1
|
Aldosari AN, Aldosari TS. Comprehensive evaluation of the child with global developmental delays or intellectual disability. Clin Exp Pediatr 2024; 67:435-446. [PMID: 38810986 PMCID: PMC11374451 DOI: 10.3345/cep.2023.01697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/07/2024] [Indexed: 05/31/2024] Open
Abstract
Global developmental delay (GDD) and intellectual disability (ID) are relatively common neurodevelopmental disorders that significantly impact affected children, their families, and society. The etiology of GDD/ID is notably diverse, encompassing both genetic and acquired factors. Although the precise cause of most GDD/ID cases remains unclear, an estimated half of all cases can be attributed to genetic factors. Thus, a detailed medical history and comprehensive physical examination remain pivotal for guiding diagnostic investigations into the underlying causes of GDD/ID. Advancements in genetic testing have supplanted traditional methods such as karyotyping and fluorescence in situ hybridization with chromosomal micro arrays, which are now the primary genetic tests for children with idiopathic GDD/ID. Moreover, the evaluation of Fragile X and Rett syndrome should be an integral component of initial diagnostic assessments. In recent years, whole-exome sequencing and whole-genome sequ-encing have emerged as important diagnostic tools for evaluating children with GDD/ID and have substantially enhanced the diagnostic yield rates. Gene therapy has emerged as a promising avenue and is poised to become a cornerstone in addressing various genetic developmental and epilepsy disorders. Early intervention facilitated by a proficient multidisciplinary team can markedly enhance the prognosis and outcomes of GDD/ID, particularly when parents or caregivers are actively engaged in the interventional process. This review discusses risk factors and common underlying causes, explores recent evidence and recommendations for genetic evaluation, and offers management strategies for children with GDD/ID.
Collapse
Affiliation(s)
| | - T Saeed Aldosari
- Department of Special Education, Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Kim J, Lee J, Kim M, Jang DH. Diagnostic Yield of Trio Whole-Genome Sequencing in Children with Undiagnosed Developmental Delay or Congenital Anomaly: A Prospective Cohort Study. Diagnostics (Basel) 2024; 14:1680. [PMID: 39125556 PMCID: PMC11312062 DOI: 10.3390/diagnostics14151680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Developmental delays (DD) and congenital anomalies (CA) are prevalent yet often remain undiagnosed despite comprehensive genetic testing. This study aims to investigate the diagnostic yield of trio whole-genome sequencing (WGS) in children presenting with DD or CA who remained undiagnosed after previous genetic testing. A prospective cohort study was conducted on children with undiagnosed DD or CA at a single tertiary hospital. All participants suspected of genetic conditions had undergone chromosome analysis, chromosome microarray analysis (CMA), and clinical exome sequencing (CES); however, a subset remained undiagnosed. The WGS test was administered to both the affected children and their parents. A total of 52 children were included, and 10 (19.2%) had undergone a genetic diagnosis through WGS. Eight of these cases were associated with autosomal dominant and de novo variants. WGS led to successful diagnosis due to several factors, including small structural variants, genes not covered in the CES panel, the discovery of newly implicated genes, issues related to coverage depth, low variant allele frequency, challenges in variant interpretation, and differences in the interpretation of variants of unknown significance among clinicians. This study highlights the clinical value of trio WGS testing in undiagnosed children with DD or CA. Notably, an additional 19.2% of affected children were diagnosed through this method.
Collapse
Affiliation(s)
- Jaewon Kim
- Department of Physical Medicine and Rehabilitation, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dae-Hyun Jang
- Department of Physical Medicine and Rehabilitation, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Hung KL. Genetic Diagnosis in Children with Developmental Delay. CHILDREN (BASEL, SWITZERLAND) 2024; 11:669. [PMID: 38929248 PMCID: PMC11201514 DOI: 10.3390/children11060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 06/28/2024]
Abstract
Developmental delay (DD) has a great impact on children at the developmental stage, and is often manifested by varying degrees of motor delays, intellectual disabilities, and other defects [...].
