1
|
Fay CX, Zunica ERM, Awad E, Bradley W, Church C, Liu J, Liu H, Crossman DK, Mobley JA, Kirwan JP, Axelrod CL, Westin E, Kesterson RA, Wallis D. Global proteomics and affinity mass spectrometry analysis of human Schwann cells indicates that variation in and loss of neurofibromin (NF1) alters protein expression and cellular and mitochondrial metabolism. Sci Rep 2025; 15:3883. [PMID: 39890807 PMCID: PMC11785952 DOI: 10.1038/s41598-024-84493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/24/2024] [Indexed: 02/03/2025] Open
Abstract
In efforts to evaluate potential biomarkers and drug targets for Neurofibromatosis Type I (NF1) we utilized affinity mass spectrometry and global proteomics to investigate how variation within and loss of NF1 affect immortalized human Schwann cells. We used Strep tagged mNf1 cDNAs (both wild type (WT) and variant) to affinity purity NF1 Protein-Protein interactors (PPIs) from the Schwann cells. We were able to identify 98 PPIs and show that some of these PPIs bind differentially to variant proteins. Next, we evaluated global proteomes. We identified over 1900 proteins in immortalized human Schwann cells both with and without NF1 expression. We identified 148 proteins with differential expression levels based on genotype. Following Ingenuity Pathway analysis (IPA) we found multiple pathways were altered including decreases in "oxidative phosphorylation," increases in "mitochondrial dysfunction", and "glycolysis", as well as changes in "Myelination Signaling Pathway." When we evaluated the proteome of NF1 null cells stably transfected with tagged mNf1 cDNAs we again identified an overall trend of metabolic differences pertaining to "oxidative phosphorylation", "mitochondria dysfunction", and "glycolysis" in the variant cDNA expressing cells. We then validated differential expression of the following proteins: LAMC1, CYB5R3, and SOD2 that are observed in the altered pathways. Finally, consistent with our proteomics findings, we show that NF1 is required to maintain mitochondrial respiratory function in Schwann cells by stabilizing NADH-linked oxidative phosphorylation and electron transfer. Taken together, these data indicate that NF1 plays a significant role in mitochondrial metabolism that results in proteomic changes in Schwann cells and may serve as a future drug target.
Collapse
Affiliation(s)
- Christian X Fay
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Elias Awad
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - William Bradley
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Cameron Church
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jian Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hui Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Erik Westin
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Bergoug M, Mosrin C, Serrano A, Godin F, Doudeau M, Dundović I, Goffinont S, Normand T, Suskiewicz MJ, Vallée B, Bénédetti H. An Atypical Mechanism of SUMOylation of Neurofibromin SecPH Domain Provides New Insights into SUMOylation Site Selection. J Mol Biol 2024; 436:168768. [PMID: 39216515 DOI: 10.1016/j.jmb.2024.168768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Neurofibromin (Nf1) is a giant multidomain protein encoded by the tumour-suppressor gene NF1. NF1 is mutated in a common genetic disease, neurofibromatosis type I (NF1), and in various cancers. The protein has a Ras-GAP (GTPase activating protein) activity but is also connected to diverse signalling pathways through its SecPH domain, which interacts with lipids and different protein partners. We previously showed that Nf1 partially colocalized with the ProMyelocytic Leukemia (PML) protein in PML nuclear bodies, hotspots of SUMOylation, thereby suggesting the potential SUMOylation of Nf1. Here, we demonstrate that the full-length isoform 2 and a SecPH fragment of Nf1 are substrates of the SUMO pathway and identify a well-defined SUMOylation profile of SecPH with two main modified lysines. One of these sites, K1731, is highly conserved and surface-exposed. Despite the presence of an inverted SUMO consensus motif surrounding K1731, and a potential SUMO-interacting motif (SIM) within SecPH, we show that neither of these elements is necessary for K1731 SUMOylation, which is also independent of Ubc9 SUMOylation on K14. A 3D model of an interaction between SecPH and Ubc9 centred on K1731, combined with site-directed mutagenesis, identifies specific structural elements of SecPH required for K1731 SUMOylation, some of which are affected in reported NF1 pathogenic variants. This work provides a new example of SUMOylation dependent on the tertiary rather than primary protein structure surrounding the modified site, expanding our knowledge of mechanisms governing SUMOylation site selection.
