1
|
Zeppilli D, Grolla G, Di Marco V, Ribaudo G, Orian L. Radical Scavenging and Anti-Ferroptotic Molecular Mechanism of Olanzapine: Insight from a Computational Analysis. Inorg Chem 2024; 63:21856-21867. [PMID: 39287358 DOI: 10.1021/acs.inorgchem.4c02534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Olanzapine is an antipsychotic drug that has been reported to suppress ferroptosis, a recently discovered form of regulated cell death. In this work, the scavenging activity of olanzapine and some of its metabolites is investigated in silico using state-of-the-art density functional theory calculations (level of theory: (SMD)-M06-2X/6-311+G(d,p)//M06-2X/6-31G(d)). Indeed, this reactivity is linked to the therapeutic activity of many antipsychotic drugs and ferroptosis inhibitors. Furthermore, the distinction between hydrogen atom transfer (HAT) and concerted proton coupled electron transfer (cPCET) is elucidated for the most reactive sites of the studied molecules. Then, a promising experimentally guided anti-ferroptotic cyclic mechanism is proposed for ferrostatin-1, a well-known ferroptosis inhibitor, involving the oxidation of FeII to FeIII, the quenching of hydroperoxyl radicals, and the subsequent regeneration of the reactant (level of theory: M06/6-311+G(d,p),def2TZVP//M06/6-31G(d),LANL2DZ). An analogous cyclic process is investigated for liproxstatin-1 and olanzapine, whose activity has been reported in the literature and compared to ferrostatin-1. Finally, the effect of water solvation is evaluated unveiling that the anti-ferroptotic activity of olanzapine is likely less efficient in polar media.
Collapse
Affiliation(s)
- Davide Zeppilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giacomo Grolla
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
- Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL), 35020 Legnaro (PD), Italy
| |
Collapse
|
2
|
Uehara S, Higuchi Y, Yoneda N, Kato H, Yamazaki H, Suemizu H. The Unique Human N10-Glucuronidated Metabolite Formation from Olanzapine in Chimeric NOG-TKm30 Mice with Humanized Livers. Drug Metab Dispos 2023; 51:480-491. [PMID: 36623885 DOI: 10.1124/dmd.122.001102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Olanzapine is an antipsychotic agent with species-dependent pharmacokinetic profiles in both humans and animals. In the present study, the metabolic profiles of olanzapine in vitro and in vivo were compared in non-transplanted immunodeficient NOG-TKm30 mice and chimeric mice with humanized livers (hereafter humanized-liver mice). Hepatic microsomal fractions prepared from humanized-liver mice and humans mediated olanzapine N10-glucuronidation, whereas fractions from cynomolgus monkeys, marmosets, minipigs, dogs, rabbits, guinea pigs, rats, CD1 mice, and NOG-TKm30 mice did not. The olanzapine N10-glucuronidation activity in liver microsomes from humanized-liver mice was inhibited by hecogenin, a human UDP-glucuronosyltransferase (UGT) 1A4 inhibitor. In addition, hepatocytes from humanized-liver mice suggest that olanzapine N10-glucuronidation was a major metabolic pathway in the livers of humanized-liver mice. After a single oral dose of olanzapine (10 mg/kg body weight) to humanized-liver mice and control NOG-TKm30 mice, olanzapine N10-glucuronide isomers and olanzapine N4'-glucuronide were detected only in the plasma of humanized-liver mice. In contrast, the area under the curve for N4'-demethylolanzapine, 2-hydroxymethylolanzapine, and 7-hydroxyolanzapine glucuronide was higher in NOG-TKm30 mice than that in humanized-liver mice. The cumulative excreted amounts of olanzapine N10-glucuronide isomers were high in the urine and feces from humanized-liver mice, whereas the cumulative excreted amounts of 2-hydroxymethylolanzapine were higher in NOG-TKm30 mice than in humanized-liver mice. Thus, production of human-specific olanzapine N10-glucuronide was observed in humanized-liver mice, which was consistent with the in vitro glucuronidation data. These results suggest that humanized-liver mice are useful for studying drug oxidation and conjugation of olanzapine in humans. SIGNIFICANCE STATEMENT: Human-specific olanzapine N10-glucuronide isomers were generated in chimeric NOG-TKm30 mice with humanized livers (humanized-liver mice), and high UGT1A4-dependent N10-glucuronidation was observed in the liver microsomes from humanized-liver mice. Hence, humanized-liver mice may be a suitable model for studying UGT1A4-dependent biotransformation of drugs in humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| | - Yuichiro Higuchi
