings out the need for a multidisciplinary team approach to reveal underlying the cause of infantile intractable diarrhoea and report a favorable outcome with nutritional supplementation.
Collapse
Affiliation(s)
- Prasenjit Das
- Departments of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Rohan Malik
- Pediatric Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeevani Kaul
- Pediatric Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Govind K Makharia
- Gastroenterology & Human Nutritions, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
16
|
Prevalence and Genotype-Phenotype Correlation of Lynch Syndrome in a Selected High-Risk Cohort from Qatar’s Population. Genes (Basel) 2022; 13:genes13112176. [DOI: 10.3390/genes13112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Lynch syndrome (LS) is the most common cause of hereditary colorectal cancers (CRC) and is associated with an increased risk for ovarian and endometrial cancers. There is lack of knowledge on the epidemiology of LS in the non-Caucasian populations especially in Qatar. The aim of this retrospective study is to explore the prevalence of LS in a selected high-risk cohort in the State of Qatar in addition to investigating the frequency and genotype-phenotype correlation associated with mismatch repair genes pathogenic variants. Retrospective review of medical records of 31 individuals with LS, 20 affected with colorectal cancer and 11 unaffected with family history of cancers, referred from January 2017 until August 2020. The prevalence of LS among affected and unaffected patients is 22% (20/92) and 2.2% respectively. Among affected individuals, MLH1 and MSH2 genes were highly frequent while for unaffected individuals, a recurrent PMS2 pathogenic variant was reported in several related individuals suggesting a tribal effect. This study highlights the epidemiology of LS in high-risk cohort in Qatar which helps to provide recommendations on genetic testing, and personalize surveillance and management programs
Collapse
|
17
|
Güvenoğlu M, Şimşek-Kiper PÖ, Koşukcu C, Taskiran EZ, Saltık-Temizel İN, Gucer S, Utine E, Boduroğlu K. Homozygous Missense Epithelial Cell Adhesion Molecule Variant in a Patient with Congenital Tufting Enteropathy and Literature Review. Pediatr Gastroenterol Hepatol Nutr 2022; 25:441-452. [PMID: 36451688 PMCID: PMC9679307 DOI: 10.5223/pghn.2022.25.6.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/28/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Congenital diarrheal disorders (CDDs) with genetic etiology are uncommon hereditary intestinal diseases characterized by chronic, life-threatening, intractable watery diarrhea that starts in infancy. CDDs can be mechanistically divided into osmotic and secretory diarrhea. Congenital tufting enteropathy (CTE), also known as intestinal epithelial dysplasia, is a type of secretory CDD. CTE is a rare autosomal recessive enteropathy that presents with intractable neonatal-onset diarrhea, intestinal failure, severe malnutrition, and parenteral nutrition dependence. Villous atrophy of the intestinal epithelium, crypt hyperplasia, and irregularity of surface enterocytes are the specific pathological findings of CTE. The small intestine and occasionally the colonic mucosa include focal epithelial tufts. In 2008, Sivagnanam et al. discovered that mutations in the epithelial cell adhesion molecule (EpCAM, MIM# 185535) were the genetic cause of CTE (MIM# 613217). More than a hundred mutations have been reported to date. Furthermore, mutations in the serine peptidase inhibitor Kunitz type 2 (SPINT2, MIM# 605124) have been linked to syndromic CTE. In this study, we report the case of a 17-month-old male infant with congenital diarrhea. Despite extensive etiological workup, no etiology could be established before admission to our center. The patient died 15 hours after being admitted to our center in a metabolically decompensated state, probably due to a delay in admission and diagnosis. Molecular autopsy with exome sequencing revealed a previously reported homozygous missense variant, c.757G>A, in EpCAM, which was confirmed by histopathological examination.
Collapse
Affiliation(s)
- Merve Güvenoğlu
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Can Koşukcu
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Ekim Z Taskiran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İnci Nur Saltık-Temizel
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Safak Gucer
- Division of Pediatric Pathology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Eda Utine
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Koray Boduroğlu
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
18
|
Dynamic Expression of EpCAM in Primary and Metastatic Lung Cancer Is Controlled by Both Genetic and Epigenetic Mechanisms. Cancers (Basel) 2022; 14:cancers14174121. [PMID: 36077658 PMCID: PMC9454530 DOI: 10.3390/cancers14174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Epithelial cell adhesion molecule (EpCAM) is a tumor marker widely used in both basic studies and clinics. However, our study demonstrates that EpCAM expression is strongly upregulated by gene amplification and promoter hypomethylation in primary lung tumors, but severely downregulated by epigenetic repression (including promoter hypermethylation and histone deacetylation), tumor-associated macrophages (TAMs), and TAMs-derived TGFβ in metastatic lung tumors. DNMT inhibitor 5-aza-dC, HDAC inhibitor MS-275, and TGFβ neutralizing antibody are able to restore EpCAM expression in highly metastatic lung cancer cells. These findings disclose that multiple mechanisms contribute to the dynamic expression patterns of EpCAM in primary and metastatic lung tumors, redefining the application of EpCAM as a biomarker in tumor cell identification and isolation in specific cancers and clinical stages. Abstract Although great progress has been achieved in cancer treatment in the past decades, lung cancer remains the leading cause of cancer death, which is partially caused by the fact that most lung cancers are diagnosed at advanced stages. To improve the sensitivity and specificity of lung cancer diagnosis, the underlying mechanisms of current diagnosis methods are in urgent need to be explored. Herein, we find that the expression of EpCAM, the widely used molecular marker for tumor cell characterization and isolation, is strongly upregulated in primary lung tumors, which is caused by both gene amplification and promoter hypomethylation. In contrast, EpCAM expression is severely repressed in metastatic lung tumors, which can be reversed by epigenetic drugs, DNMT inhibitor 5-aza-dC and HDAC inhibitor MS-275. Moreover, tumor-associated macrophages (TAMs) impede EpCAM expression probably through TGFβ-induced EMT signaling. These findings unveil the dynamic expression patterns of EpCAM and differential roles of epigenetic modification in EpCAM expression in primary and metastatic lung tumors, providing novel insights into tumor cell isolation and lung cancer diagnosis.
Collapse
|
19
|
杨 脉, 谢 咏, 张 海. [A Case of Congenital Tufting Enteropathy with EpCAM Gene Complex Heterozygous Mutation (c.491+1G>A; c.352_353ins CACC)]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:493-496. [PMID: 35642160 PMCID: PMC10409424 DOI: 10.12182/20220560109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 06/15/2023]
Abstract
The patient, a one-month-old male infant, was admitted for "recurrent diarrhea for 20 + days and vomiting for 4 days". On the 8th day after birth, the patient began to develop recurrent refractory diarrhea, accompanied by abdominal distension, vomiting, dehydration, acidosis, and malnutrition. There were many cases of malignant tumors of the digestive system in the patient's family. Genetic testing identified compound heterozygous mutations (c.491+1G>A; c.352_353ins CACC) in epithelial cell adhesion molecule (EpCAM) gene and the patient was hence diagnosed with congenital tufting enteropathy. The patient was given partial parenteral nutrition support. The patient's diarrheal symptom was improved, but it was difficult to increase the amount of formula because any increase in the amount of formula for the patient would inevitably result in abdominal distention and vomiting. The patient experienced repeated fever in the later period of hospitalization and was eventually discharged from the hospital with the family's signed consent. He still had diarrhea and vomiting after leaving the hospital. Four weeks after discharge, the patient lost about 1 kg of weight and eventually died.