Collapse
Affiliation(s)
- Kun-Long Hung
- Department of Pediatrics, Fu-Jen Catholic University Hospital, New Taipei City 243, Taiwan; or ; Tel.: +886-2-8512-8704; Fax: +886-2-2904-6422
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
4
|
Thompson MD, Knaus A. Rare Genetic Developmental Disabilities: Mabry Syndrome (MIM 239300) Index Cases and Glycophosphatidylinositol (GPI) Disorders. Genes (Basel) 2024; 15:619. [PMID: 38790248 PMCID: PMC11121671 DOI: 10.3390/genes15050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
The case report by Mabry et al. (1970) of a family with four children with elevated tissue non-specific alkaline phosphatase, seizures and profound developmental disability, became the basis for phenotyping children with the features that became known as Mabry syndrome. Aside from improvements in the services available to patients and families, however, the diagnosis and treatment of this, and many other developmental disabilities, did not change significantly until the advent of massively parallel sequencing. As more patients with features of the Mabry syndrome were identified, exome and genome sequencing were used to identify the glycophosphatidylinositol (GPI) biosynthesis disorders (GPIBDs) as a group of congenital disorders of glycosylation (CDG). Biallelic variants of the phosphatidylinositol glycan (PIG) biosynthesis, type V (PIGV) gene identified in Mabry syndrome became evidence of the first in a phenotypic series that is numbered HPMRS1-6 in the order of discovery. HPMRS1 [MIM: 239300] is the phenotype resulting from inheritance of biallelic PIGV variants. Similarly, HPMRS2 (MIM 614749), HPMRS5 (MIM 616025) and HPMRS6 (MIM 616809) result from disruption of the PIGO, PIGW and PIGY genes expressed in the endoplasmic reticulum. By contrast, HPMRS3 (MIM 614207) and HPMRS4 (MIM 615716) result from disruption of post attachment to proteins PGAP2 (HPMRS3) and PGAP3 (HPMRS4). The GPI biosynthesis disorders (GPIBDs) are currently numbered GPIBD1-21. Working with Dr. Mabry, in 2020, we were able to use improved laboratory diagnostics to complete the molecular diagnosis of patients he had originally described in 1970. We identified biallelic variants of the PGAP2 gene in the first reported HPMRS patients. We discuss the longevity of the Mabry syndrome index patients in the context of the utility of pyridoxine treatment of seizures and evidence for putative glycolipid storage in patients with HPMRS3. From the perspective of the laboratory innovations made that enabled the identification of the HPMRS phenotype in Dr. Mabry's patients, the need for treatment innovations that will benefit patients and families affected by developmental disabilities is clear.
Collapse
Affiliation(s)
- Miles D. Thompson
- Krembil Brain Institute, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| |
Collapse
|
5
|
Santana Almansa A, Gable DL, Frazier Z, Sveden A, Quinlan A, Chopra M, Lewis SA, Kruer M, Poduri A, Srivastava S. Clinical utility of a genetic diagnosis in individuals with cerebral palsy and related motor disorders. Ann Clin Transl Neurol 2024; 11:251-262. [PMID: 38168508 PMCID: PMC10863912 DOI: 10.1002/acn3.51942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Evaluation of the clinical utility of a genetic diagnosis in CP remains limited. We aimed to characterize the clinical utility of a genetic diagnosis by exome sequencing (ES) in patients with CP and related motor disorders. METHODS We enrolled participants with CP and "CP masquerading" conditions in an institutional ES initiative. In those with genetic diagnoses who had clinical visits to discuss results, we retrospectively reviewed medical charts, evaluating recommendations based on the genetic diagnosis pertaining to medication intervention, surveillance initiation, variant-specific testing, and patient education. RESULTS We included 30 individuals with a molecular diagnosis and clinical follow-up. Nearly all (28 out of 30) had clinical impact resulting from the genetic diagnosis. Medication interventions included recommendation of mitochondrial multivitamin supplementation (6.67%, n = 2), ketogenic diet (3.33%, n = 1), and fasting avoidance (3.33%, n = 1). Surveillance-related actions included recommendations for investigating systemic complications (40%, n = 12); referral to new specialists to screen for systemic manifestations (33%, n = 10); continued follow-up with established specialists to focus on specific manifestations (16.67%, n = 5); referral to clinical genetics (16.67%, n = 5) to oversee surveillance recommendations. Variant-specific actions included carrier testing (10%, n = 3) and testing of potentially affected relatives (3.33%, n = 1). Patient education-specific actions included referral to experts in the genetic disorder (30%, n = 9); and counseling about possible changes in prognosis, including recognition of disease progression and early mortality (36.67%, n = 11). INTERPRETATION This study highlights the clinical utility of a genetic diagnosis for CP and "CP masquerading" conditions, evident by medication interventions, surveillance impact, family member testing, and patient education, including possible prognostic changes.
