1
|
Kayser KC, Puig VA, Estepp JR. Predicting and mitigating fatigue effects due to sleep deprivation: A review. Front Neurosci 2022; 16:930280. [PMID: 35992930 PMCID: PMC9389006 DOI: 10.3389/fnins.2022.930280] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023] Open
Abstract
The deleterious effects of insufficient sleep have been well-established in the literature and can lead to a wide range of adverse health outcomes. Some of the most replicated findings demonstrate significant declines in cognitive functions such as vigilance and executive attention, psychomotor and cognitive speed, and working memory. Consequently, these decrements often lead individuals who are in a fatigued state to engage in substandard performance on everyday tasks. In the interest of curtailing these effects, prior work has attempted to identify mechanisms that predict fatigue onset and develop techniques to mitigate its negative consequences. Nonetheless, these results are often confounded by variables such as an individual’s resistance to fatigue, sleep history, and unclear distinctions about whether certain performance decrements are present due to fatigue or due to other confounding factors. Similar areas of research have provided approaches to produce models for the prediction of cognitive performance decrements due to fatigue through the use of multi-modal recording and analysis of fatigue-related responses. Namely, gathering and combining response information from multiple sources (i.e., physiological and behavioral) at multiple timescales may provide a more comprehensive representation of what constitutes fatigue onset in the individual. Therefore, the purpose of this review is to discuss the relevant literature on the topic of fatigue-related performance effects with a special emphasis on a variety of physiological and behavioral response variables that have shown to be sensitive to changes in fatigue. Furthermore, an increasing reliance on sleep loss, meant to assist in meeting the demands of modern society, has led to an upsurge in the relevance of identifying dependable countermeasures for fatigued states. As such, we will also review methods for the mitigation of performance effects due to fatigue and discuss their usefulness in regulating these effects. In sum, this review aims to inspire future work that will create opportunities to detect fatigue and mitigate its effects prior to the onset of cognitive impairments.
Collapse
Affiliation(s)
- Kylie C. Kayser
- Air Force Research Laboratory, Oak Ridge Institute for Science and Education, Wright-Patterson AFB, OH, United States
| | - Vannia A. Puig
- Air Force Research Laboratory, Oak Ridge Institute for Science and Education, Wright-Patterson AFB, OH, United States
| | - Justin R. Estepp
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- *Correspondence: Justin R. Estepp,
| |
Collapse
|
2
|
Abstract
OBJECTIVE We aimed to understand the association between MW frequency and clinical measures, context regulation of MW and group differences in task performance. METHOD 27 adults with ADHD and 29 controls performed tasks manipulating demand on working memory and sustained attention, and recorded their MW frequency using probes. RESULTS A significant association between MW frequency and the clinical measures was demonstrated. Along with increased MW frequency, individuals with ADHD reported decreasing MW frequency during increasing demands on working memory (context regulation), but not on sustained attention (deficient context regulation). Controls, however, maintained continuous task focus across all conditions. Group differences in task performance were no longer significant after adding MW frequency as a covariate. CONCLUSION Deficient context regulation during increasing demands on sustained attention suggests that sustained attention deficits may play a more important role in regulation of MW in ADHD. MW frequency might also underpin performance deficits in ADHD.
Collapse
Affiliation(s)
- Natali Bozhilova
- King’s College London, De
Crespigny Park, UK,Natali Bozhilova, Social, Genetic
and Developmental Psychiatry Centre, Institute of Psychiatry,
Psychology and Neuroscience, King’s College London, De Crespigny Park,
London SE5 8AF, UK.
| | - Giorgia Michelini
- King’s College London, De
Crespigny Park, UK,University of California Los
Angeles, USA
| | | | | | - Katya Rubia
- King’s College London, De
Crespigny Park, UK
| | - Philip Asherson
- King’s College London, De
Crespigny Park, UK,Natali Bozhilova, Social, Genetic
and Developmental Psychiatry Centre, Institute of Psychiatry,
Psychology and Neuroscience, King’s College London, De Crespigny Park,
London SE5 8AF, UK.
