1
|
Matkovic Leko I, Schneider RT, Thimraj TA, Schrode N, Beitler D, Liu HY, Beaumont K, Chen YW, Snoeck HW. A distal lung organoid model to study interstitial lung disease, viral infection and human lung development. Nat Protoc 2023; 18:2283-2312. [PMID: 37165073 PMCID: PMC11486529 DOI: 10.1038/s41596-023-00827-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/24/2023] [Indexed: 05/12/2023]
Abstract
Organoids have been an exciting advancement in stem cell research. Here we describe a strategy for directed differentiation of human pluripotent stem cells into distal lung organoids. This protocol recapitulates lung development by sequentially specifying human pluripotent stem cells to definitive endoderm, anterior foregut endoderm, ventral anterior foregut endoderm, lung bud organoids and finally lung organoids. The organoids take ~40 d to generate and can be maintained more than 180 d, while progressively maturing up to a stage consistent with the second trimester of human gestation. They are unique because of their branching morphology, the near absence of non-lung endodermal lineages, presence of mesenchyme and capacity to recapitulate interstitial lung diseases. This protocol can be performed by anyone familiar with cell culture techniques, is conducted in serum-free conditions and does not require lineage-specific reporters or enrichment steps. We also provide a protocol for the generation of single-cell suspensions for single-cell RNA sequencing.
Collapse
Affiliation(s)
- Ivana Matkovic Leko
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remy T Schneider
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tania A Thimraj
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nadine Schrode
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Beitler
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Hsiao-Yun Liu
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin Beaumont
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hans-Willem Snoeck
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Borie R, Kannengiesser C, Antoniou K, Bonella F, Crestani B, Fabre A, Froidure A, Galvin L, Griese M, Grutters JC, Molina-Molina M, Poletti V, Prasse A, Renzoni E, van der Smagt J, van Moorsel CHM. European Respiratory Society statement on familial pulmonary fibrosis. Eur Respir J 2023; 61:13993003.01383-2022. [PMID: 36549714 DOI: 10.1183/13993003.01383-2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Genetic predisposition to pulmonary fibrosis has been confirmed by the discovery of several gene mutations that cause pulmonary fibrosis. Although genetic sequencing of familial pulmonary fibrosis (FPF) cases is embedded in routine clinical practice in several countries, many centres have yet to incorporate genetic sequencing within interstitial lung disease (ILD) services and proper international consensus has not yet been established. An international and multidisciplinary expert Task Force (pulmonologists, geneticists, paediatrician, pathologist, genetic counsellor, patient representative and librarian) reviewed the literature between 1945 and 2022, and reached consensus for all of the following questions: 1) Which patients may benefit from genetic sequencing and clinical counselling? 2) What is known of the natural history of FPF? 3) Which genes are usually tested? 4) What is the evidence for telomere length measurement? 5) What is the role of common genetic variants (polymorphisms) in the diagnostic workup? 6) What are the optimal treatment options for FPF? 7) Which family members are eligible for genetic sequencing? 8) Which clinical screening and follow-up parameters may be considered in family members? Through a robust review of the literature, the Task Force offers a statement on genetic sequencing, clinical management and screening of patients with FPF and their relatives. This proposal may serve as a basis for a prospective evaluation and future international recommendations.