Collapse
Affiliation(s)
- 脉 杨
- 四川大学华西第二医院 儿科 (成都 610041)Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 咏梅 谢
- 四川大学华西第二医院 儿科 (成都 610041)Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 海洋 张
- 四川大学华西第二医院 儿科 (成都 610041)Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Lei Z, Liu W, Nie Y, Yang Y, Chen G, Huang L, Wu H, Lei Y, Chen L, Hu Q, Rong H, Yu S, Song Q, Tong F, Guo J. EpCAM Is Essential to Maintaining the Immune Homeostasis of Intestines via Keeping the Expression of pIgR in the Intestinal Epithelium of Mice. Front Immunol 2022; 13:843378. [PMID: 35493520 PMCID: PMC9043958 DOI: 10.3389/fimmu.2022.843378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
EpCAM deficiency causes congenital tufting enteropathy (CTE) which is considered as one kinds of very early onset inflammatory bowel disease (IBD). However, functions of EpCAM on regulating the immunity of intestines are still unclear. To study the mechanism of EpCAM on maintaining the intestinal immune homeostasis, the intestines of WT and EpCAM-/- mice at E18.5, P0 and P3 stages were collected for morphological, histological and gene expression tests. Serious inflammation was detected in the small intestines of P3 EpCAM-/- mice. Compared to WT mice, genes related to inflammatory factors and immunity cells, including TNFα, IL-1β, IL-6, IL-8rb, MIP2, MCP1, Ly6d and Ly6g, were all significantly upregulated and the expression of intestinal abundance matrix metalloproteinases (MMPs) was also significantly increased in the intestines of EpCAM-/- mice at E18.5, P0 and P3 stages. Signals of p38, ERK1/2 and JNK were hyper-activated in the intestines of EpCAM-/- mice. The expression of pIgR was significantly decreased and the expression and activation of transcriptional factors which promote the expression of pIgR were also reduced in the intestines of EpCAM-/- mice compared to WT controls. In conclusion, EpCAM could maintain the immune homeostasis of intestines via keeping the expression of pIgR in the intestinal epithelium.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| |
Collapse
|
21
|
Huang R, Deng X, Zhang Z, Wen Q, Li D. Lynch Syndrome-Associated Endometrial Cancer With Combined EPCAM-MSH2 Deletion: A Case Report. Front Oncol 2022; 12:856452. [PMID: 35311082 PMCID: PMC8931483 DOI: 10.3389/fonc.2022.856452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLynch syndrome (LS), an autosomal dominant disorder, is characterized by germline pathogenic variants in DNA mismatch repair (MMR) genes like MSH2. EPCAM deletions cause a minority (3%) of LS cases. However, there are only a few reports of LS-associated endometrial cancer (LS-EC) induced by the inactivation of the MSH2 gene due to EPCAM deletions.Case PresentationWe present the case of a 45-years old woman diagnosed with endometrial cancer (EC). Definitive surgery revealed meso-differentiated endometrioid adenocarcinoma, stage IA without lymph-vascular space invasion. Four months later, she received radiation therapy (125I radioactive seeds implantation), and platinum-containing regimen combined chemotherapy because of vaginal stump metastasis of EC. After five years, we performed immunohistochemistry (IHC) on pelvic mass because of presacral metastatic lymph node. IHC showed the absence of MSH2 and MSH6 protein expression in the pelvic mass tissue. Peripheral blood was used for genetic testing based on her cancer diagnosis and family history of cancer in close relatives. Genetic testing revealed deletions of exon 8 and 9 in EPCAM and deletions of exon 1 and 8 in MSH2; thus, we diagnosed the presence of LS. The patient underwent interstitial brachytherapy (BT) of the presacral metastatic lymph node.ConclusionThis case highlights that patients with LS-EC who are carriers of combined EPCAM-MSH2 deletion might experience better oncologic outcomes even with early recurrence.
Collapse
Affiliation(s)
| | | | | | | | - Dan Li
- *Correspondence: Dan Li, ; Qinglian Wen,
| |
Collapse
|
22
|
Li H, Sun L, Zhuang Y, Tian C, Yan F, Zhang Z, Hu Y, Liu P. Molecular mechanisms and differences in lynch syndrome developing into colorectal cancer and endometrial cancer based on gene expression, methylation, and mutation analysis. Cancer Causes Control 2022; 33:489-501. [PMID: 35149954 PMCID: PMC8904372 DOI: 10.1007/s10552-021-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
Purpose The aim of this study was to screen biomarkers specific to Lynch syndrome (LS) with colorectal cancer (CRC) or endometrial cancer (EC) to explore the mechanisms by which LS develops into CRC and EC and their differences. Methods Differentially expressed or differentially methylated genes and differential mutations were identified in 10 LS, 50 CRC, and 50 EC patients from TCGA, and genes overlapping between LS and CRC or EC (named SGs-LCs and SGs-LEs, respectively) were identified. Afterward, we annotated the enriched GO terms and pathways and constructed a protein–protein interaction (PPI) network. Finally, samples from 10 clinical cases with MSI-H/MSS CRC and EC were collected to verify the mutations and their correlations with five LS pathogenic genes in the SGs-LCs and SGs-LEs. Results A total of 494 SGs-LCs and 104 SGs-LEs were identified and enriched in 106 and 14 GO terms, respectively. There were great differences in the gene count and enriched terms between SGs-LCs and SGs-LEs. In the PPI network, SST, GCG, SNAP25, and NPY had the highest degree of connection among the SGs-LCs, and KIF20A and NUF2 had the highest degree of connection among the SGs-LE. In the SGs-LCs and SGs-LEs, the genes whose expression levels affected the survival of LS, CRC or EC patients were quite different. Conclusions COL11A1 was found to be mutated in MSS CRC patients, similar to the mutations of MSH6. SST, GCG, SNAP25, and NPY may be biomarkers for the development of LS into CRC, and KIF20A and NUF2 may be markers of LS developing into EC. Supplementary Information The online version contains supplementary material available at 10.1007/s10552-021-01543-w.
Collapse
Affiliation(s)
- Hongfeng Li
- Department of Clinical Laboratory, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Liwei Sun
- Department of Interventional Oncology, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Yan Zhuang
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Department of Colorectal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Caijuan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin, 300381, China
| | - Fang Yan
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin, 300381, China
| | - Zhenzhen Zhang
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin, 300381, China
| | - Yuanjing Hu
- Department of Gynecological Oncology, Tianjin Central Hospital of Gynecology & Obstetrics, No. 156 Nankaisan Road, Nankai District, Tianjin, 300100, China.
| | - Pengfei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354 Beima Road, Hongqiao District, Tianjin, 300120, China.
| |
Collapse
|
23
|
Mitra S, Paramaguru R, Das P, Katti SV. Preneoplastic Lesions and Polyps of the Gastrointestinal Tract. SURGICAL PATHOLOGY OF THE GASTROINTESTINAL SYSTEM 2022:593-698. [DOI: 10.1007/978-981-16-6395-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
24
|
Zhao R, Yang F, Chen X, Fu H, Li G, Cheng L, Li X. A novel compound-heterozygous EPCAM mutation in congenital tufting enteropathy. Arch Med Sci 2022; 18:1700-1704. [PMID: 36457962 PMCID: PMC9710291 DOI: 10.5114/aoms/155185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ruiqin Zhao
- Department of Gastroenterology, Hebei Children’s Hospital, Shijiazhuang, China
| | - Fan Yang
- International Liaison Office, Hebei Children’s Hospital, Shijiazhuang, China
| | - Xinggu Chen
- Graduate student of Hebei Medical University, Shijiazhuang, China
| | - Haiyan Fu
- Department of Gastroenterology, Hebei Children’s Hospital, Shijiazhuang, China
| | - Guigui Li
- Department of Gastroenterology, Hebei Children’s Hospital, Shijiazhuang, China
| | - Lijuan Cheng
- Department of Gastroenterology, Hebei Children’s Hospital, Shijiazhuang, China
| | - Xiaolei Li
- Department of Gastroenterology, Hebei Children’s Hospital, Shijiazhuang, China
| |
Collapse
|
25
|
Das B, Okamoto K, Rabalais J, Young JA, Barrett KE, Sivagnanam M. Aberrant Epithelial Differentiation Contributes to Pathogenesis in a Murine Model of Congenital Tufting Enteropathy. Cell Mol Gastroenterol Hepatol 2021; 12:1353-1371. [PMID: 34198013 PMCID: PMC8479479 DOI: 10.1016/j.jcmgh.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Congenital tufting enteropathy (CTE) is an intractable diarrheal disease of infancy caused by mutations of epithelial cell adhesion molecule (EpCAM). The cellular and molecular basis of CTE pathology has been elusive. We hypothesized that the loss of EpCAM in CTE results in altered lineage differentiation and defects in absorptive enterocytes thereby contributing to CTE pathogenesis. METHODS Intestine and colon from mice expressing a CTE-associated mutant form of EpCAM (mutant mice) were evaluated for specific markers by quantitative real-time polymerase chain reaction, Western blotting, and immunostaining. Body weight, blood glucose, and intestinal enzyme activity were also investigated. Enteroids derived from mutant mice were used to assess whether the decreased census of major secretory cells could be rescued. RESULTS Mutant mice exhibited alterations in brush-border ultrastructure, function, disaccharidase activity, and glucose absorption, potentially contributing to nutrient malabsorption and impaired weight gain. Altered cell differentiation in mutant mice led to decreased enteroendocrine cells and increased numbers of nonsecretory cells, though the hypertrophied absorptive enterocytes lacked key features, causing brush border malfunction. Further, treatment with the Notch signaling inhibitor, DAPT, increased the numbers of major secretory cell types in mutant enteroids (graphical abstract 1). CONCLUSIONS Alterations in intestinal epithelial cell differentiation in mutant mice favor an increase in absorptive cells at the expense of major secretory cells. Although the proportion of absorptive enterocytes is increased, they lack key functional properties. We conclude that these effects underlie pathogenic features of CTE such as malabsorption and diarrhea, and ultimately the failure to thrive seen in patients.
