1
|
Altunoglu U, Palencia-Campos A, Güneş N, Turgut GT, Nevado J, Lapunzina P, Valencia M, Iturrate A, Otaify G, Elhossini R, Ashour A, K Amin A, Elnahas RF, Fernandez-Nuñez E, Flores CL, Arias P, Tenorio J, Chamorro Fernández CI, Güven Y, Özsu E, Eklioğlu BS, Ibarra-Ramirez M, Diness BR, Burnyte B, Ajmi H, Yüksel Z, Yıldırım R, Ünal E, Abdalla E, Aglan M, Kayserili H, Tuysuz B, Ruiz-Pérez V. Variant characterisation and clinical profile in a large cohort of patients with Ellis-van Creveld syndrome and a family with Weyers acrofacial dysostosis. J Med Genet 2024; 61:633-644. [PMID: 38531627 DOI: 10.1136/jmg-2023-109546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.
Collapse
Affiliation(s)
- Umut Altunoglu
- Medical Genetics Department, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Fatih, Turkey
| | - Adrian Palencia-Campos
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Nilay Güneş
- Cerrahpasa Medical Faculty, Department of Pediatric Genetics, Istanbul Universitesi-Cerrahpasa, Istanbul, Turkey
| | - Gozde Tutku Turgut
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Fatih, Turkey
| | - Julian Nevado
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Maria Valencia
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Asier Iturrate
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Ghada Otaify
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Rasha Elhossini
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Adel Ashour
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Asmaa K Amin
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rania F Elnahas
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Elisa Fernandez-Nuñez
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Carmen-Lisset Flores
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Arias
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Jair Tenorio
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | | | - Yeliz Güven
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Elif Özsu
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Ankara University, Ankara, Turkey
| | - Beray Selver Eklioğlu
- Division of Pediatric Endocrinology, Department of Pediatrics, Necmettin Erbakan University, Konya, Turkey
| | - Marisol Ibarra-Ramirez
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Nuevo Leon, Mexico
| | - Birgitte Rode Diness
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Kobenhavn, Denmark
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Houda Ajmi
- Service de Pédiatrie, Centre Hôspitalier Universitaire (CHU) Sahloul, Sousse, Tunisia
| | - Zafer Yüksel
- Human Genetics Department, Bioscientia Healthcare GmbH, Ingelheim, Germany
| | - Ruken Yıldırım
- Department of Pediatric Endocrinology, Ministry of Health Diyarbakir Children's Hospital, Diyarbakir, Turkey
| | - Edip Ünal
- Department of Pediatric Endocrinology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mona Aglan
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Hulya Kayserili
- Medical Genetics Department, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
| | - Beyhan Tuysuz
- Cerrahpasa Medical Faculty, Department of Pediatric Genetics, Istanbul Universitesi-Cerrahpasa, Istanbul, Turkey
| | - Victor Ruiz-Pérez
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| |
Collapse
|
2
|
León‐Madero LF, Fregoso‐Ron CH, De León‐Carbajal JC, Valdés‐Miranda JM. Mexican patient with Ellis-van Creveld syndrome and cleft palate: Importance of functional hemizygosity and phenotype expansion. Mol Genet Genomic Med 2024; 12:e2451. [PMID: 38760995 PMCID: PMC11101913 DOI: 10.1002/mgg3.2451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Ellis-van Creveld syndrome (EvCS) is a chondroectodermal dysplasia caused by germline pathogenic variants in ciliary complex subunit 1 and 2 genes (EVC, EVC2) on chromosome 4p16.2. This disease has a broad phenotype, and there are few described phenotype-genotype correlations. METHODS Ethical Compliance: Written informed consent was obtained from the parents. Here, we report a genetically confirmed Mexican patient with EvCS having two inherited pathogenic variants in trans in EVC2: c.[1195C>T];[2161delC]. RESULTS This patient allowed a genotypic-phenotypic comparison with another Mexican subject who presented a more attenuated phenotype; furthermore, our patient also presented cleft palate, a rarely reported feature. CONCLUSION Our case shows the importance of comparing functional hemizygosity between patient's phenotypes when they share a variant, and our case also supports the association of alterations in the palate as part of the EvCS phenotype.