| |
Collapse
|
3
|
An Alzheimer Disease Challenge Model: 24-Hour Sleep Deprivation in Healthy Volunteers, Impact on Working Memory, and Reversal Effect of Pharmacological Intervention: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. J Clin Psychopharmacol 2021; 40:222-230. [PMID: 32332458 DOI: 10.1097/jcp.0000000000001199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE/BACKGROUND Alzheimer disease (AD) is a public health issue because of the low number of symptomatic drugs and the difficulty to diagnose it at the prodromal stage. The need to develop new treatments and to validate sensitive tests for early diagnosis could be met by developing a challenge model reproducing cognitive impairments of AD. Therefore, we implemented a 24-hour sleep deprivation (SD) design on healthy volunteers in a randomized, double-blind, placebo-controlled, crossover study on 36 healthy volunteers. METHODS/PROCEDURE To validate the SD model, cognitive tests were chosen to assess a transient worsening of cognitive functions after SD and a restoration under modafinil as positive control (one dose of 200 mg). Then, the same evaluations were replicated after 15 days of donepezil (5 mg/d) or memantine (10 mg/d). The working memory (WM) function was assessed by the N-back task and the rapid visual processing (RVP) task. FINDINGS/RESULTS The accuracy of the N-back task and the reaction time of the RVP revealed the alteration of the WM with SD and its restoration with modafinil (changes in score after SD compared with baseline before SD), respectively, in the placebo group and in the modafinil group (-0.2% and +1.0% of satisfactory answers, P = 0.022; +21.3 and +1.9 milliseconds of reaction time, P = 0.025). Alzheimer disease drugs also tended to reverse this deterioration: the accuracy of the N-back task was more stable through SD (compared with -3.0% in the placebo group, respectively, in the memantine group and in the donepezil group: -1.4% and -1.6%, P = 0.027 and P = 0.092) and RVP reaction time was less impacted (compared with +41.3 milliseconds in the placebo group, respectively, in the memantine group and in the donepezil group: +16.1 and +29.3 milliseconds, P = 0.034 and P = 0.459). IMPLICATIONS/CONCLUSIONS Our SD challenge model actually led to a worsening of WM that was moderated by both modafinil and AD drugs. To use this approach, the cognitive battery, the vulnerability of the subjects to SD, and the expected drug effect should be carefully considered.
Collapse
|
4
|
Lombardo D, Cassé-Perrot C, Ranjeva JP, Le Troter A, Guye M, Wirsich J, Payoux P, Bartrés-Faz D, Bordet R, Richardson JC, Felician O, Jirsa V, Blin O, Didic M, Battaglia D. Modular slowing of resting-state dynamic functional connectivity as a marker of cognitive dysfunction induced by sleep deprivation. Neuroimage 2020; 222:117155. [PMID: 32736002 DOI: 10.1016/j.neuroimage.2020.117155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Dynamic Functional Connectivity (dFC) in the resting state (rs) is considered as a correlate of cognitive processing. Describing dFC as a flow across morphing connectivity configurations, our notion of dFC speed quantifies the rate at which FC networks evolve in time. Here we probe the hypothesis that variations of rs dFC speed and cognitive performance are selectively interrelated within specific functional subnetworks. In particular, we focus on Sleep Deprivation (SD) as a reversible model of cognitive dysfunction. We found that whole-brain level (global) dFC speed significantly slows down after 24h of SD. However, the reduction in global dFC speed does not correlate with variations of cognitive performance in individual tasks, which are subtle and highly heterogeneous. On the contrary, we found strong correlations between performance variations in individual tasks -including Rapid Visual Processing (RVP, assessing sustained visual attention)- and dFC speed quantified at the level of functional sub-networks of interest. Providing a compromise between classic static FC (no time) and global dFC (no space), modular dFC speed analyses allow quantifying a different speed of dFC reconfiguration independently for sub-networks overseeing different tasks. Importantly, we found that RVP performance robustly correlates with the modular dFC speed of a characteristic frontoparietal module.