Collapse
Affiliation(s)
- Barun Das
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - John Rabalais
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Jocelyn A. Young
- Department of Pediatrics, University of California, San Diego, La Jolla, California,Department of Pediatrics, Rady Children’s Hospital, San Diego, California
| | - Kim E. Barrett
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, La Jolla, California,Department of Pediatrics, Rady Children’s Hospital, San Diego, California,Correspondence Address correspondence to: Mamata Sivagnanam, MD, Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, 9500 Gilman Drive, La Jolla, CA 92093. fax: 858-967-8917.
| |
Collapse
|
26
|
Microsatellite Instability in Colorectal Cancers: Carcinogenesis, Neo-Antigens, Immuno-Resistance and Emerging Therapies. Cancers (Basel) 2021; 13:cancers13123063. [PMID: 34205397 PMCID: PMC8235567 DOI: 10.3390/cancers13123063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary A deficient mismatch repair system (dMMR) results in microsatellite instability (MSI). The MSI status of a tumor predicts the response to immune checkpoint inhibitors (ICI) that are now approved in patients with dMMR/MSI metastatic colorectal cancers. In addition to the mechanisms through which MSI can activate the immune system via particular neo-antigens, this review reports the clinical and pre-clinical strategies being developed in the case of resistance to ICI, including emerging therapies and new biomarkers. Abstract A defect in the DNA repair system through a deficient mismatch repair system (dMMR) leads to microsatellite instability (MSI). Microsatellites are located in both coding and non-coding sequences and dMMR/MSI tumors are associated with a high mutation burden. Some of these mutations occur in coding sequences and lead to the production of neo-antigens able to trigger an anti-tumoral immune response. This explains why non-metastatic MSI tumors are associated with high immune infiltrates and good prognosis. Metastatic MSI tumors result from tumor escape to the immune system and are associated with poor prognosis and chemoresistance. Consequently, immune checkpoint inhibitors (ICI) are highly effective and have recently been approved in dMMR/MSI metastatic colorectal cancers (mCRC). Nevertheless, some patients with dMMR/MSI mCRC have primary or secondary resistance to ICI. This review details carcinogenesis and the mechanisms through which MSI can activate the immune system. After which, we discuss mechanistic hypotheses in an attempt to explain primary and secondary resistances to ICI and emerging strategies being developed to overcome this phenomenon by targeting other immune checkpoints or through vaccination and modification of microbiota.
Collapse
|
27
|
Ayyıldız Civan H, Leitner C, Östreicher I, Schneider AM, Cremer M, Mayr JA, Rossi R, Müller T, Janecke AR. Three Novel EPCAM Variants Causing Tufting Enteropathy in Three Families. CHILDREN (BASEL, SWITZERLAND) 2021; 8:503. [PMID: 34198699 PMCID: PMC8232273 DOI: 10.3390/children8060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Tufting enteropathy (TE) is caused by recessive EPCAM mutations, and is characterized by intractable diarrhea of congenital onset and disorganization of enterocytes. TE generally requires parenteral nutrition (PN) during childhood or intestinal bowel transplantation. We report three unrelated families with six children with TE. We highlight the high rate of disease-related mortality. We observe adequate weight gain with PN, but low to normal and stunted body length, supporting the recent notion that a short stature might be intrinsic to TE. The diagnosis of TE in the index patients from each family was delayed for months to years, even when clinical data, duodenal biopsies, or exome sequencing data were obtained early on. We identified three novel pathogenic EPCAM variants: a deletion of exon 1 that removes the ATG initiation codon, a missense variant c.326A > G (p.Gln109Arg), and nonsense mutation c.429G > A (p.Trp143*) in a compound heterozygous state with the Mediterranean splice site variant c.556-14A > G (Tyr186Phefs*6). Homozygosity for p.Gln109Arg was associated with absent EPCAM staining, and compound heterozygosity for p.Trp143*/Tyr186Phefs*6 was associated with reduced EPCAM staining in duodenal biopsies; such observations might contribute to a genotype-phenotype correlation in larger cohorts of TE patients. This study extends the clinical and molecular spectrum of TE.
Collapse
Affiliation(s)
- Hasret Ayyıldız Civan
- Department of Pediatric Gastroenterology, Hepatology and Nutrititon, Health Science University, Istanbul Bakırkoy Dr. Sadi Konuk Education and Research Hospital, 34147 Istanbul, Turkey;
| | - Coleen Leitner
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.L.); (T.M.)
| | - Iris Östreicher
- Department of Pediatrics, Klinikum Neukoelln, 12351 Berlin, Germany; (I.Ö.); (M.C.); (R.R.)
| | - Anna-Maria Schneider
- Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (A.-M.S.); (J.A.M.)
| | - Malte Cremer
- Department of Pediatrics, Klinikum Neukoelln, 12351 Berlin, Germany; (I.Ö.); (M.C.); (R.R.)
- Department of Neonatology, Charité University Medical Center, 10117 Berlin, Germany
| | - Johannes A. Mayr
- Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (A.-M.S.); (J.A.M.)
| | - Rainer Rossi
- Department of Pediatrics, Klinikum Neukoelln, 12351 Berlin, Germany; (I.Ö.); (M.C.); (R.R.)
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.L.); (T.M.)
| | - Andreas R. Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.L.); (T.M.)
- Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
28
|
Sankpal NV, Brown TC, Fleming TP, Herndon JM, Amaravati AA, Loynd AN, Gillanders WE. Cancer-associated mutations reveal a novel role for EpCAM as an inhibitor of cathepsin-L and tumor cell invasion. BMC Cancer 2021; 21:541. [PMID: 33980181 PMCID: PMC8114703 DOI: 10.1186/s12885-021-08239-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Background EpCAM (Epithelial cell adhesion molecule) is often dysregulated in epithelial cancers. Prior studies implicate EpCAM in the regulation of oncogenic signaling pathways and epithelial-to-mesenchymal transition. It was recently demonstrated that EpCAM contains a thyroglobulin type-1 (TY-1) domain. Multiple proteins with TY-1 domains are known to inhibit cathepsin-L (CTSL), a cysteine protease that promotes tumor cell invasion and metastasis. Analysis of human cancer sequencing studies reveals that somatic EpCAM mutations are present in up to 5.1% of tested tumors. Methods The Catalogue of Somatic Mutations in Cancer (COSMIC) database was queried to tabulate the position and amino acid changes of cancer associated EpCAM mutations. To determine how EpCAM mutations affect cancer biology we studied C66Y, a damaging TY-1 domain mutation identified in liver cancer, as well as 13 other cancer-associated EpCAM mutations. In vitro and in vivo models were used to determine the effect of wild type (WT) and mutant EpCAM on CTSL activity and invasion. Immunoprecipitation and localization studies tested EpCAM and CTSL protein binding and determined compartmental expression patterns of EpCAM mutants. Results We demonstrate that WT EpCAM, but not C66Y EpCAM, inhibits CTSL activity in vitro, and the TY-1 domain of EpCAM is responsible for this inhibition. WT EpCAM, but not C66Y EpCAM, inhibits tumor cell invasion in vitro and lung metastases in vivo. In an extended panel of human cancer cell lines, EpCAM expression is inversely correlated with CTSL activity. Previous studies have demonstrated that EpCAM germline mutations can prevent EpCAM from being expressed at the cell surface. We demonstrate that C66Y and multiple other EpCAM cancer-associated mutations prevent surface expression of EpCAM. Cancer-associated mutations that prevent EpCAM cell surface expression abrogate the ability of EpCAM to inhibit CTSL activity and tumor cell invasion. Conclusions These studies reveal a novel role for EpCAM as a CTSL inhibitor, confirm the functional relevance of multiple cancer-associated EpCAM mutations, and suggest a therapeutic vulnerability in cancers harboring EpCAM mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08239-z.
Collapse
Affiliation(s)
- Narendra V Sankpal
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA.
| | - Taylor C Brown
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy P Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Phoenix, 85013, AZ, USA
| | - John M Herndon
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA
| | - Anusha A Amaravati
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA
| | - Allison N Loynd
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA. .,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
Zhou T, Chen L, Guo J, Zhang M, Zhang Y, Cao S, Lou F, Wang H. MSIFinder: a python package for detecting MSI status using random forest classifier. BMC Bioinformatics 2021; 22:185. [PMID: 33845765 PMCID: PMC8042960 DOI: 10.1186/s12859-021-03986-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/29/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Microsatellite instability (MSI) is a common genomic alteration in colorectal cancer, endometrial carcinoma, and other solid tumors. MSI is characterized by a high degree of polymorphism in microsatellite lengths owing to the deficiency in the mismatch repair system. Based on the degree, MSI can be classified as microsatellite instability-high (MSI-H) and microsatellite stable (MSS). MSI is a predictive biomarker for immunotherapy efficacy in advanced/metastatic solid tumors, especially in colorectal cancer patients. Several computational approaches based on target panel sequencing data have been used to detect MSI; however, they are considerably affected by the sequencing depth and panel size. RESULTS We developed MSIFinder, a python package for automatic MSI classification, using random forest classifier (RFC)-based genome sequencing, which is a machine learning technology. We included 19 MSI-H and 25 MSS samples as training sets. First, we selected 54 feature markers from the training sets, built an RFC model, and validated the classifier using a test set comprising 21 MSI-H and 379 MSS samples. With this test set, MSIFinder achieved a sensitivity (recall) of 1.0, a specificity of 0.997, an accuracy of 0.998, a positive predictive value of 0.954, an F1 score of 0.977, and an area under the curve of 0.999. To further verify the robustness and effectiveness of the model, we used a prospective cohort consisting of 18 MSI-H samples and 122 MSS samples. MSIFinder achieved a sensitivity (recall) of 1.0 and a specificity of 1.0. We discovered that MSIFinder is less affected by a low sequencing depth and can achieve a concordance of 0.993 while exhibiting a sequencing depth of 100×. Furthermore, we realized that MSIFinder is less affected by the panel size and can achieve a concordance of 0.99 when the panel size is 0.5 M (million bases). CONCLUSION These results indicate that MSIFinder is a robust and effective MSI classification tool that can provide reliable MSI detection for scientific and clinical purposes.