Collapse
Affiliation(s)
- Luis Felipe León‐Madero
- Medical Genetics DepartmentHospital General de México Dr. Eduardo LiceagaMexico CityMexico
- Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Cesar Humberto Fregoso‐Ron
- Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Maternal Fetal Medicine DepartmentHospital General de México Dr. Eduardo LiceagaMexico CityMexico
| | | | | |
Collapse
|
3
|
Barbeito P, Martin-Morales R, Palencia-Campos A, Cerrolaza J, Rivas-Santos C, Gallego-Colastra L, Caparros-Martin JA, Martin-Bravo C, Martin-Hurtado A, Sánchez-Bellver L, Marfany G, Ruiz-Perez VL, Garcia-Gonzalo FR. EVC-EVC2 complex stability and ciliary targeting are regulated by modification with ubiquitin and SUMO. Front Cell Dev Biol 2023; 11:1190258. [PMID: 37576597 PMCID: PMC10413113 DOI: 10.3389/fcell.2023.1190258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Ellis van Creveld syndrome and Weyers acrofacial dysostosis are two rare genetic diseases affecting skeletal development. They are both ciliopathies, as they are due to malfunction of primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae and are required for Hedgehog signaling, a key pathway during skeletal morphogenesis. These ciliopathies are caused by mutations affecting the EVC-EVC2 complex, a transmembrane protein heterodimer that regulates Hedgehog signaling from inside primary cilia. Despite the importance of this complex, the mechanisms underlying its stability, targeting and function are poorly understood. To address this, we characterized the endogenous EVC protein interactome in control and Evc-null cells. This proteomic screen confirmed EVC's main known interactors (EVC2, IQCE, EFCAB7), while revealing new ones, including USP7, a deubiquitinating enzyme involved in Hedgehog signaling. We therefore looked at EVC-EVC2 complex ubiquitination. Such ubiquitination exists but is independent of USP7 (and of USP48, also involved in Hh signaling). We did find, however, that monoubiquitination of EVC-EVC2 cytosolic tails greatly reduces their protein levels. On the other hand, modification of EVC-EVC2 cytosolic tails with the small ubiquitin-related modifier SUMO3 has a different effect, enhancing complex accumulation at the EvC zone, immediately distal to the ciliary transition zone, possibly via increased binding to the EFCAB7-IQCE complex. Lastly, we find that EvC zone targeting of EVC-EVC2 depends on two separate EFCAB7-binding motifs within EVC2's Weyers-deleted peptide. Only one of these motifs had been characterized previously, so we have mapped the second herein. Altogether, our data shed light on EVC-EVC2 complex regulatory mechanisms, with implications for ciliopathies.
Collapse
Affiliation(s)
- Pablo Barbeito
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Raquel Martin-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Adrian Palencia-Campos
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan Cerrolaza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Celia Rivas-Santos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Leticia Gallego-Colastra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Jose Antonio Caparros-Martin
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carolina Martin-Bravo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Ana Martin-Hurtado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Laura Sánchez-Bellver
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina—Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
- DBGen Ocular Genomics, Barcelona, Spain
| | - Victor L. Ruiz-Perez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francesc R. Garcia-Gonzalo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
4
|
Aubert-Mucca M, Huber C, Baujat G, Michot C, Zarhrate M, Bras M, Boutaud L, Malan V, Attie-Bitach T, Cormier-Daire V. Ellis-Van Creveld Syndrome: Clinical and Molecular Analysis of 50 Individuals. J Med Genet 2023; 60:337-345. [PMID: 35927022 DOI: 10.1136/jmg-2022-108435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Ellis-Van Creveld (EVC) syndrome is one of the entities belonging to the skeletal ciliopathies short rib-polydactyly subgroup. Major signs are ectodermal dysplasia, chondrodysplasia, polydactyly and congenital cardiopathy, with a high degree of variability in phenotypes ranging from lethal to mild clinical presentations. The EVC and EVC2 genes are the major genes causative of EVC syndrome. However, an increased number of genes involved in the ciliopathy complex have been identified in EVC syndrome, leading to a better understanding of its physiopathology, namely, WDR35, GLI1, DYNC2LI1, PRKACA, PRKACB and SMO. They all code for proteins located in the primary cilia, playing a key role in signal transduction of the Hedgehog pathways. METHODS The aim of this study was the analysis of 50 clinically identified EVC cases from 45 families to further define the phenotype and molecular bases of EVC. RESULTS Our detection rate in the cohort of 45 families was of 91.11%, with variants identified in EVC/EVC2 (77.8%), DYNC2H1 (6.7%), DYNC2LI1 (2.2%), SMO (2.2%) or PRKACB (2.2%). No distinctive feature was remarkable of a specific genotype-phenotype correlation. Interestingly, we identified a high proportion of heterozygous deletions in EVC/EVC2 of variable sizes (26.92%), mostly inherited from the mother, and probably resulting from recombinations involving Alu sequences. CONCLUSION We confirmed that EVC and EVC2 are the major genes involved in the EVC phenotype and highlighted the high prevalence of previously unreported CNVs (Copy Number Variation).