Collapse
Affiliation(s)
- Diego Lombardo
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, 13005, Marseille, France
| | - Catherine Cassé-Perrot
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, 13005, Marseille, France; Service de Pharmacologie Clinique et Pharmacovigilance, AP-HM, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique et Biologique et Médicale (CRMBM, 7339), Medical School of Marseille, 13005, Marseille, France; Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Pôle d'Imagerie Médicale, CHU, 13005, Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique et Biologique et Médicale (CRMBM, 7339), Medical School of Marseille, 13005, Marseille, France; Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Pôle d'Imagerie Médicale, CHU, 13005, Marseille, France
| | - Maxime Guye
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique et Biologique et Médicale (CRMBM, 7339), Medical School of Marseille, 13005, Marseille, France; Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Pôle d'Imagerie Médicale, CHU, 13005, Marseille, France
| | - Jonathan Wirsich
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique et Biologique et Médicale (CRMBM, 7339), Medical School of Marseille, 13005, Marseille, France
| | - Pierre Payoux
- UMR 825 Inserm, Imagerie Cérébrale et Handicaps Neurologiques, Université Toulouse III Paul Sabatier, Toulouse, France
| | - David Bartrés-Faz
- Department of Psychiatry and Clinical Psychobiology, Faculty of Medicine, University of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | - Régis Bordet
- U1171 Inserm, CHU Lille, Degenerative and Vascular Cognitive Disorders, University of Lille, Lille, France
| | - Jill C Richardson
- Neurosciences Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, UK
| | - Olivier Felician
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, 13005, Marseille, France; APHM, Timone, Service de Neurologie et Neuropsychologie, Hôpital Timone Adultes, Marseille, France
| | - Viktor Jirsa
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, 13005, Marseille, France
| | - Olivier Blin
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, 13005, Marseille, France; Service de Pharmacologie Clinique et Pharmacovigilance, AP-HM, France
| | - Mira Didic
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, 13005, Marseille, France; APHM, Timone, Service de Neurologie et Neuropsychologie, Hôpital Timone Adultes, Marseille, France
| | - Demian Battaglia
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, 13005, Marseille, France.
| |
Collapse
|
5
|
Emch M, Ripp I, Wu Q, Yakushev I, Koch K. Neural and Behavioral Effects of an Adaptive Online Verbal Working Memory Training in Healthy Middle-Aged Adults. Front Aging Neurosci 2019; 11:300. [PMID: 31736741 PMCID: PMC6838657 DOI: 10.3389/fnagi.2019.00300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Neural correlates of working memory (WM) training remain a matter of debate, especially in older adults. We used functional magnetic resonance imaging (fMRI) together with an n-back task to measure brain plasticity in healthy middle-aged adults following an 8-week adaptive online verbal WM training. Participants performed 32 sessions of this training on their personal computers. In addition, we assessed direct effects of the training by applying a verbal WM task before and after the training. Participants (mean age 55.85 ± 4.24 years) were pseudo-randomly assigned to the experimental group (n = 30) or an active control group (n = 27). Training resulted in an activity decrease in regions known to be involved in verbal WM (i.e., fronto-parieto-cerebellar circuitry and subcortical regions), indicating that the brain became potentially more efficient after the training. These activation decreases were associated with a significant performance improvement in the n-back task inside the scanner reflecting considerable practice effects. In addition, there were training-associated direct effects in the additional, external verbal WM task (i.e., HAWIE-R digit span forward task), and indicating that the training generally improved performance in this cognitive domain. These results led us to conclude that even at advanced age cognitive training can improve WM capacity and increase neural efficiency in specific regions or networks.