Collapse
Affiliation(s)
- Tao Zhou
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Libin Chen
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Jing Guo
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Mengmeng Zhang
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Yanrui Zhang
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Shanbo Cao
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Feng Lou
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China.
| | - Haijun Wang
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
30
|
NGS Gene Panel Analysis Revealed Novel Mutations in Patients with Rare Congenital Diarrheal Disorders. Diagnostics (Basel) 2021; 11:diagnostics11020262. [PMID: 33567694 PMCID: PMC7915612 DOI: 10.3390/diagnostics11020262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Congenital diarrheal disorders (CDDs) are early-onset enteropathies generally inherited as autosomal recessive traits. Most patients with CDDs require rapid diagnosis as they need immediate and specific therapy to avoid a poor prognosis, but their clinical picture is often overlapping with a myriad of nongenetic diarrheal diseases. We developed a next-generation sequencing (NGS) panel for the analysis of 92 CDD-related genes, by which we analyzed patients suspect for CDD, among which were (i) three patients with sucrose-isomaltase deficiency; (ii) four patients with microvillous inclusion disease; (iii) five patients with congenital tufting enteropathy; (iv) eight patients with glucose-galactose malabsorption; (v) five patients with congenital chloride diarrhea. In all cases, we identified the mutations in the disease-gene, among which were several novel mutations for which we defined pathogenicity using a combination of bioinformatic tools. Although CDDs are rare, all together, they have an incidence of about 1%. Considering that the clinical picture of these disorders is often confusing, a CDD-related multigene NGS panel contributes to unequivocal and rapid diagnosis, which also reduces the need for invasive procedures.
Collapse
|
31
|
Ozler O, Brunner-Véber A, Fatih P, Müller T, Janecke AR, Arikan C. Long-Term Follow-Up of Tufting Enteropathy Caused by EPCAM Mutation p.Asp253Asn and Absent EPCAM Expression. JPGN REPORTS 2021; 2:e029. [PMID: 37206930 PMCID: PMC10191536 DOI: 10.1097/pg9.0000000000000029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/24/2020] [Indexed: 05/21/2023]
Abstract
Tufting enteropathy (TE) is caused by recessive epithelial cell adhesion molecule (EPCAM) mutations, features congenital intractable diarrhea, growth retardation, and a characteristic disorganization of surface enterocytes. TE generally requires parenteral nutrition (PN) throughout childhood and into adulthood or a small bowel transplantation. We report 2 siblings with TE; a 3-year-old patient 1 intermittently receives partial PN, monthly somatostatin therapy, tolerates a normal diet and has a normal stool output. However, she is the sixth patient of 90 TE patients in literature, to develop a chronic arthritis. A 12-year-old patient 2 is on a normal diet, and did not require PN for the past 8 years. Duodenal biopsies showed characteristic tufts, and a complete lack of EPCAM staining. Both siblings were homozygous for EPCAM mutation c.757G>A (p.Asp253Asn). This observation shows that an overall favorable outcome can be obtained in TE, even with abrogated intestinal EPCAM expression.
Collapse
Affiliation(s)
- Oğuz Ozler
- From the Koc University School of Medicine, Pediatric Gastroenterology and Hepatology, Organ Transplantation and Research Center, Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Andrea Brunner-Véber
- Institut für Pathologie, Neuropathologie und Molekularpathologie, Medical University of Innsbruck, Innsbruck, Austria
| | - Parmis Fatih
- From the Koc University School of Medicine, Pediatric Gastroenterology and Hepatology, Organ Transplantation and Research Center, Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas R. Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Cigdem Arikan
- From the Koc University School of Medicine, Pediatric Gastroenterology and Hepatology, Organ Transplantation and Research Center, Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| |
Collapse
|
32
|
Loughrey MB, McGrath J, Coleman HG, Bankhead P, Maxwell P, McGready C, Bingham V, Humphries MP, Craig SG, McQuaid S, Salto-Tellez M, James JA. Identifying mismatch repair-deficient colon cancer: near-perfect concordance between immunohistochemistry and microsatellite instability testing in a large, population-based series. Histopathology 2021; 78:401-413. [PMID: 32791559 DOI: 10.1111/his.14233] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
AIMS Establishing the mismatch repair (MMR) status of colorectal cancers is important to enable the detection of underlying Lynch syndrome and inform prognosis and therapy. Current testing typically involves either polymerase chain reaction (PCR)-based microsatellite instability (MSI) testing or MMR protein immunohistochemistry (IHC). The aim of this study was to compare these two approaches in a large, population-based cohort of stage 2 and 3 colon cancer cases in Northern Ireland. METHODS AND RESULTS The study used the Promega pentaplex assay to determine MSI status and a four-antibody MMR IHC panel. IHC was applied to tumour tissue microarrays with triplicate tumour sampling, and assessed manually. Of 593 cases with available MSI and MMR IHC results, 136 (22.9%) were MSI-high (MSI-H) and 135 (22.8%) showed abnormal MMR IHC. Concordance was extremely high, with 97.1% of MSI-H cases showing abnormal MMR IHC, and 97.8% of cases with abnormal IHC showing MSI-H status. Under-representation of tumour epithelial cells in samples from heavily inflamed tumours resulted in misclassification of several cases with abnormal MMR IHC as microsatellite-stable. MMR IHC revealed rare cases with unusual patterns of MMR protein expression, unusual combinations of expression loss, or secondary clonal loss of expression, as further illustrated by repeat immunostaining on whole tissue sections. CONCLUSIONS MSI PCR testing and MMR IHC can be considered to be equally proficient tests for establishing MMR/MSI status, when there is awareness of the potential pitfalls of either method. The choice of methodology may depend on available services and expertise.
Collapse
Affiliation(s)
- Maurice B Loughrey
- Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Jason McGrath
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
| | - Helen G Coleman
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Peter Bankhead
- Edinburgh Pathology/Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Perry Maxwell
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
| | - Claire McGready
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
- Northern Ireland Biobank, Health Sciences Building, Queen's University Belfast, Belfast, UK
| | - Victoria Bingham
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
| | - Matthew P Humphries
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
| | - Stephanie G Craig
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Stephen McQuaid
- Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
- Northern Ireland Biobank, Health Sciences Building, Queen's University Belfast, Belfast, UK
| | - Manuel Salto-Tellez
- Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
| | - Jacqueline A James
- Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
- Northern Ireland Biobank, Health Sciences Building, Queen's University Belfast, Belfast, UK
| |
Collapse
|
33
|
Das B, Sivagnanam M. Congenital Tufting Enteropathy: Biology, Pathogenesis and Mechanisms. J Clin Med 2020; 10:E19. [PMID: 33374714 PMCID: PMC7793535 DOI: 10.3390/jcm10010019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023] Open
Abstract
Congenital tufting enteropathy (CTE) is an autosomal recessive disease of infancy that causes severe intestinal failure with electrolyte imbalances and impaired growth. CTE is typically diagnosed by its characteristic histological features, including villous atrophy, crypt hyperplasia and focal epithelial tufts consisting of densely packed enterocytes. Mutations in the EPCAM and SPINT2 genes have been identified as the etiology for this disease. The significant morbidity and mortality and lack of direct treatments for CTE patients demand a better understanding of disease pathophysiology. Here, the latest knowledge of CTE biology is systematically reviewed, including clinical aspects, disease genetics, and research model systems. Particular focus is paid to the pathogenesis of CTE and predicted mechanisms of the disease as these would provide insight for future therapeutic options. The contribution of intestinal homeostasis, including the role of intestinal cell differentiation, defective enterocytes, disrupted barrier and cell-cell junction, and cell-matrix adhesion, is vividly described here (see Graphical Abstract). Moreover, based on the known dynamics of EpCAM signaling, potential mechanistic pathways are highlighted that may contribute to the pathogenesis of CTE due to either loss of EpCAM function or EpCAM mutation. Although not fully elucidated, these pathways provide an improved understanding of this devastating disease.
Collapse
Affiliation(s)
- Barun Das
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
34
|
Chen G, Yang Y, Liu W, Huang L, Yang L, Lei Y, Wu H, Lei Z, Guo J. EpCAM is essential for maintenance of the small intestinal epithelium architecture via regulation of the expression and localization of proteins that compose adherens junctions. Int J Mol Med 2020; 47:621-632. [PMID: 33416101 PMCID: PMC7797445 DOI: 10.3892/ijmm.2020.4815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is highly expressed in mammalian intestines, and is essential for maintaining the homeostasis of the intestinal epithelium. EpCAM protein is localized at tight junctions and the basolateral membrane of the intestinal epithelium, where it interacts with many cell adhesion molecules. To explore the molecular functions of EpCAM in regulating adherens junctions in the intestinal epithelium, EpCAM knockout embryos and newborn pups were analyzed. Hematoxylin and eosin staining was used to assess the histology of the duodenum, jejunum, ileum and colon from wild-type and EpCAM−/− mice at E18.5, P0 and P3. The expression and localization of adherens junction-associated genes and genes that encode the proteins that participate in the assembly of adherens junctions were measured at the mRNA and protein levels using qPCR, western blot analysis and immunofluorescence staining. The results showed that although there was no significant damage to the intestines of EpCAM−/− mice at E18.5 and P0, they were significantly damaged at P3 in mutant mice. The expression of adherens junction-associated genes in EpCAM mutant mice was normal at the mRNA level from E18.5 to P3, but their protein levels were gradually reduced and mislocalized from E18.5 to P3. The expression of nectin 1, which can regulate the assembly and adhesion activity of E-cadherin, was also gradually reduced at both the mRNA and protein levels in the intestinal epithelium of EpCAM mutant mice from E18.5 to P3. In summary, the loss of EpCAM may cause the reduction and mislocalization of proteins that compose adherens junctions partly via the downregulation of nectin 1 in the intestines.