Collapse
Affiliation(s)
- Alexandra Santana Almansa
- Child Neurology Residency Training ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Dustin L. Gable
- Child Neurology Residency Training ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Zoë Frazier
- Rosamund Stone Zander Translational Neuroscience Center, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Abigail Sveden
- Rosamund Stone Zander Translational Neuroscience Center, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Aisling Quinlan
- Rosamund Stone Zander Translational Neuroscience Center, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Maya Chopra
- Rosamund Stone Zander Translational Neuroscience Center, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBoston Children's HospitalBostonMassachusettsUSA
| | - Sara A. Lewis
- Department of Neurology and PediatricsPhoenix Children's HospitalPhoenixArizonaUSA
| | - Michael Kruer
- Department of Neurology and PediatricsPhoenix Children's HospitalPhoenixArizonaUSA
| | - Annapurna Poduri
- Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBoston Children's HospitalBostonMassachusettsUSA
- Neurogenetics Program and Epilepsy Genetics ProgramBoston Children's HospitalBostonMassachusettsUSA
| | - Siddharth Srivastava
- Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Rosamund Stone Zander Translational Neuroscience Center, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBoston Children's HospitalBostonMassachusettsUSA
- Cerebral Palsy and Spasticity CenterBoston Children's HospitalBostonMassachusettsUSA
| |
Collapse
|
6
|
Guo F, Liu R, Pan Y, Collins C, Bean L, Ma Z, Mathur A, Da Silva C, Nallamilli B, Guruju N, Chen-Deutsch X, Yousaf R, Chin E, Balciuniene J, Hegde M. Evidence from 2100 index cases supports genome sequencing as a first-tier genetic test. Genet Med 2024; 26:100995. [PMID: 37838930 DOI: 10.1016/j.gim.2023.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
PURPOSE Genome sequencing (GS) is one of the most comprehensive assays that interrogate single-nucleotide variants, copy number variants, mitochondrial variants, repeat expansions, and structural variants in a single assay. Despite the clear technical superiority, the full clinical utility of GS has yet to be determined. METHODS We systematically evaluated 2100 clinical GS index cases performed in our laboratory to explore the diagnostic yield of GS as first-tier and as follow-up testing. RESULTS The overall diagnostic yield was 28% (585/2100). The diagnostic yield for GS as the first-tier test was 26% (294/1146). Among cases with prior non-diagnostic genetic tests, GS provided a diagnosis for 27% (247/910) of cases, including 56 cases with prior exome sequencing (ES). Although re-analysis of previous ES might have resolved the diagnosis in 29 cases, diagnoses for 27 cases would have been missed because of the technical inferiority of ES. Moreover, GS further disclosed additional genetic etiology in 3 out of 44 cases with existing partial diagnosis. CONCLUSION We present the largest-to-date GS data set of a clinically heterogeneous cohort from a single clinical laboratory. Our data demonstrate that GS should be considered as the first-tier genetic test that has the potential to shorten the diagnostic odyssey.
Collapse
Affiliation(s)
- Fen Guo
- Revvity Omics, Pittsburgh, PA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Riquin K, Isidor B, Mercier S, Nizon M, Colin E, Bonneau D, Pasquier L, Odent S, Le Guillou Horn XM, Le Guyader G, Toutain A, Meyer V, Deleuze JF, Pichon O, Doco-Fenzy M, Bézieau S, Cogné B. Integrating RNA-Seq into genome sequencing workflow enhances the analysis of structural variants causing neurodevelopmental disorders. J Med Genet 2023; 61:47-56. [PMID: 37495270 DOI: 10.1136/jmg-2023-109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Molecular diagnosis of neurodevelopmental disorders (NDDs) is mainly based on exome sequencing (ES), with a diagnostic yield of 31% for isolated and 53% for syndromic NDD. As sequencing costs decrease, genome sequencing (GS) is gradually replacing ES for genome-wide molecular testing. As many variants detected by GS only are in deep intronic or non-coding regions, the interpretation of their impact may be difficult. Here, we showed that integrating RNA-Seq into the GS workflow can enhance the analysis of the molecular causes of NDD, especially structural variants (SVs), by providing valuable complementary information such as aberrant splicing, aberrant expression and monoallelic expression. METHODS We performed trio-GS on a cohort of 33 individuals with NDD for whom ES was inconclusive. RNA-Seq on skin fibroblasts was then performed in nine individuals for whom GS was inconclusive and optical genome mapping (OGM) was performed in two individuals with an SV of unknown significance. RESULTS We identified pathogenic or likely pathogenic variants in 16 individuals (48%) and six variants of uncertain significance. RNA-Seq contributed to the interpretation in three individuals, and OGM helped to characterise two SVs. CONCLUSION Our study confirmed that GS significantly improves the diagnostic performance of NDDs. However, most variants detectable by GS alone are structural or located in non-coding regions, which can pose challenges for interpretation. Integration of RNA-Seq data overcame this limitation by confirming the impact of variants at the transcriptional or regulatory level. This result paves the way for new routinely applicable diagnostic protocols.