Collapse
Affiliation(s)
- Marion Aubert-Mucca
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Céline Huber
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Genevieve Baujat
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Caroline Michot
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Imagine Institute, Paris, France
| | - Marc Bras
- Bioinformatics Platform, Imagine Institute, Paris, France
| | - Lucile Boutaud
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | - Valérie Malan
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | - Tania Attie-Bitach
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | | | - Valerie Cormier-Daire
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| |
Collapse
|
5
|
Da Silva JD, Soares AR, Fortuna AM, Tkachenko N. Establishing an objective clinical spectrum, genotype-phenotype correlations, and CRMP1 as a modifier in the Ellis-van Creveld syndrome: The first systematic review of EVC- and EVC2-associated conditions. GENETICS IN MEDICINE OPEN 2023; 1:100781. [PMID: 39669252 PMCID: PMC11613718 DOI: 10.1016/j.gimo.2023.100781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 12/14/2024]
Abstract
Purpose Ellis-van Creveld (EVC) syndrome is an autosomal recessive skeletal ciliopathy that was first identified in the Old Order Amish. Since its discovery, two causal genes have been identified, EVC and EVC2, showing that several cases were misdiagnosed and were, in fact, other entities. Nevertheless, there has not been any adequate phenotypic characterization of molecularly defined EVC syndrome so far. Methods We performed a systematic review of case reports of EVC syndrome with molecular confirmation of pathogenic variants in EVC or EVC2. Demographic, genetic, and clinical information of patients was assessed. Results We reviewed 725 papers and obtained 54 case reports/series that met the inclusion criteria, with a total subject sample of 310. Of these, 190 had biallelic variants, whereas 28 were affected heterozygotes. Our analysis revealed new phenotypes that have not been classically linked to the syndrome and others that have been linked but are very rare. Monoallelic symptomatic forms had less expressivity, and biallelic cases were milder if associated with EVC and/or missense variants. Finally, we identified CRMP1, a gene whose coding region partially overlaps with EVC, as a potential genetic modifier of the severity of the EVC syndrome. Conclusion We provided the first objective clinical characterization of molecularly defined EVC syndrome and identified the first associated genetic modifier, CRMP1, which had not been implicated in human disease before.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Ana Rita Soares
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Ana Maria Fortuna
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Nataliya Tkachenko
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| |
Collapse
|
6
|
Wang Z, Zhao S, Zhang L, Yang Q, Cheng C, Ding N, Zhu Z, Shu H, Liu C, Zhao J. A genome-wide association study identifies a new variant associated with word reading fluency in Chinese children. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12833. [PMID: 36514817 PMCID: PMC9994172 DOI: 10.1111/gbb.12833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Reading disability exhibited defects in different cognitive domains, including word reading fluency, word reading accuracy, phonological awareness, rapid automatized naming and morphological awareness. To identify the genetic basis of Chinese reading disability, we conducted a genome-wide association study (GWAS) of the cognitive traits related to Chinese reading disability in 2284 unrelated Chinese children. Among the traits analyzed in the present GWAS, we detected one genome-wide significant association (p < 5 × 10-8 ) on word reading fluency for one SNP on 4p16.2, within EVC genes (rs6446395, p = 7.33 × 10-10 ). Rs6446395 also showed significant association with Chinese character reading accuracy (p = 2.95 × 10-4 ), phonological awareness (p = 7.11 × 10-3 ) and rapid automatized naming (p = 4.71 × 10-3 ), implying multiple effects of this variant. The eQTL data showed that rs6446395 affected EVC expression in the cerebellum. Gene-based analyses identified a gene (PRDM10) to be associated with word reading fluency at the genome-wide level. Our study discovered a new candidate susceptibility variant for reading ability and provided new insights into the genetics of developmental dyslexia in Chinese children.