Collapse
Affiliation(s)
- Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
35
|
Lang GT, Shi JX, Huang L, Cao AY, Zhang CH, Song CG, Zhuang ZG, Hu X, Huang W, Shao ZM. Multiple cancer susceptible genes sequencing in BRCA-negative breast cancer with high hereditary risk. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1417. [PMID: 33313162 PMCID: PMC7723566 DOI: 10.21037/atm-20-2999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Hereditary factors contributed to breast cancer susceptibility. Low BRCA mutation prevalence was demonstrated in previous BRCA mutation screening in Chinese breast cancer patients. Multiple-gene sequencing may assist in discovering detrimental germline mutation in BRCA negative breast cancers. Methods A total of 384 Chinese subjects with any two of high-risk factors were recruited and screened by next-generation sequencing (NGS) for 30 cancer susceptible genes. Variants with a truncating, initiation codon or splice donor/acceptor effect, or with pathogenicity demonstrated in published literature were classified into pathogenic/likely-pathogenic mutations. Results In total, we acquired 39 (10.2%) patients with pathogenic/likely-pathogenic germline mutations, including one carrying two distinct mutations. Major mutant non-BRCA genes were MUTYH (n=11, 2.9%), PTCH1 (n=7, 1.8%), RET (n=6, 1.6%) and PALB2 (n=5, 1.3%). Other mutant genes included TP53 (n=3, 0.8%), RAD51D (n=2, 0.5%), CHEK2 (n=1, 0.3%), BRIP1 (n=1, 0.3%), CDH1 (n=1, 0.3%), MRE11 (n=1, 0.3%), RAD50 (n=1, 0.3%) and PALLD (n=1, 0.3%). A splicing germline mutation, MUTYH c.934-2A>G, was a hotspot (9/384, 2.3%) in Chinese breast cancer. Conclusions Among BRCA-negative breast cancer patients with high hereditary risk in China, 10.2% carried mutations in cancer associated susceptibility genes. MUTYH and PTCH1 had relatively high mutation rates (2.9% and 1.8%). Multigene testing contributes to understand genetic background of BRCA-negative breast cancer patients with high hereditary risk.
Collapse
Affiliation(s)
- Guan-Tian Lang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Xiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Industrial Technology Institute (SITI), Shanghai, China
| | - Liang Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - A-Yong Cao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen-Hui Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Industrial Technology Institute (SITI), Shanghai, China
| | - Chuan-Gui Song
- Department of Breast Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Gang Zhuang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Industrial Technology Institute (SITI), Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Zhou YQ, Wu GS, Kong YM, Zhang XY, Wang CL. New mutation in EPCAM for congenital tufting enteropathy: A case report. World J Clin Cases 2020; 8:4975-4980. [PMID: 33195669 PMCID: PMC7642537 DOI: 10.12998/wjcc.v8.i20.4975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Congenital tufting enteropathy (CTE) is a rare cause of diarrhea in children. However, it can result in early-onset of chronic diarrhea and failure to thrive. Children with this disease have to depend on total parenteral nutrition (TPN), and eventually small intestine transplantation. The epithelial cell adhesion molecule (EPCAM) gene was identified to be associated with CTE. Here, we present a case of an infant with CTE due to a mutation not reported in the literature before.
CASE SUMMARY A 1-year and 7-mo infant boy exhibited intractable watery diarrhea and mushy stool within 1 wk after birth, for which he had required medical treatment and hospitalization several times. His sister presented similar symptoms and died at the age of two. On admission, his body weight was 5700 g (-4.8SDS) and measured 66 cm (-5.4SDS) in height. Meanwhile, he cannot speak or climb. He exhibited mild anemia, hypocalcemia, hypomagnesemia, and an infection in the upper respiratory tract. Microvilli sparse and vacuolar degeneration of epithelial cells were reported by small intestine biopsy. Whole-exome sequencing showed a novel homozygous splice mutation (c.657+1[IVS6] G>A) in the EPCAM gene. He was treated with TPN and recombinant human growth hormone. After 2 mo, his body weight was up to 8500 g and he has been waiting for small bowel transplantation.
CONCLUSION CTE is rare but fatal. Patients with CTE require rapid diagnosis and therapy to improve their survival.
Collapse
Affiliation(s)
- Yan-Qiong Zhou
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Guo-Sheng Wu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yuan-Mei Kong
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xiao-Yuan Zhang
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Chun-Lin Wang
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
37
|
Russo P. Updates in Pediatric Congenital Enteropathies: Differential Diagnosis, Testing, and Genetics. Surg Pathol Clin 2020; 13:581-600. [PMID: 33183722 DOI: 10.1016/j.path.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Congenital enteropathies comprise a heterogeneous group of disorders typically resulting in severe diarrhea and intestinal failure. Recent advances in and more widespread application of genetic testing have allowed more accurate diagnosis of these entities as well as identification of new disorders, provided a deeper understanding of intestinal pathophysiology through genotype-phenotype correlations, and permitted the exploration of more specific therapies to diseases that have heretofore been resistant to conventional treatments. The therapeutic armamentarium for these disorders now includes intestinal and hematopoietic stem cell transplantation, specific targeted therapy, such as the use of interleukin-1 receptor antagonists and, in some cases, gene therapy. These considerations are particularly applicable to the group of disorders identified as "very-early onset inflammatory bowel disease" (VEO-IBD), for which a veritable explosion of knowledge has occurred in the last decade. The pathologist plays a crucial role in assisting in the diagnosis of these entities and in ruling out other disorders that enter into the differential diagnosis.
Collapse
Affiliation(s)
- Pierre Russo
- Department of Pathology and Laboratory Medicine, Division of Anatomic Pathology, The University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, 324 South 34th Street, Main Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Sobocińska J, Kolenda T, Teresiak A, Badziąg-Leśniak N, Kopczyńska M, Guglas K, Przybyła A, Filas V, Bogajewska-Ryłko E, Lamperska K, Mackiewicz A. Diagnostics of Mutations in MMR/ EPCAM Genes and Their Role in the Treatment and Care of Patients with Lynch Syndrome. Diagnostics (Basel) 2020; 10:diagnostics10100786. [PMID: 33027913 PMCID: PMC7600989 DOI: 10.3390/diagnostics10100786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer (HNPCC), is a disorder caused by an autosomal dominant heterozygous germline mutation in one of the DNA mismatch repair (MMR) genes. Individuals with LS are at an increased risk of developing colorectal and extracolonic cancers, such as endometrial, small bowel, or ovarian. In this review, the mutations involved with LS and their diagnostic methods are described and compared, as are their current uses in clinical decision making. Nowadays, LS diagnosis is based on a review of family medical history, and when necessary, microsatellite instability (MSI) or/and immunohistochemistry (IHC) analyses should be performed. In the case of a lack of MMR protein expression (dMMR) or MSI-H (MSI-High) detection in tumor tissue, molecular genetic testing can be undertaken. More and more genetic testing for LS is based mainly on next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification (MLPA), which provide better and quicker information about the molecular profile of patients as well as individuals at risk. Testing based on these two methods should be the standard and commonly used. The identification of individuals with mutations provides opportunities for the detection of cancer at an early stage as well as the introduction of proper, more effective treatment, which will result in increased patient survival and reduced costs of medical care.
Collapse
Affiliation(s)
- Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (T.K.); (M.K.); (A.P.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
- Correspondence:
| | - Tomasz Kolenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (T.K.); (M.K.); (A.P.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (A.T.); (K.G.); (K.L.)
| | - Natalia Badziąg-Leśniak
- Oncological Genetics Clinic, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland;
| | - Magda Kopczyńska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (T.K.); (M.K.); (A.P.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (A.T.); (K.G.); (K.L.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Przybyła
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (T.K.); (M.K.); (A.P.); (A.M.)
| | - Violetta Filas
- Department of Tumor Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (V.F.); (E.B.-R.)
- Department of Cancer Pathology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Elżbieta Bogajewska-Ryłko
- Department of Tumor Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (V.F.); (E.B.-R.)