Collapse
Affiliation(s)
- Kevin Riquin
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
| | - Bertrand Isidor
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Sandra Mercier
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Mathilde Nizon
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Estelle Colin
- CHU Angers, Service de Génétique médicale, Angers, France
- UMR CNRS 6214-INSERM 1083, Université d'Angers, Angers, France
| | - Dominique Bonneau
- CHU Angers, Service de Génétique médicale, Angers, France
- UMR CNRS 6214-INSERM 1083, Université d'Angers, Angers, France
| | | | - Sylvie Odent
- Service de Génétique Clinique, ERN ITHACA, Rennes, France
- Institut de Génétique et Développement de Rennes, IGDR UMR 6290 CNRS, INSERM, IGDR Univ Rennes, Rennes, France
| | - Xavier Maximin Le Guillou Horn
- Service de génétique médicale, CHU de Poitiers, Poitiers, France
- LabCom I3M-Dactim mis/LMA CNRS 7348, Université de Poitiers, Poitiers, France
| | | | - Annick Toutain
- UF de Génétique Médicale, Centre Hospitalier Universitaire, Tours, France
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | - Olivier Pichon
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Martine Doco-Fenzy
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Stéphane Bézieau
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Benjamin Cogné
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| |
Collapse
|
8
|
Kim J, Lee J, Jang DH. Combining chromosomal microarray and clinical exome sequencing for genetic diagnosis of intellectual disability. Sci Rep 2023; 13:22807. [PMID: 38129582 PMCID: PMC10739828 DOI: 10.1038/s41598-023-50285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Despite the current widespread use of chromosomal microarray analysis (CMA) and exome/genome sequencing for the genetic diagnosis of unexplained intellectual disability (ID) in children, gaining improved diagnostic yields and defined guidelines remains a significant challenge. This is a cohort study of children with unexplained ID. We analyzed the diagnostic yield and its correlation to clinical phenotypes in children with ID who underwent concurrent CMA and clinical exome sequencing (CES). A total of 154 children were included (110 [71.4%] male; mean [SD] age, 51.9 [23.1] months). The overall diagnosis yield was 26.0-33.8%, with CMA contributing 12.3-14.3% and CES contributing 13.6-19.4%, showing no significant difference. The diagnostic rate was significantly higher when gross motor delay (odds ratio, 6.69; 95% CI, 3.20-14.00; P < 0.001), facial dysmorphism (odds ratio, 9.34; 95% CI 4.29-20.30; P < 0.001), congenital structural anomaly (odds ratio 3.62; 95% CI 1.63-8.04; P = 0.001), and microcephaly or macrocephaly (odds ratio 4.87; 95% CI 2.05-11.60; P < 0.001) were presented. Patients with only ID without any other concomitant phenotype (63/154, 40.9%) exhibited a 6.3-11.1% diagnostic rate.
Collapse
Affiliation(s)
- Jaewon Kim
- Department of Physical Medicine and Rehabilitation, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Medical Genetics and Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Medical Genetics and Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae-Hyun Jang
- Department of Physical Medicine and Rehabilitation, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Medical Genetics and Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Tesi B, Boileau C, Boycott KM, Canaud G, Caulfield M, Choukair D, Hill S, Spielmann M, Wedell A, Wirta V, Nordgren A, Lindstrand A. Precision medicine in rare diseases: What is next? J Intern Med 2023; 294:397-412. [PMID: 37211972 DOI: 10.1111/joim.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.