Collapse
Affiliation(s)
- Mohammed Bergoug
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Christine Mosrin
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Fabienne Godin
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Michel Doudeau
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Iva Dundović
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Stephane Goffinont
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Marcin J Suskiewicz
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Affiliated to University of Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France.
| |
Collapse
|
3
|
Chen J, Li Z, Wu Y, Li X, Chen Z, Chen P, Ding Y, Wu C, Hu L. Identification of Pathogenic Missense Mutations of NF1 Using Computational Approaches. J Mol Neurosci 2024; 74:94. [PMID: 39373898 PMCID: PMC11458684 DOI: 10.1007/s12031-024-02271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Neurofibromatosis type 1 (NF1) is a prevalent autosomal dominant disorder caused by mutations in the NF1 gene, leading to multisystem disorders. Given the critical role of cysteine residues in protein stability and function, we aimed to identify key NF1 mutations affecting cysteine residues that significantly contribute to neurofibromatosis pathology. To identify the most critical mutations in the NF1 gene that contribute to the pathology of neurofibromatosis, we employed a sophisticated computational pipeline specifically designed to detect significant mutations affecting the NF1 gene. Our approach involved an exhaustive search of databases such as the Human Gene Mutation Database (HGMD), UniProt, and ClinVar for information on missense mutations associated with NF1. Our search yielded a total of 204 unique cysteine missense mutations. We then employed in silico prediction tools, including PredictSNP, iStable, and Align GVGD, to assess the impact of these mutations. Among the mutations, C379R, R1000C, and C1016Y stood out due to their deleterious effects on the biophysical properties of the neurofibromin protein, significantly destabilizing its structure. These mutations were subjected to further phenotyping analysis using SNPeffect 4.0, which predicted disturbances in the protein's chaperone binding sites and overall structural stability. Furthermore, to directly visualize the impact of these mutations on protein structure, we utilized AlphaFold3 to simulate both the wild-type and mutant NF1 structures, revealing the significant effects of the R1000C mutation on the protein's conformation. In conclusion, the identification of these mutations can play a pivotal role in advancing the field of precision medicine and aid in the development of effective drugs for associated diseases.
Collapse
Affiliation(s)
- Jie Chen
- Department of Respiratory, Hangzhou Children's Hospital, Hangzhou, 310014, Zhejiang Province, China
| | - Ziqiao Li
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yiheng Wu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei Province, China
| | - Xiang Li
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Zipei Chen
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Pan Chen
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Yuhan Ding
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chengpeng Wu
- Liangzhu Laboratory, Zhejiang University, 311121, Hangzhou, China.
| | - Lidan Hu
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China.
| |
Collapse
|
4
|
Chen Y, Fu Y, Koczkowska M, Callens T, Gomes A, Liu J, Bradley W, Brown B, Shaw B, D’Agostino D, Fu C, Wallis D. Genotype-Phenotype Correlation in Neurofibromatosis Type 1: Evidence for a Mild Phenotype Associated with Splicing Variants Leading to In-Frame Skipping of NF1 Exon 24 [19a]. Cancers (Basel) 2024; 16:2406. [PMID: 39001468 PMCID: PMC11240586 DOI: 10.3390/cancers16132406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant neurocutaneous disorder caused by loss-of-function variants in the NF1 gene. As of 20 November 2023, over 5000 distinct pathogenic or likely pathogenic variants have been reported in public databases. However, only a few NF1 genotype-phenotype correlations have been established so far. In this study, we present findings on 40 individuals with NF1, comprising 26 unrelated probands and 14 affected relatives, who carry one of nine NF1 heterozygous pathogenic splicing variants, all of which result in the in-frame skipping of exon 24 [19a] (NM_000267.3:r.3114_3197del, p.Asn1039_Arg1066del). These variants include c.3114-2A>G, c.3114-1G>A, c.3196A>G, c.3197G>A, c.3197G>T, c.3197+1G>A, c.3197+1G>T, c.3197+2T>C, and c.3197+3A>T. Among individuals with these variants, none exhibit externally visible plexiform neurofibromas, histopathologically confirmed cutaneous or subcutaneous neurofibromas, symptomatic spinal neurofibromas, or symptomatic optic pathway gliomas. The most prevalent, and sometimes sole, clinical feature observed in this cohort is multiple café-au-lait macules, with or without skinfold freckles: 85% and 60.5% of the individuals display six or more café-au-lait macules and freckles, respectively. In comparison to established NF1 genotype-phenotype correlations, these patients demonstrate highly similar clinical presentations to those associated with the NF1 pathogenic variant c.2970_2972del (p.Met992del), known for resulting in the mildest clinical features. Despite the generally mild phenotype, cognitive impairment, developmental delay, and/or learning difficulties are still observed in 33.3% of these patients, suggesting that learning challenges remain a prominent aspect of the phenotypic presentation in these individuals and necessitate specialized care. This newly established genotype-phenotype correlation will assist clinicians in improving the management of patients harboring NF1 exon 24 [19a] skipping variants and provide a new therapeutic target for NF1 treatment.