- Department of Cancer Pathology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (A.T.); (K.G.); (K.L.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (T.K.); (M.K.); (A.P.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
39
|
Cuatrecasas M, Gorostiaga I, Riera C, Saperas E, Llort G, Costa I, Matias-Guiu X, Carrato C, Navarro M, Pineda M, Dueñas N, Brunet J, Marco V, Trias I, Busteros JI, Mateu G, Balaguer F, Fernández-Figueras MT, Esteller M, Musulén E. Complete Loss of EPCAM Immunoexpression Identifies EPCAM Deletion Carriers in MSH2-Negative Colorectal Neoplasia. Cancers (Basel) 2020; 12:cancers12102803. [PMID: 33003511 PMCID: PMC7599495 DOI: 10.3390/cancers12102803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal carcinomas from patients with Lynch syndrome (LS) due to EPCAM deletions show loss of MSH2 expression. The aim of our study was to evaluate the usefulness of EPCAM expression in identifying carriers of EPCAM deletion among patients with MSH2-negative lesions. MSH2 and EPCAM immunohistochemistry was performed in a large series of lesions (190) composed of malignant and benign neoplasms as well as precursor lesions of different organs from 71 patients with suspected LS due to MSH2 alterations. Germ-line analysis confirmed LS in 68 patients due to MSH2 mutations (53) and EPCAM deletions (15). Among colorectal lesions with lack of MSH2 expression, only 17 were EPCAM-negative and belonged to patients with EPCAM deletions. We confirm that loss of EPCAM expression identifies EPCAM deletion carriers with 100% specificity and we recommend adding EPCAM IHC to the algorithm of MSH2-negative colorectal neoplasia. Abstract The use of epithelial cell adhesion molecule (EPCAM) immunohistochemistry (IHC) is not included in the colorectal cancer (CRC) screening algorithm to detect Lynch syndrome (LS) patients. The aim of the present study was to demonstrate that EPCAM IHC is a useful tool to guide the LS germ-line analysis when a loss of MSH2 expression was present. We retrospectively studied MSH2 and EPCAM IHC in a large series of 190 lesions composed of malignant neoplasms (102), precursor lesions of gastrointestinal (71) and extra-gastrointestinal origin (9), and benign neoplasms (8) from different organs of 71 patients suspicious of being LS due to MSH2 alterations. LS was confirmed in 68 patients, 53 with MSH2 mutations and 15 with EPCAM 3′-end deletions. Tissue microarrays were constructed with human normal tissues and their malignant counterparts to assist in the evaluation of EPCAM staining. Among 154 MSH2-negative lesions, 17 were EPCAM-negative, including 10 CRC and 7 colorectal polyps, and 5 of them showed only isolated negative glands. All lesions showing a lack of EPCAM expression belonged to patients with EPCAM 3′-end deletions. EPCAM IHC is a useful screening tool, with 100% specificity to identify LS patients due to EPCAM 3′-end deletions in MSH2-negative CRC and MSH2-negative colorectal polyps.
Collapse
Affiliation(s)
- Míriam Cuatrecasas
- Department of Pathology, Center of Biomedical Diagnosis (CDB), Hospital Clínic, 08036 Barcelona, Spain;
- Universitat de Barcelona (UB), 08007 Barcelona, Spain; (X.M.-G.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
| | - Iñigo Gorostiaga
- Department of Pathology, Hospital Universitario de Araba, 01009 Vitoria-Gasteiz, Spain;
| | - Cristina Riera
- Gastroenterology Department, Hospital Universitari General de Catalunya-Grupo Quirónsalud, Sant Cugat del Valles, 08195 Barcelona, Spain; (C.R.); (E.S.)
| | - Esteban Saperas
- Gastroenterology Department, Hospital Universitari General de Catalunya-Grupo Quirónsalud, Sant Cugat del Valles, 08195 Barcelona, Spain; (C.R.); (E.S.)
- Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08017 Barcelona, Spain;
| | - Gemma Llort
- Oncology Department, Parc Taulí Hospital Universitari, Sabadell, 08208 Barcelona, Spain;
- Oncology Department, Consorci Sanitari de Terrassa, Terrassa, 08208 Barcelona, Spain
| | - Irmgard Costa
- Department of Pathology, Parc Taulí Hospital Universitari, Sabadell, 08208 Barcelona, Spain;
| | - Xavier Matias-Guiu
- Universitat de Barcelona (UB), 08007 Barcelona, Spain; (X.M.-G.); (M.E.)
- Department of Pathology, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Department of Pathology, Hospital Universitari Arnau de Vilanova, 25198 Lleida, Spain
- Universitat de Lleida, IRBLLEIDA, 25003 Lleida, Catalonia, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain;
| | - Matilde Navarro
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Marta Pineda
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Núria Dueñas
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Joan Brunet
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Girona (IDIBGI), Universitat de Girona, 17190 Girona, Spain
| | - Vicente Marco
- Department of Pathology, Hospital Quirónsalud Barcelona, 08023 Barcelona, Spain;
| | - Isabel Trias
- Department of Pathology, Hospital Platón, 08006 Barcelona, Spain;
| | - José Ignacio Busteros
- Department of Pathology, Hospital Universitario Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain;
| | - Gemma Mateu
- Department of Pathology, University Hospital Josep Trueta, 17007 Girona, Spain;
| | - Francesc Balaguer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
- Gastroenterology Department, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, 08036 Barcelona, Spain
| | - María-Teresa Fernández-Figueras
- Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08017 Barcelona, Spain;
- Department of Pathology, Hospital Universitari General de Catalunya-Grupo Quirónsalud, Sant Cugat del Vallès, 08190 Barcelona, Spain
| | - Manel Esteller
- Universitat de Barcelona (UB), 08007 Barcelona, Spain; (X.M.-G.); (M.E.)
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), 28029 Madrid, Spain; (M.N.); (M.P.); (N.D.); (J.B.)
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Eva Musulén
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain;
- Department of Pathology, Hospital Universitari General de Catalunya-Grupo Quirónsalud, Sant Cugat del Vallès, 08190 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Correspondence: or
| |
Collapse
|
40
|
Tufting Enteropathy: A Review of Clinical and Histological Presentation, Etiology, Management, and Outcome. Gastroenterol Res Pract 2020; 2020:5608069. [PMID: 33029133 PMCID: PMC7530495 DOI: 10.1155/2020/5608069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Congenital tufting enteropathy (CTE), also named intestinal epithelial dysplasia, is a rare, autosomal recessive enteropathy with persistent and life-threatening intractable diarrhea early in life. Intractable diarrhea is present independent of breast or formula feeding. Most CTE patients require total parenteral nutrition (TPN), and in severe cases, small bowel transplantation is needed. In the last decade, we have seen remarkable progress in certain aspects, such as the pathogenesis and diagnostic methods of the disease. Rapidly developing molecular analysis techniques have improved the diagnostic methods for CTE and reduced invasive and expensive procedures. Mutations in the gene encoding human epithelial cell adhesion molecule (EpCAM) were identified in the typical form of CTE, which usually exhibits isolated refractory diarrhea. Moreover, the syndromic form of CTE features anal and choanal atresias as well as ophthalmologic signs, which are associated with mutations in the gene encoding Serine Peptidase Inhibitor Kunitz Type 2 (SPINT2). This article reviews CTE disease based on its clinical and histological presentation, etiology and pathogenesis, and management and outcome.
Collapse
|
41
|
Hassan K, Sher G, Hamid E, Hazima KA, Abdelrahman H, Al Mudahka F, Al-Masri W, Sankar J, Daryaee M, Shawish R, Khan MA, Nawaz Z. Outcome associated with EPCAM founder mutation c.499dup in Qatar. Eur J Med Genet 2020; 63:104023. [PMID: 32735948 DOI: 10.1016/j.ejmg.2020.104023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/12/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023]
Abstract
Tufting enteropathy (TE) is a rare autosomal recessive congenital enteropathy that usually requires long-term parenteral nutrition (PN). In the Arabic Peninsula, four distinct EPCAM mutations have been identified to cause TE. As consanguineous marriages are socially favored, pre-marital and pre-conception testing has become a critical disease prevention strategy. This study aimed to identify the pathogenic EPCAM mutations causing TE in Qatari families and determine possible genotype-phenotype correlations. Twenty-two TE patients from seven multiplex families with TE were identified. Blood samples were collected from patients and first-degree relatives. Exons of the gene were amplified and sequenced. Retrospective chart review and/or family interviews were conducted to determine phenotypic characteristics of the disease. Sequence analysis revealed a single, previously described c.499dup mutation in exon 5 of all families tested, suggesting a founder effect. Of the 18 patients whose full clinical information was available, three patients (17%) were off PN with a good quality of life, without intestinal transplantation, and one (6%) was receiving partial PN. Our patients with TE were severely stunted compared to a similar group of patients receiving long-term PN for short bowel syndrome, suggesting that this could possibly be due to TE rather than secondary to inadequate nutrition. Our study identified the EPCAM mutation c.499dup as the genetic defect causing TE in all the participant Qatari families. This finding should facilitate early diagnosis of TE and genetic counseling. Furthermore, it should aid in the prevention of TE through pre-marital screening, antenatal diagnosis, and pre-implantation genetic diagnosis.