Collapse
Affiliation(s)
- Bianca Tesi
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Catherine Boileau
- Département de Génétique, APHP, Hôpital Bichat-Claude Bernard, Université Paris Cité, Paris, France
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Guillaume Canaud
- INSERM U1151, Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, Université Paris Cité, AP-HP, Paris, France
| | - Mark Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Daniela Choukair
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sue Hill
- Chief Scientific Officer, NHS England, London, UK
| | - Malte Spielmann
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institutet of Technology, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Kumar RD, Saba LF, Streff H, Shaw CA, Mizerik E, Snyder MT, Lopez-Terrada D, Scull J. Clinical genome sequencing: Three years' experience at a tertiary children's hospital. Genet Med 2023; 25:100916. [PMID: 37334785 DOI: 10.1016/j.gim.2023.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023] Open
Abstract
PURPOSE Genome sequencing (GS) may shorten the diagnostic odyssey for patients, but clinical experience with this assay in nonresearch settings remains limited. Texas Children's Hospital began offering GS as a clinical test to admitted patients in 2020, providing an opportunity to study GS utilization, possibilities for test optimization, and testing outcomes. METHODS We retrospectively reviewed GS orders for admitted patients for a nearly 3-year period from March 2020 through December 2022. We gathered anonymized clinical data from the electronic health record to answer the study questions. RESULTS The diagnostic yield over 97 admitted patients was 35%. The majority of GS clinical indications were neurologic or metabolic (61%) and most patients were in intensive care (58%). Tests were often characterized as candidates for intervention/improvement (56%), frequently because of redundancy with prior testing. Patients receiving GS without prior exome sequencing (ES) had higher diagnostic rates (45%) than the cohort as a whole. In 2 cases, GS revealed a molecular diagnosis that is unlikely to be detected by ES. CONCLUSION The performance of GS in clinical settings likely justifies its use as a first-line diagnostic test, but the incremental benefit for patients with prior ES may be limited.
Collapse
Affiliation(s)
- Runjun D Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX.
| | - Lisa F Saba
- Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Statistics, Rice University, Houston, TX
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Matthew T Snyder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Department of Pathology, Texas Children's Hospital, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jennifer Scull
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Department of Pathology, Texas Children's Hospital, Houston, TX.
| |
Collapse
|
11
|
Liang Y, Gao X, Lu D, Zhang H, Zhang. Mucopolysaccharidosis type IIIC in chinese mainland: clinical and molecular characteristics of ten patients and report of six novel variants in the HGSNAT gene. Metab Brain Dis 2023; 38:2013-2023. [PMID: 37014526 DOI: 10.1007/s11011-023-01204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Mucopolysaccharidosis type IIIC (MPS IIIC; Sanfilippo syndrome C) is a rare lysosomal storage disease caused by mutations in the heparan-α-glucosaminide N-acetyltransferase (HGSNAT) gene, resulting in the accumulation of heparan sulfate. MPS IIIC is characterized by severe neuropsychiatric symptoms and mild somatic symptoms. METHODS Our study analyzed the clinical presentation and biochemical characteristics of ten Chinese MPS IIIC patients from eight families. Whole exome sequencing was applied to identify the variants in HGSNAT gene. In one patient with only one mutant allele identified firstly, whole genome sequencing was applied. The pathogenic effect of novel variants was evaluated in silico. RESULTS The mean age at the onset of clinical symptoms was 4.2 ± 2.5 years old, and the mean age of diagnosis was 7.6 ± 4.5 years old, indicating a delay of diagnosis. The most common onset symptoms were speech deterioration, and the most frequent presenting symptoms are speech deterioration, mental deterioration, hyperactivity and hepatomegaly, sequentially. All mutant alleles of 10 patients have been identified. There were eleven different HGSNAT variants, and the most common one was a previously reported variant c.493 + 1G > A. There were six novel variants, p.R124T, p.G290A, p.G426E, c.743 + 101_743 + 102delTT, c.851 + 171T > A and p.V582Yfs*18 in our cohort. Extraordinarily, two deep intron variants were identified in our cohort, with the variant c.851 + 171T > A identified by whole genome sequencing. CONCLUSION This study analyzed the clinical, biochemical, and genetic characteristics of ten Chinese MPS IIIC patients, which would assist in the early diagnosis and genetic counselling of MPS IIIC.