Collapse
Affiliation(s)
- Mónica Emch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Isabelle Ripp
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Qiong Wu
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Igor Yakushev
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| |
Collapse
|
6
|
Brain Networks are Independently Modulated by Donepezil, Sleep, and Sleep Deprivation. Brain Topogr 2017; 31:380-391. [PMID: 29170853 DOI: 10.1007/s10548-017-0608-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023]
Abstract
Resting-state connectivity has been widely studied in the healthy and pathological brain. Less well-characterized are the brain networks altered during pharmacological interventions and their possible interaction with vigilance. In the hopes of finding new biomarkers which can be used to identify cortical activity and cognitive processes linked to the effects of drugs to treat neurodegenerative diseases such as Alzheimer's disease, the analysis of networks altered by medication would be particularly interesting. Eleven healthy subjects were recruited in the context of the European Innovative Medicines Initiative 'PharmaCog'. Each underwent five sessions of simultaneous EEG-fMRI in order to investigate the effects of donepezil and memantine before and after sleep deprivation (SD). The SD approach has been previously proposed as a model for cognitive impairment in healthy subjects. By applying network based statistics (NBS), we observed altered brain networks significantly linked to donepezil intake and sleep deprivation. Taking into account the sleep stages extracted from the EEG data we revealed that a network linked to sleep is interacting with sleep deprivation but not with medication intake. We successfully extracted the functional resting-state networks modified by donepezil intake, sleep and SD. We observed donepezil induced whole brain connectivity alterations forming a network separated from the changes induced by sleep and SD, a result which shows the utility of this approach to check for the validity of pharmacological resting-state analysis of the tested medications without the need of taking into account the subject specific vigilance.
Collapse
|
7
|
Meule A. Reporting and Interpreting Working Memory Performance in n-back Tasks. Front Psychol 2017; 8:352. [PMID: 28326058 PMCID: PMC5339218 DOI: 10.3389/fpsyg.2017.00352] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/23/2017] [Indexed: 02/03/2023] Open
Affiliation(s)
- Adrian Meule
- Department of Psychology, University of SalzburgSalzburg, Austria; Center for Cognitive Neuroscience, University of SalzburgSalzburg, Austria
| |
Collapse
|
8
|
Solomon TM, Leech J, deBros GB, Murphy CA, Budson AE, Vassey EA, Solomon PR. A randomized, double-blind, placebo controlled, parallel group, efficacy study of alpha BRAIN® administered orally. Hum Psychopharmacol 2016; 31:135-43. [PMID: 26876224 DOI: 10.1002/hup.2520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/16/2015] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Alpha BRAIN® is a nootropic supplement that purports to enhance cognitive functioning in healthy adults. The goal of this study was to investigate the efficacy of this self-described cognitive enhancing nootropic on cognitive functioning in a group of healthy adults by utilizing a randomized, double blind, placebo-controlled design. METHODS A total of 63-treatment naïve individuals between 18 and 35 years of age completed the randomized, double-blind, placebo controlled trial. All participants completed a 2-week placebo run in before receiving active product, Alpha BRAIN® or new placebo, for 6 weeks. Participants undertook a battery of neuropsychological tests at randomization and at study completion. Primary outcome measures included a battery of neuropsychological tests and measures of sleep. RESULTS Compared with placebo, Alpha BRAIN® significantly improved on tasks of delayed verbal recall and executive functioning. Results also indicated significant time-by-group interaction in delayed verbal recall for the Alpha BRAIN® group. CONCLUSIONS The use of Alpha BRAIN® for 6 weeks significantly improved recent verbal memory when compared with controls, in a group of healthy adults. While the outcome of the study is encouraging, this is the first randomized controlled trial of Alpha BRAIN®, and the results merit further study.