Collapse
Affiliation(s)
- Kamal Hassan
- Pediatric Gastroenterology Section, Hamad General Hospital, P.O. Box 3050, Doha, Qatar; Pediatric Gastroenterology Section, Sidra Medicine, P.O. Box 269999, Doha, Qatar.
| | - Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Eman Hamid
- Pediatric Gastroenterology Section, Hamad General Hospital, P.O. Box 3050, Doha, Qatar
| | - Khalid Abou Hazima
- Pediatric Gastroenterology Section, Hamad General Hospital, P.O. Box 3050, Doha, Qatar; Pediatric Gastroenterology Section, Sidra Medicine, P.O. Box 269999, Doha, Qatar
| | - Hatim Abdelrahman
- Pediatric Gastroenterology Section, Hamad General Hospital, P.O. Box 3050, Doha, Qatar; Pediatric Gastroenterology Section, Sidra Medicine, P.O. Box 269999, Doha, Qatar
| | - Fatma Al Mudahka
- Pediatric Gastroenterology Section, Hamad General Hospital, P.O. Box 3050, Doha, Qatar; Pediatric Gastroenterology Section, Sidra Medicine, P.O. Box 269999, Doha, Qatar
| | - Wesam Al-Masri
- Pediatric Gastroenterology Section, Hamad General Hospital, P.O. Box 3050, Doha, Qatar; Pediatric Gastroenterology Section, Sidra Medicine, P.O. Box 269999, Doha, Qatar
| | - Jisha Sankar
- Pediatric Gastroenterology Section, Hamad General Hospital, P.O. Box 3050, Doha, Qatar; Pediatric Gastroenterology Section, Sidra Medicine, P.O. Box 269999, Doha, Qatar
| | - Mahlah Daryaee
- Patient & Family Department, Hamad General Hospital, P.O. Box 3050, Doha, Qatar
| | - Rana Shawish
- Pediatric Gastroenterology Section, Sidra Medicine, P.O. Box 269999, Doha, Qatar; Patient & Family Department, Hamad General Hospital, P.O. Box 3050, Doha, Qatar
| | - Muzammil Ahmad Khan
- Diagnostic Genomic Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, 3050, Qatar; Gomal Centre of Biochemistry and Biotechnology, Gomal University Dera Ismail Khan, Khyber-Pakhtoonkhwa, 29050, Pakistan
| | - Zafar Nawaz
- Diagnostic Genomic Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, 3050, Qatar
| |
Collapse
|
42
|
Abstract
Mismatch repair deficiency (MMRD) is involved in the initiation of both hereditary and sporadic tumors. MMRD has been extensively studied in colorectal cancer and endometrial cancer, but not so in other tumors, such as ovarian carcinoma. We have determined the expression of mismatch repair proteins in a large cohort of 502 early-stage epithelial ovarian carcinoma entailing all the 5 main subtypes: high-grade serous carcinoma, endometrioid ovarian carcinoma (EOC), clear cell carcinoma (CCC), mucinous carcinoma, and low-grade serous carcinoma. We studied the association of MMRD with clinicopathologic and immunohistochemical features, including tumor-infiltrating lymphocytes in EOC, the histologic type in which MMRD is most frequent. In addition, MLH1 promoter methylation status and massive parallel sequencing were used to evaluate the proportion of sporadic and Lynch syndrome-associated tumors, and the most frequently mutated genes in MMRD EOCs. MMRD occurred only in endometriosis-associated histologic types, and it was much more frequent in EOC (18%) than in CCC (2%). The most frequent immunohistochemical pattern was loss of MLH1/PMS2, and in this group, 80% of the cases were sporadic and secondary to MLH1 promoter hypermethylation. The presence of somatic mutations in mismatch repair genes was the other mechanism of MMRD in sporadic tumors. In this series, the minimum estimated frequency of Lynch syndrome was 35% and it was due to germline mutations in MLH1, MSH2, and MSH6. ARID1A, PTEN, KTM2B, and PIK3CA were the most common mutated genes in this series. Interestingly, possible actionable mutations in ERRB2 were found in 5 tumors, but no TP53 mutations were detected. MMRD was associated with younger age and increased tumor-infiltrating lymphocytes. Universal screening in EOC and mixed EOC/CCC is recommended for the high frequency of MMRD detected; however, for CCC, additional clinical and pathologic criteria should be evaluated to help select cases for analysis.
Collapse
|
43
|
Gaber A, Lenarčič B, Pavšič M. Current View on EpCAM Structural Biology. Cells 2020; 9:cells9061361. [PMID: 32486423 PMCID: PMC7349879 DOI: 10.3390/cells9061361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
EpCAM, a carcinoma cell-surface marker protein and a therapeutic target, has been primarily addressed as a cell adhesion molecule. With regard to recent discoveries of its role in signaling with implications in cell proliferation and differentiation, and findings contradicting a direct role in mediating adhesion contacts, we provide a comprehensive and updated overview on the available structural data on EpCAM and interpret it in the light of recent reports on its function. First, we describe the structure of extracellular part of EpCAM, both as a subunit and part of a cis-dimer which, according to several experimental observations, represents a biologically relevant oligomeric state. Next, we provide a thorough evaluation of reports on EpCAM as a homophilic cell adhesion molecule with a structure-based explanation why direct EpCAM participation in cell–cell contacts is highly unlikely. Finally, we review the signaling aspect of EpCAM with focus on accessibility of signaling-associated cleavage sites.
Collapse
Affiliation(s)
- Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
- Correspondence: ; Tel.: +386-1-479-8550
| |
Collapse
|
44
|
Ugboko HU, Nwinyi OC, Oranusi SU, Oyewale JO. Childhood diarrhoeal diseases in developing countries. Heliyon 2020; 6:e03690. [PMID: 32322707 PMCID: PMC7160433 DOI: 10.1016/j.heliyon.2020.e03690] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
Diarrhoeal diseases collectively constitute a serious public health challenge globally, especially as the leading cause of death in children (after respiratory diseases). Childhood diarrhoea affecting children under the age of five accounts for approximately 63% of the global burden. Accurate and timely detection of the aetiology of these diseases is very crucial; but conventional methods, apart from being laborious and time-consuming, often fail to identify difficult-to-culture pathogens. The aetiological agent of an average of up to 40% of cases of diarrhoea cannot be identified. This review gives an overview of the recent trends in the epidemiology and treatment of diarrhoea and aims at highlighting the potentials of metagenomics technique as a diagnostic method for enteric infections.
Collapse
Affiliation(s)
- Harriet U Ugboko
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| | - Obinna C Nwinyi
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| | - Solomon U Oranusi
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| | - John O Oyewale
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
45
|
Das B, Okamoto K, Rabalais J, Marchelletta RR, Barrett KE, Das S, Niwa M, Sivagnanam M. Congenital Tufting Enteropathy-Associated Mutant of Epithelial Cell Adhesion Molecule Activates the Unfolded Protein Response in a Murine Model of the Disease. Cells 2020; 9:cells9040946. [PMID: 32290509 PMCID: PMC7226999 DOI: 10.3390/cells9040946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Congenital tufting enteropathy (CTE) is a rare chronic diarrheal disease of infancy caused by mutations in epithelial cell adhesion molecule (EpCAM). Previously, a murine CTE model showed mis-localization of EpCAM away from the basolateral cell surface in the intestine. Here we demonstrate that mutant EpCAM accumulated in the endoplasmic reticulum (ER) where it co-localized with ER chaperone, GRP78/BiP, revealing potential involvement of ER stress-induced unfolded protein response (UPR) pathway in CTE. To investigate the significance of ER-localized mutant EpCAM in CTE, activation of the three UPR signaling branches initiated by the ER transmembrane protein components IRE1, PERK, and ATF6 was tested. A significant reduction in BLOS1 and SCARA3 mRNA levels in EpCAM mutant intestinal cells demonstrated that regulated IRE1-dependent decay (RIDD) was activated. However, IRE1 dependent XBP1 mRNA splicing was not induced. Furthermore, an increase in nuclear-localized ATF6 in mutant intestinal tissues revealed activation of the ATF6-signaling arm. Finally, an increase in both the phosphorylated form of the translation initiation factor, eIF2α, and ATF4 expression in the mutant intestine provided support for activation of the PERK-mediated pathway. Our results are consistent with a significant role for UPR in gastrointestinal homeostasis and provide a working model for CTE pathophysiology.
Collapse
Affiliation(s)
- Barun Das
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - John Rabalais
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - Ronald R. Marchelletta
- Department of Medicine, University of California, San Diego, CA 92093, USA; (R.R.M.); (K.E.B.)
| | - Kim E. Barrett
- Department of Medicine, University of California, San Diego, CA 92093, USA; (R.R.M.); (K.E.B.)
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA 92093, USA;
| | - Maho Niwa
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
- Rady Children’s Hospital, San Diego, CA 92123, USA
- Correspondence: ; Tel.: +1-858-966-8907
| |
Collapse
|
46
|
Abdelgawad IA. Epithelial Cell Adhesion Molecule mRNA Can be a Potential Marker to Predict Metastasis in Hepatocellular Carcinoma Patients. Asian Pac J Cancer Prev 2020; 21:861-866. [PMID: 32212818 PMCID: PMC7437321 DOI: 10.31557/apjcp.2020.21.3.861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Epithelial cell adhesion molecule [EpCAM] is a surface marker of cancer stem cells that can maintain the capacity for malignant proliferation, invasion, metastasis, and tumor recurrence; hence its detection among hepatocellular carcinoma [HCC] patients may be an important prognostic factor. The aim of this study was to detect EpCAM mRNA expression in the whole blood of HCC patients and normal control subjects to elucidate its clinico-pathological significance among patients with HCC. METHODS This study was conducted on 74 newly diagnosed HCC patients and forty normal control subjects. Both groups were subjected to the detection of EpCAM mRNA in the whole blood using reverse transcriptase polymerase chain reaction [RT- PCR] technique. EpCAM expression was compared with some of the established prognostic factors of HCC. RESULTS EpCAM was detected in 17.5% of the HCC cases and was not expressed in any of the normal control subjects. EpCAM positive cases showed higher serum levels of alpha- feto protein [AFP] and carcinoembryonic antigen [CEA]. Prevalence of EpCAM positivity gave significant results with distant metastasis, lymph node metastasis, and portal vein thrombosis. CONCLUSION EpCAM proved high specificity among HCC patients and its expression was associated with metastasis and portal vein thrombosis. Higher serum levels of CEA among the EpCAM positive patients may attract the attention to a subgroup of HCC patients who are more liable to develop metastasis.<br />.