Collapse
Affiliation(s)
- Raphael Borie
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | | | - Katerina Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, European Reference Network (ERN)-LUNG, ILD Core Network, Essen, Germany
| | - Bruno Crestani
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Aurélie Fabre
- Department of Histopathology, St Vincent's University Hospital and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoine Froidure
- Pulmonology Department, Cliniques Universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Liam Galvin
- European Pulmonary Fibrosis Federation, Blackrock, Ireland
| | - Matthias Griese
- Dr von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Jan C Grutters
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, UMC Utrecht, Utrecht, The Netherlands
| | - Maria Molina-Molina
- Interstitial Lung Disease Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat (Barcelona), CIBERES, Barcelona, Spain
| | - Venerino Poletti
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Department of Experimental, Diagnostics and Speciality Medicine, University of Bologna, Bologna, Italy
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Fraunhofer ITEM, Hannover, Germany
| | - Elisabetta Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jasper van der Smagt
- Division of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Newton CA, Oldham JM, Applegate C, Carmichael N, Powell K, Dilling D, Schmidt SL, Scholand MB, Armanios M, Garcia CK, Kropski JA, Talbert J. The Role of Genetic Testing in Pulmonary Fibrosis. Chest 2022; 162:394-405. [PMID: 35337808 PMCID: PMC9424324 DOI: 10.1016/j.chest.2022.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with familial pulmonary fibrosis represent a subset of patients with pulmonary fibrosis in whom inherited gene variation predisposes them to disease development. In the appropriate setting, genetic testing allows for personalized assessment of disease, recognition of clinically relevant extrapulmonary manifestations, and assessing susceptibility in unaffected relatives. However currently, the use of genetic testing is inconsistent, partly because of the lack of guidance regarding high-yield scenarios in which the results of genetic testing can inform clinical decision-making. To address this, the Pulmonary Fibrosis Foundation commissioned a genetic testing work group comprising pulmonologists, geneticists, and genetic counselors from the United States to provide guidance on genetic testing in patients with pulmonary fibrosis. This CHEST special feature presents a concise review of these proceedings and reviews pulmonary fibrosis susceptibility, clinically available genetic testing methods, and clinical scenarios in which genetic testing should be considered.
Collapse
|
5
|
Nanjappa DP, Babu N, Khanna-Gupta A, O'Donohue MF, Sips P, Chakraborty A. Poly (A)-specific ribonuclease (PARN): More than just "mRNA stock clearing". Life Sci 2021; 285:119953. [PMID: 34520768 DOI: 10.1016/j.lfs.2021.119953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the balance between the synthesis and the degradation decides the steady-state levels of messenger RNAs (mRNA). The removal of adenosine residues from the poly(A) tail, called deadenylation, is the first and the most crucial step in the process of mRNA degradation. Poly (A)-specific ribonuclease (PARN) is one such enzyme that catalyses the process of deadenylation. Although PARN has been primarily known as the regulator of the mRNA stability, recent evidence clearly suggests several other functions of PARN, including a role in embryogenesis, oocyte maturation, cell-cycle progression, telomere biology, non-coding RNA maturation and ribosome biogenesis. Also, deregulated PARN activity is shown to be a hallmark of specific disease conditions. Pathogenic variants in the PARN gene have been observed in various cancers and inherited bone marrow failure syndromes. The focus in this review is to highlight the emerging functions of PARN, particularly in the context of human diseases.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Arati Khanna-Gupta
- Consortium of Rare Genetic and Bone Marrow Disorders, India network@NitteDU, NITTE (Deemed to be University, Deralakatte, Mangaluru, India
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative CBI, Université de Toulouse- CNRS- UPS- Toulouse-, Dynamics and Disorders of Ribosome Synthesis, Toulouse, France
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India.
| |
Collapse
|
6
|
Pulmonary fibrosis in dyskeratosis congenita: a case report with a PRISMA-compliant systematic review. BMC Pulm Med 2021; 21:279. [PMID: 34479523 PMCID: PMC8418029 DOI: 10.1186/s12890-021-01645-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
Background Dyskeratosis congenita (DC) is a rare genetic disorder of poor telomere maintenance. Pulmonary fibrosis (PF) related to DC is rarely reported. Case presentation A 23-year-old student presented with a four-year history of progressive cough and exertional dyspnea. Physical examination was remarkable for typical mucocutaneous abnormalities. Chest computerized tomography scan revealed interstitial fibrosis. Testing of peripheral blood leukocytes confirmed that his telomeres were 30th percentile of age-matched controls. A heterozygous missense mutation located in exon 22 of PARN gene was identified in the patient by whole exome sequencing. The patient refused danazol therapy and lung transplantation, and died of respiratory failure 2 years later. In addition, this case and 26 reported cases of DC-related PF identified through the comprehensive search of PubMed, Web of Science, WANFANG and CNKI were reviewed. Later-onset PF was observed in 11 patients (40.7%). Radiological usual interstitial pneumonia (UIP) pattern or possible UIP pattern was noted only in half of patients. However, histopathological UIP or probable UIP patterns were found in 63.6% of patients. Age at bone marrow failure (BMF) and the frequency of normal to mild thrombocytopenia in later-onset patients was significantly higher than in early-onset patients (p = 0.017 and p = 0.021, respectively). Age at PF and age at BMF in DC patients with TERC/TERT variants was significantly higher than in those with TINF2 variants or DKC1/NHP2 variants (p = 0.004 and p = 0.003, respectively). The patients with TERT/TERC/RTEL1/PARN variants had a significantly better transplant-free survival than those with TINF2 variants or DKC1/NHP2 variants (p < 0.05). Patients who underwent surgical lung biopsy had significantly worse transplant-free survival than those without lung biopsy (p = 0.042). Worse survival was found in patients with immunosuppression therapy than in those without (p = 0.012). Conclusions It is common for DC-associated PF to occur later in life without significant hematological manifestations. Mutations in the genes encoding different components of the telomere maintenance pathway were associated with clinical phenotypes and prognosis. PF caused by DC should be kept in mind by clinicians in the differential diagnosis of patients with unexplained PF and should be excluded before diagnostic surgical lung biopsy is undertaken or empirical immunosuppression therapy is prescribed. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01645-w.