Collapse
Affiliation(s)
- Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Yulong Fu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Magdalena Koczkowska
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
- 3P-Medicine Laboratory, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Tom Callens
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Alicia Gomes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Jian Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - William Bradley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Bryce Brown
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Brandon Shaw
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Daniela D’Agostino
- Division of Medical Genetics, Departments of Medicine and Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Chuanhua Fu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| |
Collapse
|
5
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Functional Assays Combined with Pre-mRNA-Splicing Analysis Improve Variant Classification and Diagnostics for Individuals with Neurofibromatosis Type 1 and Legius Syndrome. Hum Mutat 2023. [DOI: 10.1155/2023/9628049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Neurofibromatosis type 1 (NF1) and Legius syndrome (LS) are caused by inactivating variants in NF1 and SPRED1. NF1 encodes neurofibromin (NF), a GTPase-activating protein (GAP) for RAS that interacts with the SPRED1 product, Sprouty-related protein with an EVH (Ena/Vasp homology) domain 1 (SPRED1). Obtaining a clinical and molecular diagnosis of NF1 or LS can be challenging due to the phenotypic diversity, the size and complexity of the NF1 and SPRED1 loci, and uncertainty over the effects of some NF1 and SPRED1 variants on pre-mRNA splicing and/or protein expression and function. To improve NF1 and SPRED1 variant classification and establish pathogenicity for NF1 and SPRED1 variants identified in individuals with NF1 or LS, we analyzed patient RNA by RT-PCR and performed in vitro exon trap experiments and estimated NF and SPRED1 protein expression, RAS GAP activity, and interaction. We obtained evidence to support pathogenicity according to American College of Medical Genetics guidelines for 73/114 variants tested, demonstrating the utility of functional approaches for NF1 and SPRED1 variant classification and NF and LS diagnostics.
Collapse
|
7
|
Stella A, Lastella P, Viggiano L, Bagnulo R, Resta N. Clinical presentation and genetic analyses of neurofibromatosis type 1 in independent patients with monoallelic double de novo closely spaced mutations in the NF1 gene. Hum Mutat 2022; 43:1354-1360. [PMID: 35723633 PMCID: PMC9540858 DOI: 10.1002/humu.24423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) belongs to RASopathies, a group of syndromes caused by germline mutations in Ras/MAPK pathway genes. Most NF1 patients exhibit single inactivating pathogenic variants within the NF1 gene. We performed extensive genetic analyses in two NF1 families disclosing the first two cases of double de novo monoallelic NF1 variants. Both index patients described in this study had classical NF1. Probands were born from fathers in their late 30s and presented closely spaced double mutations (<100 bp) in NF1 regions showing an excess of somatic mutations. Closely spaced multiple mutations have been reported in RAS/MAPK signaling genes but never in NF1. Mutagenesis is a quasi-random process in humans, therefore two causative variants in the same gene, moreover in the same allele are exceptional. Here, we discuss possible mechanisms for this ultrarare event. Our findings confirm the possibility of a higher risk of concurrent de novo variants in NF1.