Collapse
Affiliation(s)
- Todd M Solomon
- Boston Center for Memory, Newton, MA, USA.,The Memory Clinic, Bennington, VT, USA.,Boston University School of Medicine, Boston, MA, USA
| | | | | | - Cynthia A Murphy
- Boston Center for Memory, Newton, MA, USA.,The Memory Clinic, Bennington, VT, USA
| | - Andrew E Budson
- Boston Center for Memory, Newton, MA, USA.,Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth A Vassey
- Boston Center for Memory, Newton, MA, USA.,Boston University School of Medicine, Boston, MA, USA
| | - Paul R Solomon
- Boston Center for Memory, Newton, MA, USA.,The Memory Clinic, Bennington, VT, USA.,Williams College, Williamstown, MA, USA
| |
Collapse
|
9
|
Ramakrishnan NK, Marosi K, Nyakas CJ, Kwizera C, Elsinga PH, Ishiwata K, Luiten PGM, Dierckx RAJO, van Waarde A. Altered sigma-1 receptor expression in two animal models of cognitive impairment. Mol Imaging Biol 2015; 17:231-8. [PMID: 25273321 DOI: 10.1007/s11307-014-0780-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Sigma-1 receptors are involved in learning and memory processes. We assessed sigma-1 receptor expression and memory function in two animal models of cognitive impairment. PROCEDURES Male Wistar-Hannover rats were either lesioned by unilateral injection of N-methyl-D-aspartic acid in the nucleus basalis, or deprived of rapid eye movement sleep for 48 h, using the modified multiple platform method. Sigma-1 receptor expression was examined with the positron emission tomography radiotracer [(11)C]SA4503, immunohistochemistry, and Western blotting. RESULTS Cortical tracer uptake after 1 week was not significantly affected by lesioning. Immunohistochemistry revealed moderate increases of sigma-1 receptors at bregma level -2.8, in parietal cortex layer V of the lesioned hemisphere. Sleep deprivation lowered passive avoidance test scores and reduced [(11)C]SA4503 accumulation and sigma-1 receptor expression in pons. CONCLUSIONS Cholinergic lesioning causes an increase of sigma-1 receptor expression in a small cortical area which may be neuroprotective. Sleep deprivation decreases receptor expression in midbrain and pons.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Morasch KC, Aaron CL, Moon JE, Gordon RK. Physiological and neurobehavioral effects of cholinesterase inhibition in healthy adults. Physiol Behav 2014; 138:165-72. [PMID: 25455867 DOI: 10.1016/j.physbeh.2014.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Based on common pharmacodynamic mechanisms, recent efforts to develop second generation alternatives for organophosphate (OP) prophylaxis have expanded to include cholinesterase (ChE) inhibiting compounds traditionally approved for use in the treatment of Alzheimer's disease (AD). The primary purpose of this study was to determine the extent to which low-dose huperzine A, galantamine, or donepezil selectively inhibited acetylcholinesterase (AChE) versus butyrylcholinesterase (BChE) activity in healthy adults and whether such inhibition impacted neurobehavioral performance. METHODS In addition to hourly red blood cell cholinesterase sampling, neurobehavioral function was assessed before and after a single oral dose of huperzine A (100 or 200 μg), galantamine (4 or 8 mg), donepezil (2.5 or 5mg), or placebo (n=12 subjects per drug/dose). RESULTS Compared to placebo, both dosages of huperzine A and galantamine inhibited circulating AChE but not BChE. With the exception of huperzine A (200 μg), which maintained declarative recall performance across sessions, compounds did not improve neurobehavioral performance. Some aspects of neurobehavioral performance correlated with AChE activity, although associations may have reflected time of day effects. DISCUSSION Although huperzine A and galantamine significantly inhibited AChE (and likely increased central acetylcholine levels), neither compound improved neurobehavioral performance. The latter was likely due to ceiling effects in this young, healthy test population. Under conditions of reduced cholinergic activity (e.g., Alzheimer's disease), AChE inhibition (and corresponding maintenance of cholinergic tone) could potentially maintain/augment some aspects of neurobehavioral function.