Collapse
|
7
|
Cecchini MJ, Tarmey T, Ferreira A, Mangaonkar AA, Ferrer A, Patnaik MM, Wylam ME, Jenkins SM, Spears GM, Yi ES, Hartman TE, Scott JP, Roden AC. Pathology, Radiology, and Genetics of Interstitial Lung Disease in Patients With Shortened Telomeres. Am J Surg Pathol 2021; 45:871-884. [PMID: 33935155 DOI: 10.1097/pas.0000000000001725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interstitial lung diseases (ILDs) in patients with shortened telomeres have not been well characterized. We describe demographic, radiologic, histopathologic, and molecular features, and p16 expression in patients with telomeres ≤10th percentile (shortened telomeres) and compare them to patients with telomere length >10th percentile. Lung explants, wedge biopsies, and autopsy specimens of patients with telomere testing were reviewed independently by 3 pathologists using defined parameters. High-resolution computed tomography scans were reviewed by 3 radiologists. p16-positive fibroblast foci were quantified. A multidisciplinary diagnosis was recorded. Patients with shortened telomeres (N=26) were morphologically diagnosed as usual interstitial pneumonia (UIP) (N=11, 42.3%), chronic hypersensitivity pneumonitis (N=6, 23.1%), pleuroparenchymal fibroelastosis, fibrotic nonspecific interstitial pneumonia, desquamative interstitial pneumonia (N=1, 3.8%, each), and fibrotic interstitial lung disease (fILD), not otherwise specified (N=6, 23.1%). Patients with telomeres >10th percentile (N=18) showed morphologic features of UIP (N=9, 50%), chronic hypersensitivity pneumonitis (N=3, 16.7%), fibrotic nonspecific interstitial pneumonia (N=2, 11.1%), or fILD, not otherwise specified (N=4, 22.2%). Patients with shortened telomeres had more p16-positive foci (P=0.04). The number of p16-positive foci correlated with outcome (P=0.0067). Thirty-nine percent of patients with shortened telomeres harbored telomere-related gene variants. Among 17 patients with shortened telomeres and high-resolution computed tomography features consistent with or probable UIP, 8 (47.1%) patients showed morphologic features compatible with UIP; multidisciplinary diagnosis most commonly was idiopathic pulmonary fibrosis (N=7, 41.2%) and familial pulmonary fibrosis (N=5, 29%) in these patients. In conclusion, patients with shortened telomeres have a spectrum of fILDs. They often demonstrate atypical and discordant features on pathology and radiology leading to diagnostic challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark E Wylam
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Eunhee S Yi
- Departments of Laboratory Medicine and Pathology
| | | | - John P Scott
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Anja C Roden
- Departments of Laboratory Medicine and Pathology
| |
Collapse
|
8
|
Abstract
Telomere biology disorders (TBD) are a heterogeneous group of diseases arising from germline mutations affecting genes involved in telomere maintenance. Telomeres are DNA-protein structures at chromosome ends that maintain chromosome stability; their length affects cell replicative potential and senescence. A constellation of bone marrow failure, pulmonary fibrosis, liver cirrhosis and premature greying is suggestive, however incomplete penetrance results in highly variable manifestations, with idiopathic pulmonary fibrosis as the most common presentation. Currently, the true extent of TBD burden is unknown as there is no established diagnostic criteria and the disorder often is unrecognised and underdiagnosed. There is no gold standard for measuring telomere length and not all TBD-related mutations have been identified. There is no specific cure and the only treatment is organ transplantation, which has poor outcomes. This review summarises the current literature and discusses gaps in understanding and areas of need in managing TBD.