Collapse
Affiliation(s)
- Yingjun Liang
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665 #, Shanghai, 200092, China
| | - Xiaolan Gao
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665 #, Shanghai, 200092, China
| | - Deyun Lu
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665 #, Shanghai, 200092, China
| | - Huiwen Zhang
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665 #, Shanghai, 200092, China.
| | - Zhang
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665 #, Shanghai, 200092, China
| |
Collapse
|
12
|
Zion TN, Berrios CD, Cohen ASA, Bartik L, Cross LA, Engleman KL, Fleming EA, Gadea RN, Hughes SS, Jenkins JL, Kussmann J, Lawson C, Schwager C, Strenk ME, Welsh H, Rush ET, Amudhavalli SM, Sullivan BR, Zhou D, Gannon JL, Heese BA, Moore R, Boillat E, Biswell RL, Louiselle DA, Puckett LMB, Beyer S, Neal SH, Sierant V, McBeth M, Belden B, Walter AM, Gibson M, Cheung WA, Johnston JJ, Thiffault I, Farrow EG, Grundberg E, Pastinen T. Insurance denials and diagnostic rates in a pediatric genomic research cohort. Genet Med 2023; 25:100020. [PMID: 36718845 PMCID: PMC10584034 DOI: 10.1016/j.gim.2023.100020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/29/2023] Open
Abstract
PURPOSE This study aimed to assess the amount and types of clinical genetic testing denied by insurance and the rate of diagnostic and candidate genetic findings identified through research in patients who faced insurance denials. METHODS Analysis consisted of review of insurance denials in 801 patients enrolled in a pediatric genomic research repository with either no previous genetic testing or previous negative genetic testing result identified through cross-referencing with insurance prior-authorizations in patient medical records. Patients and denials were also categorized by type of insurance coverage. Diagnostic findings and candidate genetic findings in these groups were determined through review of our internal variant database and patient charts. RESULTS Of the 801 patients analyzed, 147 had insurance prior-authorization denials on record (18.3%). Exome sequencing and microarray were the most frequently denied genetic tests. Private insurance was significantly more likely to deny testing than public insurance (odds ratio = 2.03 [95% CI = 1.38-2.99] P = .0003). Of the 147 patients with insurance denials, 53.7% had at least 1 diagnostic or candidate finding and 10.9% specifically had a clinically diagnostic finding. Fifty percent of patients with clinically diagnostic results had immediate medical management changes (5.4% of all patients experiencing denials). CONCLUSION Many patients face a major barrier to genetic testing in the form of lack of insurance coverage. A number of these patients have clinically diagnostic findings with medical management implications that would not have been identified without access to research testing. These findings support re-evaluation of insurance carriers' coverage policies.
Collapse
Affiliation(s)
- Tricia N Zion
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO; Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO.
| | - Courtney D Berrios
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Ana S A Cohen
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Lauren Bartik
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; University of Kansas Medical Center, School of Professional Health Sciences, Kansas City, MO
| | - Laura A Cross
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Kendra L Engleman
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Emily A Fleming
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Randi N Gadea
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Susan S Hughes
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Janda L Jenkins
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO; Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Jennifer Kussmann
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Caitlin Lawson
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Caitlin Schwager
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Meghan E Strenk
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Holly Welsh
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Eric T Rush
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO
| | - Shivarajan M Amudhavalli
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Dihong Zhou
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Jennifer L Gannon
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Bryce A Heese
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Riley Moore
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Emelia Boillat
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Rebecca L Biswell
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Daniel A Louiselle
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Laura M B Puckett
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Shanna Beyer
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Shelby H Neal
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Victoria Sierant
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Macy McBeth
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Bradley Belden
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Adam M Walter
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Margaret Gibson
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Warren A Cheung
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Jeffrey J Johnston
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Isabelle Thiffault
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Emily G Farrow
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Elin Grundberg