Collapse
Affiliation(s)
| | | | - James E Moon
- Walter Reed Army Institute of Research, United States
| | - Richard K Gordon
- United States Army Medical Research and Materiel Command, United States
| |
Collapse
|
11
|
Deguil J, Ravasi L, Auffret A, Babiloni C, Bartres Faz D, Bragulat V, Cassé-Perrot C, Colavito V, Herrero Ezquerro MT, Lamberty Y, Lanteaume L, Pemberton D, Pifferi F, Richardson JC, Schenker E, Blin O, Tarragon E, Bordet R. Evaluation of symptomatic drug effects in Alzheimer's disease: strategies for prediction of efficacy in humans. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e329-42. [PMID: 24179995 DOI: 10.1016/j.ddtec.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In chronic diseases such as Alzheimer's disease (AD), the arsenal of biomarkers available to determine the effectiveness of symptomatic treatment is very limited. Interpretation of the results provided in literature is cumbersome and it becomes difficult to predict their standardization to a larger patient population. Indeed, cognitive assessment alone does not appear to have sufficient predictive value of drug efficacy in early clinical development of AD treatment. In recent years, research has contributed to the emergence of new tools to assess brain activity relying on innovative technologies of imaging and electrophysiology. However, the relevance of the use of these newer markers in treatment response assessment is waiting for validation. This review shows how the early clinical assessment of symptomatic drugs could benefit from the inclusion of suitable pharmacodynamic markers. This review also emphasizes the importance of re-evaluating a step-by-step strategy in drug development.
Collapse
|
12
|
Colavito V, Fabene PF, Grassi-Zucconi G, Pifferi F, Lamberty Y, Bentivoglio M, Bertini G. Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci 2013; 7:106. [PMID: 24379759 PMCID: PMC3861693 DOI: 10.3389/fnsys.2013.00106] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/19/2022] Open
Abstract
Paradigms of sleep deprivation (SD) and memory testing in rodents (laboratory rats and mice) are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery. Studies that have accurately described methodological aspects of the SD protocol are first reviewed, followed by procedures to investigate SD-induced impairment of learning and memory consolidation in order to propose SD protocols that could be employed as cognitive challenge. Thus, a platform of knowledge is provided for laboratory protocols that could be used to assess the efficacy of drugs designed to improve memory performance in rodents, including rodent models of neurodegenerative diseases that cause cognitive deficits, and Alzheimer's disease in particular. Issues in the interpretation of such preclinical data and their predictive value for clinical translation are also discussed.
Collapse
Affiliation(s)
- Valeria Colavito
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | - Paolo F Fabene
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | | | - Fabien Pifferi
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle Brunoy, France
| | - Yves Lamberty
- Neuroscience Therapeutic Area, UCB Pharma s.a. Braine l'Alleud, Belgium
| | - Marina Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | - Giuseppe Bertini
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| |
Collapse
|
13
|
Tarragon E, Lopez D, Estrada C, Ana GC, Schenker E, Pifferi F, Bordet R, Richardson JC, Herrero MT. Octodon degus: a model for the cognitive impairment associated with Alzheimer's disease. CNS Neurosci Ther 2013; 19:643-8. [PMID: 23710760 DOI: 10.1111/cns.12125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022] Open
Abstract
Octodon degus (O. degus) is a diurnal rodent that spontaneously develops several physiopathological conditions, analogous in many cases to those experienced by humans. In light of this, O. degus has recently been identified as a very valuable animal model for research in several medical fields, especially those concerned with neurodegenerative diseases in which risk is associated with aging. Octodon degus spontaneously develops β-amyloid deposits analogous to those observed in some cases of Alzheimer's disease (AD). Moreover, these deposits are thought to be the key feature for AD diagnosis, and one of the suggested causes of cell loss and cognitive deficit. This review aims to bring together information to support O. degus as a valuable model for the study of AD.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Clinical & Experimental Neuroscience (NiCE) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Health Sciences (Medicine), University Jaume I of Castellon, Castellon de la Plana, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dresler M, Sandberg A, Ohla K, Bublitz C, Trenado C, Mroczko-Wąsowicz A, Kühn S, Repantis D. Non-pharmacological cognitive enhancement. Neuropharmacology 2013; 64:529-43. [DOI: 10.1016/j.neuropharm.2012.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|