Collapse
Affiliation(s)
- Alessandro Stella
- Department of Biomedical Sciences and Human OncologyLaboratory of Medical Genetics, Università di Bari Aldo MoroBariItaly
| | - Patrizia Lastella
- Rare Disease CenterInternal MedicineUnit ‘C. Frugoni’, AOU Policlinico di BariBariItaly
| | - Luigi Viggiano
- Department of BiologyUniversity of Bari Aldo MoroBariItaly
| | - Rosanna Bagnulo
- Department of Biomedical Sciences and Human OncologyLaboratory of Medical Genetics, Università di Bari Aldo MoroBariItaly
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human OncologyLaboratory of Medical Genetics, Università di Bari Aldo MoroBariItaly
| |
Collapse
|
8
|
Leier A, Moore M, Liu H, Daniel M, Hyde AM, Messiaen L, Korf BR, Selvakumaran J, Ciszewski L, Lambert L, Foote J, Wallace MR, Kesterson RA, Dickson G, Popplewell L, Wallis D. Targeted exon skipping of NF1 exon 17 as a therapeutic for neurofibromatosis type I. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:261-278. [PMID: 35433111 PMCID: PMC8983316 DOI: 10.1016/j.omtn.2022.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
Abstract
We investigated the feasibility of utilizing an exon-skipping approach as a genotype-dependent therapeutic for neurofibromatosis type 1 (NF1) by determining which NF1 exons might be skipped while maintaining neurofibromin protein expression and GTPase activating protein (GAP)-related domain (GRD) function. Initial in silico analysis predicted exons that can be skipped with minimal loss of neurofibromin function, which was confirmed by in vitro assessments utilizing an Nf1 cDNA-based functional screening system. Skipping of exons 17 or 52 fit our criteria, as minimal effects on protein expression and GRD activity were noted. Antisense phosphorodiamidate morpholino oligomers (PMOs) were utilized to skip exon 17 in human cell lines with patient-specific pathogenic variants in exon 17, c.1885G>A, and c.1929delG. PMOs restored functional neurofibromin expression. To determine the in vivo significance of exon 17 skipping, we generated a homozygous deletion of exon 17 in a novel mouse model. Mice were viable and exhibited a normal lifespan. Initial studies did not reveal the presence of tumor development; however, altered nesting behavior and systemic lymphoid hyperplasia was noted in peripheral lymphoid organs. Alterations in T and B cell frequencies in the thymus and spleen were identified. Hence, exon skipping should be further investigated as a therapeutic approach for NF1 patients with pathogenic variants in exon 17, as homozygous deletion of exon 17 is consistent with at least partial function of neurofibromin.
Collapse
Affiliation(s)
- André Leier
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Marc Moore
- Centre of Biomedical Science, Department of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Hui Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael Daniel
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexis M. Hyde
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ludwine Messiaen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jamuna Selvakumaran
- Centre of Biomedical Science, Department of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Lukasz Ciszewski
- Centre of Biomedical Science, Department of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Laura Lambert
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Margaret R. Wallace
- Department of Molecular Genetics and Microbiology, and UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - George Dickson
- Centre of Biomedical Science, Department of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Linda Popplewell
- Centre of Biomedical Science, Department of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Awad EK, Moore M, Liu H, Ciszewski L, Lambert L, Korf BR, Popplewell L, Kesterson RA, Wallis D. Restoration of Normal NF1 Function with Antisense Morpholino Treatment of Recurrent Pathogenic Patient-Specific Variant c.1466A>G; p.Y489C. J Pers Med 2021; 11:1320. [PMID: 34945792 PMCID: PMC8705852 DOI: 10.3390/jpm11121320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with almost 3000 different disease-causing variants within the NF1 gene identified. Up to 44% of these variants cause splicing errors to occur within pre-mRNA. A recurrent variant in exon 13, c.1466A>G; p.Y489C (Y489C) results in the creation of an intragenic cryptic splice site, aberrant splicing, a 62 base pair deletion from the mRNA, and subsequent frameshift. We investigated the ability of phosphorodiamidate morpholino oligomers (PMOs) to mask this variant on the RNA level, thus restoring normal splicing. To model this variant, we have developed a human iPS cell line homozygous for the variant using CRISPR/Cas9. PMOs were designed to be 25 base pairs long, and to cover the mutation site so it could not be read by splicing machinery. Results from our in vitro testing showed restoration of normal splicing in the RNA and restoration of full length neurofibromin protein. In addition, we observe the restoration of neurofibromin functionality through GTP-Ras and pERK/ERK testing. The results from this study demonstrate the ability of a PMO to correct splicing errors in NF1 variants at the RNA level, which could open the door for splicing corrections for other variants in this and a variety of diseases.
Collapse
Affiliation(s)
- Elias K. Awad
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| | - Marc Moore
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK; (M.M.); (L.C.); (L.P.)
| | - Hui Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| | - Lukasz Ciszewski
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK; (M.M.); (L.C.); (L.P.)
| | - Laura Lambert
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| | - Linda Popplewell
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK; (M.M.); (L.C.); (L.P.)
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| |
Collapse
|