Collapse
|
9
|
Telomere biology disorder prevalence and phenotypes in adults with familial hematologic and/or pulmonary presentations. Blood Adv 2021; 4:4873-4886. [PMID: 33035329 DOI: 10.1182/bloodadvances.2020001721] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Telomere biology disorders (TBDs) present heterogeneously, ranging from infantile bone marrow failure associated with very short telomeres to adult-onset interstitial lung disease (ILD) with normal telomere length. Yield of genetic testing and phenotypic spectra for TBDs caused by the expanding list of telomere genes in adults remain understudied. Thus, we screened adults aged ≥18 years with a personal and/or family history clustering hematologic disorders and/or ILD enrolled on The University of Chicago Inherited Hematologic Disorders Registry for causative variants in 13 TBD genes. Sixteen (10%) of 153 probands carried causative variants distributed among TERT (n = 6), TERC (n = 4), PARN (n = 5), or RTEL1 (n = 1), of which 19% were copy number variants. The highest yield (9 of 22 [41%]) was in families with mixed hematologic and ILD presentations, suggesting that ILD in hematology populations and hematologic abnormalities in ILD populations warrant TBD genetic testing. Four (3%) of 117 familial hematologic disorder families without ILD carried TBD variants, making TBD second to only DDX41 in frequency for genetic diagnoses in this population. Phenotypes of 17 carriers with heterozygous PARN variants included 4 (24%) with hematologic abnormalities, 67% with lymphocyte telomere lengths measured by flow cytometry and fluorescence in situ hybridization at or above the 10th percentile, and a high penetrance for ILD. Alternative etiologies for cytopenias and/or ILD such as autoimmune features were noted in multiple TBD families, emphasizing the need to maintain clinical suspicion for a TBD despite the presence of alternative explanations.
Collapse
|
10
|
Human mutational constraint as a tool to understand biology of rare and emerging bone marrow failure syndromes. Blood Adv 2020; 4:5232-5245. [PMID: 33104793 DOI: 10.1182/bloodadvances.2020002687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Inherited bone marrow failure (IBMF) syndromes are rare blood disorders characterized by hematopoietic cell dysfunction and predisposition to hematologic malignancies. Despite advances in the understanding of molecular pathogenesis of these heterogeneous diseases, genetic variant interpretation, genotype-phenotype correlation, and outcome prognostication remain difficult. As new IBMF and other myelodysplastic syndrome (MDS) predisposition genes continue to be discovered (frequently in small kindred studies), there is an increasing need for a systematic framework to evaluate penetrance and prevalence of mutations in genes associated with IBMF phenotypes. To address this need, we analyzed population-based genomic data from >125 000 individuals in the Genome Aggregation Database for loss-of-function (LoF) variants in 100 genes associated with IBMF. LoF variants in genes associated with IBMF/MDS were present in 0.426% of individuals. Heterozygous LoF variants in genes in which haploinsufficiency is associated with IBMF/MDS were identified in 0.422% of the population; homozygous LoF variants associated with autosomal recessive IBMF/MDS diseases were identified in only .004% of the cohort. Using age distribution of LoF variants and 2 measures of mutational constraint, LOEUF ("loss-of-function observed/expected upper bound fraction") and pLI ("probability of being loss-of-function intolerance"), we evaluated the pathogenicity, tolerance, and age-related penetrance of LoF mutations in specific genes associated with IBMF syndromes. This analysis led to insights into rare IBMF diseases, including syndromes associated with DHX34, MDM4, RAD51, SRP54, and WIPF1. Our results provide an important population-based framework for the interpretation of LoF variant pathogenicity in rare and emerging IBMF syndromes.