Collapse
Affiliation(s)
- Iman A Abdelgawad
- Department of Clinical Pathology, NCI, Cairo University, Cairo, Egypt
| |
Collapse
|
47
|
Das B, Okamoto K, Rabalais J, Kozan PA, Marchelletta RR, McGeough MD, Durali N, Go M, Barrett KE, Das S, Sivagnanam M. Enteroids expressing a disease-associated mutant of EpCAM are a model for congenital tufting enteropathy. Am J Physiol Gastrointest Liver Physiol 2019; 317:G580-G591. [PMID: 31433211 PMCID: PMC6879886 DOI: 10.1152/ajpgi.00098.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Congenital tufting enteropathy (CTE) is an autosomal recessive disease characterized by severe intestinal failure in infancy and mutations in the epithelial cell adhesion molecule (EPCAM) gene. Previous studies of CTE in mice expressing mutant EpCAM show neonatal lethality. Hence, to study the cellular, molecular, and physiological alterations that result from EpCAM mutation, a tamoxifen-inducible mutant EpCAM enteroid model has been generated. The presence of mutant EpCAM in the model was confirmed at both mRNA and protein levels. Immunofluorescence microscopy demonstrated the reduced expression of mutant EpCAM. Mutant enteroids had reduced budding potential as well as significantly decreased mRNA expression for epithelial lineage markers (Mucin 2, lysozyme, sucrase-isomaltase), proliferation marker Ki67, and secretory pathway transcription factors (Atoh1, Hnf1b). Significantly decreased numbers of Paneth and goblet cells were confirmed by staining. These findings were correlated with intestinal tissue from CTE patients and the mutant mice model that had significantly fewer Paneth and goblet cells than in healthy counterparts. FITC-dextran studies demonstrated significantly impaired barrier function in monolayers derived from mutant enteroids compared with control monolayers. In conclusion, we have established an ex vivo CTE model. The role of EpCAM in the budding potential, differentiation, and barrier function of enteroids is noted. Our study establishes new facets of EpCAM biology that will aid in understanding the pathophysiology of CTE and role of EpCAM in health and disease.NEW & NOTEWORTHY Here, we develop a novel ex vivo enteroid model for congenital tufting enteropathy (CTE) based on epithelial cell adhesion molecule (EPCAM) gene mutations found in patients. With this model we demonstrate the role of EpCAM in maintaining the functional homeostasis of the intestinal epithelium, including differentiation, proliferation, and barrier integrity. This study further establishes a new direction in EpCAM biology that will help in understanding the detailed pathophysiology of CTE and role of EpCAM.
Collapse
Affiliation(s)
- Barun Das
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kevin Okamoto
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - John Rabalais
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Philip A. Kozan
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | | | - Matthew D. McGeough
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Nassim Durali
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Maria Go
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kim E. Barrett
- 2Department of Medicine, University of California, San Diego, La Jolla, California
| | - Soumita Das
- 3Department of Pathology, University of California, San Diego, La Jolla, California
| | - Mamata Sivagnanam
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California,4Rady Children’s Hospital, San Diego, California
| |
Collapse
|
48
|
Tamura K, Kaneda M, Futagawa M, Takeshita M, Kim S, Nakama M, Kawashita N, Tatsumi-Miyajima J. Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome. Int J Clin Oncol 2019; 24:999-1011. [PMID: 31273487 DOI: 10.1007/s10147-019-01494-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
Lynch syndrome is a cancer-predisposing syndrome inherited in an autosomal-dominant manner, wherein colon cancer and endometrial cancer develop frequently in the family, it results from a loss-of-function mutation in one of four different genes (MLH1, MSH2, MSH6, and PMS2) encoding mismatch repair proteins. Being located immediately upstream of the MSH2 gene, EPCAM abnormalities can affect MSH2 and cause Lynch syndrome. Mismatch repair proteins are involved in repairing of incorrect pairing (point mutations and deletion/insertion of simple repetitive sequences, so-called microsatellites) that can arise during DNA replication. MSH2 forms heterodimers with MSH6 or MSH3 (MutSα, MutSβ, respectively) and is involved in mismatch-pair recognition and initiation of repair. MLH1 forms a complex with PMS2, and functions as an endonuclease. If the mismatch repair system is thoroughly working, genome integrity is maintained completely. Lynch syndrome is a state of mismatch repair deficiency due to a monoallelic abnormality of any mismatch repair genes. The phenotype indicating the mismatch repair deficiency can be frequently shown as a microsatellite instability in tumors. Children with germline biallelic mismatch repair gene abnormalities were reported to develop conditions such as gastrointestinal polyposis, colorectal cancer, brain cancer, leukemia, etc., and so on, demonstrating the need to respond with new concepts in genetic counseling. In promoting cancer genome medicine in a new era, such as by utilizing immune checkpoints, it is important to understand the genetic and genomic molecular background, including the status of mismatch repair deficiency.
Collapse
Affiliation(s)
- Kazuo Tamura
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan.
| | - Motohide Kaneda
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Mashu Futagawa
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Miho Takeshita
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Sanghyuk Kim
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Mina Nakama
- Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Norihito Kawashita
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Junko Tatsumi-Miyajima
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| |
Collapse
|
49
|
Pathak SJ, Mueller JL, Okamoto K, Das B, Hertecant J, Greenhalgh L, Cole T, Pinsk V, Yerushalmi B, Gurkan OE, Yourshaw M, Hernandez E, Oesterreicher S, Naik S, Sanderson IR, Axelsson I, Agardh D, Boland CR, Martin MG, Putnam CD, Sivagnanam M. EPCAM mutation update: Variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat 2018; 40:142-161. [PMID: 30461124 PMCID: PMC6328345 DOI: 10.1002/humu.23688] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 12/30/2022]
Abstract
The epithelial cell adhesion molecule gene (EPCAM, previously known as TACSTD1 or TROP1) encodes a membrane‐bound protein that is localized to the basolateral membrane of epithelial cells and is overexpressed in some tumors. Biallelic mutations in EPCAM cause congenital tufting enteropathy (CTE), which is a rare chronic diarrheal disorder presenting in infancy. Monoallelic deletions of the 3′ end of EPCAM that silence the downstream gene, MSH2, cause a form of Lynch syndrome, which is a cancer predisposition syndrome associated with loss of DNA mismatch repair. Here, we report 13 novel EPCAM mutations from 17 CTE patients from two separate centers, review EPCAM mutations associated with CTE and Lynch syndrome, and structurally model pathogenic missense mutations. Statistical analyses indicate that the c.499dupC (previously reported as c.498insC) frameshift mutation was associated with more severe treatment regimens and greater mortality in CTE, whereas the c.556‐14A>G and c.491+1G>A splice site mutations were not correlated with treatments or outcomes significantly different than random simulation. These findings suggest that genotype–phenotype correlations may be useful in contributing to management decisions of CTE patients. Depending on the type and nature of EPCAM mutation, one of two unrelated diseases may occur, CTE or Lynch syndrome.
Collapse
Affiliation(s)
- Sagar J Pathak
- Department of Pediatrics, University of California, San Diego, La Jolla, California.,Rady Children's Hospital, San Diego, California
| | - James L Mueller
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Barun Das
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Jozef Hertecant
- Genetics/Metabolics Service, Tawam Hospital, Al Ain, United Arab Emirates
| | | | - Trevor Cole
- West Midlands Regional Genetics Service and Birmingham Health Partners, Birmingham Women's Hospital, Birmingham, UK
| | - Vered Pinsk
- Division of Pediatrics, Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Baruch Yerushalmi
- Division of Pediatrics, Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Odul E Gurkan
- Department of Pediatrics, Gazi University School of Medicine, Ankara, Turkey
| | - Michael Yourshaw
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
| | - Erick Hernandez
- Pediatric Gastroenterology, Miami Children's Health System, Miami, Florida
| | | | - Sandhia Naik
- Paediatric Gastroenterology, Barts and the London School of Medicine, London, UK
| | - Ian R Sanderson
- Paediatric Gastroenterology, Barts and the London School of Medicine, London, UK
| | - Irene Axelsson
- Department of Pediatrics, Skane University Hospital, Malmo, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmo, Sweden
| | - C Richard Boland
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Martin G Martin
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California
| | - Christopher D Putnam
- Department of Medicine, University of California, San Diego, La Jolla, California.,San Diego Branch, Ludwig Institute for Cancer Research, La Jolla, California
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, La Jolla, California.,Rady Children's Hospital, San Diego, California
| |
Collapse
|