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Tomi Pastinen
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| |
Collapse
|
13
|
Wu Y, Liu F, Wan R, Jiao B. A novel SETD2 variant causing global development delay without overgrowth in a Chinese 3-year-old boy. Front Genet 2023; 14:1153284. [PMID: 37025455 PMCID: PMC10072282 DOI: 10.3389/fgene.2023.1153284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Luscan-Lumish syndrome is characterized by macrocephaly, postnatal overgrowth, intellectual disability (ID), developmental delay (DD), which is caused by heterozygous SETD2 (SET domain containing 2) mutations. The incidence of Luscan-Lumish syndrome is unclear. The study was conducted to provide a novel pathogenic SETD2 variant causing atypical Luscan-Lumish syndrome and review all the published SETD2 mutations and corresponding symptoms, comprehensively understanding the phenotypes and genotypes of SETD2 mutations. Methods: Peripheral blood samples of the proband and his parents were collected for next-generation sequencing including whole-exome sequencing (WES), copy number variation (CNV) detection and mitochondrial DNA sequencing. Identified variant was verified by Sanger sequencing. Conservative analysis and structural analysis were performed to investigate the effect of mutation. Public databases such as PubMed, Clinvar and Human Gene Mutation Database (HGMD) were used to collect all cases with SETD2 mutations. Results: A novel pathogenic SETD2 variant (c.5835_c.5836insAGAA, p. A1946Rfs*2) was identified in a Chinese 3-year-old boy, who had speech and motor delay without overgrowth. Conservative analysis and structural analysis showed that the novel pathogenic variant would loss the conserved domains in the C-terminal region and result in loss of function of SETD2 protein. Frameshift mutations and non-sense mutations account for 68.5% of the total 51 SETD2 point mutations, suggesting that Luscan-Lumish syndrome is likely due to loss of function of SETD2. But we failed to find an association between genotype and phenotype of SETD2 mutations. Conclusion: Our findings expand the genotype-phenotype knowledge of SETD2-associated neurological disorder and provide new evidence for further genetic counselling.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Reproduction and Genetics, Bethune International Peace Hospital, Shijiazhuang, China
| | - Fang Liu
- Department of Pediatrics, Bethune International Peace Hospital, Shijiazhuang, China
| | - Ruihua Wan
- Department of Pediatrics, Bethune International Peace Hospital, Shijiazhuang, China
| | - Baoquan Jiao
- Department of Reproduction and Genetics, Bethune International Peace Hospital, Shijiazhuang, China
| |
Collapse
|
14
|
Genome-Wide Sequencing Modalities for Children with Unexplained Global Developmental Delay and Intellectual Disabilities—A Narrative Review. CHILDREN 2023; 10:children10030501. [PMID: 36980059 PMCID: PMC10047410 DOI: 10.3390/children10030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Unexplained global developmental delay (GDD) and intellectual disabilities (ID) together affect nearly 2% of the pediatric population. Establishing an etiologic diagnosis is crucial for disease management, prognostic evaluation, and provision of physical and psychological support for both the patient and the family. Advancements in genome sequencing have allowed rapid accumulation of gene–disorder associations and have accelerated the search for an etiologic diagnosis for unexplained GDD/ID. We reviewed recent studies that utilized genome-wide analysis technologies, and we discussed their diagnostic yield, strengths, and limitations. Overall, exome sequencing (ES) and genome sequencing (GS) outperformed chromosomal microarrays and targeted panel sequencing. GS provides coverage for both ES and chromosomal microarray regions, providing the maximal diagnostic potential, and the cost of ES and reanalysis of ES-negative results is currently still lower than that of GS alone. Therefore, singleton or trio ES is the more cost-effective option for the initial investigation of individuals with GDD/ID in clinical practice compared to a staged approach or GS alone. Based on these updated evidence, we proposed an evaluation algorithm with ES as the first-tier evaluation for unexplained GDD/ID.
Collapse
|
15
|
Evaluation of Individuals with Non-Syndromic Global Developmental Delay and Intellectual Disability. CHILDREN 2023; 10:children10030414. [PMID: 36979972 PMCID: PMC10047567 DOI: 10.3390/children10030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Global Developmental Delay (GDD) and Intellectual Disability (ID) are two of the most common presentations encountered by physicians taking care of children. GDD/ID is classified into non-syndromic GDD/ID, where GDD/ID is the sole evident clinical feature, or syndromic GDD/ID, where there are additional clinical features or co-morbidities present. Careful evaluation of children with GDD and ID, starting with detailed history followed by a thorough examination, remain the cornerstone for etiologic diagnosis. However, when initial history and examination fail to identify a probable underlying etiology, further genetic testing is warranted. In recent years, genetic testing has been shown to be the single most important diagnostic modality for clinicians evaluating children with non-syndromic GDD/ID. In this review, we discuss different genetic testing currently available, review common underlying copy-number variants and molecular pathways, explore the recent evidence and recommendations for genetic evaluation and discuss an approach to the diagnosis and management of children with non-syndromic GDD and ID.
Collapse
|