Collapse
|
11
|
Zeng T, Lv G, Chen X, Yang L, Zhou L, Dou Y, Tang X, Yang J, An Y, Zhao X. CD8 + T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with PARN and DKC1 mutations. J Clin Lab Anal 2020; 34:e23375. [PMID: 32452087 PMCID: PMC7521304 DOI: 10.1002/jcla.23375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a syndrome resulting from defective telomere maintenance. Immunodeficiency associated with DC can cause significant morbidity and lead to premature mortality, but the immunological characteristics and molecular hallmark of DC patients, especially young patients, have not been described in detail. METHODS We summarize the clinical data of two juvenile patients with DC. Gene mutations were identified by whole-exome and direct sequencing. Swiss-PdbViewer was used to predict the pathogenicity of identified mutations. The relative telomere length was determined by QPCR, and a comprehensive analysis of lymphocyte subsets and CD57 expression was performed by flow cytometry. RESULTS Both patients showed typical features of DC without severe infection. In addition, patient 1 (P1) was diagnosed with Hoyeraal-Hreidarsson syndrome due to cerebellar hypoplasia. Gene sequencing showed P1 had a compound heterozygous mutation (c.204G > T and c.178-245del) in PARN and P2 had a novel hemizygous mutation in DKC1 (c.1051A > G). Lymphocyte subset analysis showed B and NK cytopenia, an inverted CD4:CD8 ratio, and decreased naïve CD4 and CD8 cells. A significant increase in CD21low B cells and skewed numbers of helper T cells (Th), regulatory T cells (Treg), follicular regulatory T cells (Tfr), and follicular helper T cells (Tfh) were also detected. Short telomere lengths, increased CD57 expression, and an expansion of CD8 effector memory T cells re-expressing CD45RA (TEMRA) were also found in both patients. CONCLUSION Unique immunologic abnormalities, CD8 T-cell senescence, and shortened telomere together as a hallmark occur in young DC patients before progression to severe disease.
Collapse
Affiliation(s)
- Ting Zeng
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ge Lv
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuemei Chen
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lu Yang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lina Zhou
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ying Dou
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Hematology and OncologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuemei Tang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Jun Yang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyShenzhen Children's HospitalShenzhenChina
| | - Yunfei An
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaodong Zhao
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
12
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Dejene EA, Li Y, Showkatian Z, Ling H, Seto E. Regulation of poly(a)-specific ribonuclease activity by reversible lysine acetylation. J Biol Chem 2020; 295:10255-10270. [PMID: 32457045 DOI: 10.1074/jbc.ra120.012552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that plays an important role in regulating the stability and maturation of RNAs. Recently, PARN has been found to regulate the maturation of the human telomerase RNA component (hTR), a noncoding RNA required for telomere elongation. Specifically, PARN cleaves the 3'-end of immature, polyadenylated hTR to form the mature, nonpolyadenylated template. Despite PARN's critical role in mediating telomere maintenance, little is known about how PARN's function is regulated by post-translational modifications. In this study, using shRNA- and CRISPR/Cas9-mediated gene silencing and knockout approaches, along with 3'-exoribonuclease activity assays and additional biochemical methods, we examined whether PARN is post-translationally modified by acetylation and what effect acetylation has on PARN's activity. We found PARN is primarily acetylated by the acetyltransferase p300 at Lys-566 and deacetylated by sirtuin1 (SIRT1). We also revealed how acetylation of PARN can decrease its enzymatic activity both in vitro, using a synthetic RNA probe, and in vivo, by quantifying endogenous levels of adenylated hTR. Furthermore, we also found that SIRT1 can regulate levels of adenylated hTR through PARN. The findings of our study uncover a mechanism by which PARN acetylation and deacetylation regulate its enzymatic activity as well as levels of mature hTR. Thus, PARN's acetylation status may play a role in regulating telomere length.
Collapse
Affiliation(s)
- Eden A Dejene
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Yixuan Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Zahra Showkatian
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Hongbo Ling
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Edward Seto
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA .,George Washington University Cancer Center, Washington, D.C., USA
| |
Collapse
|