Collapse
Affiliation(s)
- Zhengjun Wang
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Shunan Zhao
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Liming Zhang
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Qing Yang
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Chen Cheng
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Ning Ding
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Zijian Zhu
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Chunyu Liu
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
- The School of Life SciencesCentral South UniversityChangshaChina
- Department of PsychiatrySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Jingjing Zhao
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| |
Collapse
|
7
|
Calcagni G, Pugnaloni F, Digilio MC, Unolt M, Putotto C, Niceta M, Baban A, Piceci Sparascio F, Drago F, De Luca A, Tartaglia M, Marino B, Versacci P. Cardiac Defects and Genetic Syndromes: Old Uncertainties and New Insights. Genes (Basel) 2021; 12:genes12071047. [PMID: 34356063 PMCID: PMC8307133 DOI: 10.3390/genes12071047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023] Open
Abstract
Recent advances in understanding the genetic causes and anatomic subtypes of cardiac defects have revealed new links between genetic etiology, pathogenetic mechanisms and cardiac phenotypes. Although the same genetic background can result in different cardiac phenotypes, and similar phenotypes can be caused by different genetic causes, researchers’ effort to identify specific genotype–phenotype correlations remains crucial. In this review, we report on recent advances in the cardiac pathogenesis of three genetic diseases: Down syndrome, del22q11.2 deletion syndrome and Ellis–Van Creveld syndrome. In these conditions, the frequent and specific association with congenital heart defects and the recent characterization of the underlying molecular events contributing to pathogenesis provide significant examples of genotype–phenotype correlations. Defining these correlations is expected to improve diagnosis and patient stratification, and it has relevant implications for patient management and potential therapeutic options.
Collapse
Affiliation(s)
- Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
- Correspondence: ; Tel.: +39-06-68594096
| | - Flaminia Pugnaloni
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.N.); (M.T.)
| | - Marta Unolt
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
| | - Carolina Putotto
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.N.); (M.T.)
| | - Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
| | - Francesca Piceci Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (F.P.S.); (A.D.L.)
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (F.P.S.); (A.D.L.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.N.); (M.T.)
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| | - Paolo Versacci
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| |
Collapse
|
8
|
Zaka A, Shahzad S, Rao HZ, Kanwal S, Gul A, Basit S. An intrafamilial phenotypic variability in Ellis-Van Creveld syndrome due to a novel 27 bps deletion mutation. Am J Med Genet A 2021; 185:2888-2894. [PMID: 34037314 DOI: 10.1002/ajmg.a.62360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/22/2021] [Accepted: 05/08/2021] [Indexed: 11/09/2022]
Abstract
Ellis-van Creveld (EvC) syndrome is an autosomal recessive disease, characterized by ectodermal, skeletal, and cardiac anomalies. We report intrafamilial phenotypic variability in three new EvC syndrome cases. Affected males in this study showed only ectodermal abnormalities, whereas an affected female showed the classical presentation of EvC Syndrome, including bilateral postaxial polydactyly of hands and feet, and congenital heart defects. Whole exome sequencing was performed to identify the causative variant, followed by validation and segregation analysis using Sanger sequencing. A homozygous deletion variant (c.731_757del) was identified in exon 6 of the EVC gene (NM_153717.2). The identified variant is considered to be the most likely candidate variant for the EvC syndrome in the family based on previous reports validating the role of EVC variants in the EvC syndrome. The disease correctly segregated in the family members, as all affected members were homozygous, and obligate carriers were heterozygous. Our family is remarkable in highlighting the variable expressivity of the EvC phenotype within the same family, due to a homozygous deletion mutation in the EVC gene. The variable expressivity might be due to the hypomorphic nature of mutation, or the presence of additional variants in modifier genes or in the regulatory regions of the EVC/EVC2 genes.
Collapse
Affiliation(s)
- Ayesha Zaka
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Shaheen Shahzad
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Hadi Zahid Rao
- Department of Oral and Maxillofacial Surgery, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Sadia Kanwal
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Asma Gul
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Sulman Basit
- Department of Pathology, College of Medicine and Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| |
Collapse
|