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| | - Hiroaki Kato
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| | - Hiroshi Yamazaki
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| |
Collapse
|
3
|
Zubiaur P, Soria-Chacartegui P, Villapalos-García G, Gordillo-Perdomo JJ, Abad-Santos F. The pharmacogenetics of treatment with olanzapine. Pharmacogenomics 2021; 22:939-958. [PMID: 34528455 DOI: 10.2217/pgs-2021-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetic polymorphism in olanzapine-metabolizing enzymes, transporters and drug targets is associated with alterations in safety and efficacy. The aim of this systematic review is to describe all clinically relevant pharmacogenetic information on olanzapine and to propose clinically actionable variants. Two hundred and eighty-four studies were screened; 76 complied with the inclusion criteria and presented significant associations. DRD2 Taq1A (rs1800497) *A1, LEP -2548 (rs7799039) G and CYP1A2*1F alleles were related to olanzapine effectiveness and safety variability in several studies, with a high level of evidence. DRD2 -141 (rs1799732) Ins, A-241G (rs1799978) G, DRD3 Ser9Gly (rs6280) Gly, HTR2A rs7997012 A, ABCB1 C3435T (rs1045642) T and G2677T/A (rs2032582) T and UGT1A4*3 alleles were related to safety, effectiveness and/or pharmacokinetic variability with moderated level of evidence.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Paula Soria-Chacartegui
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Gonzalo Villapalos-García
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Juan J Gordillo-Perdomo
- Department of Clinical Analysis, Hospital Universitario de La Princesa, Madrid, 28006, Spain
| | - Francisco Abad-Santos
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28006, Spain
| |
Collapse
|
4
|
Soria-Chacartegui P, Villapalos-García G, Zubiaur P, Abad-Santos F, Koller D. Genetic Polymorphisms Associated With the Pharmacokinetics, Pharmacodynamics and Adverse Effects of Olanzapine, Aripiprazole and Risperidone. Front Pharmacol 2021; 12:711940. [PMID: 34335273 PMCID: PMC8316766 DOI: 10.3389/fphar.2021.711940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Olanzapine, aripiprazole and risperidone are atypical antipsychotics or neuroleptics widely used for schizophrenia treatment. They induce various adverse drug reactions depending on their mechanisms of action: metabolic effects, such as weight gain and alterations of glucose and lipid metabolism; hyperprolactinemia and extrapyramidal effects, such as tremor, akathisia, dystonia, anxiety and distress. In this review, we listed polymorphisms associated with individual response variability to olanzapine, aripiprazole and risperidone. Olanzapine is mainly metabolized by cytochrome P450 enzymes, CYP1A2 and CYP2D6, whereas aripiprazole and risperidone metabolism is mainly mediated by CYP2D6 and CYP3A4. Polymorphisms in these genes and other enzymes and transporters, such as enzymes from the uridine 5'-diphospho-glucuronosyltransferase (UGT) family and ATP-binding cassette sub-family B member 1 (ABCB1), are associated to differences in pharmacokinetics. The three antipsychotics act on dopamine and serotonin receptors, among others, and several studies found associations between polymorphisms in these genes and variations in the incidence of adverse effects and in the response to the drug. Since olanzapine is metabolized by CYP1A2, a lower starting dose should be considered in patients treated with fluvoxamine or other CYP1A2 inhibitors. Regarding aripiprazole, a reduced dose should be administered in CYP2D6 poor metabolizers (PMs). Additionally, a reduction to a quarter of the normal dose is recommended if the patient is treated with concomitant CYP3A4 inhibitors. Risperidone dosage should be reduced for CYP2D6 PMs and titrated for CYPD6 ultrarapid metabolizers (UMs). Moreover, risperidone dose should be evaluated when a CYP2D6, CYP3A4 or ABCB1 inhibitor is administered concomitantly.
Collapse
Affiliation(s)
- Paula Soria-Chacartegui
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Dora Koller
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, United States
| |
Collapse
|
5
|
Murayama N, Yamazaki H. Metabolic activation and deactivation of dietary-derived coumarin mediated by cytochrome P450 enzymes in rat and human liver preparations. J Toxicol Sci 2021; 46:371-378. [PMID: 34334558 DOI: 10.2131/jts.46.371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dietary-derived coumarin is of clinical interest for its potential hepatotoxicity in humans because such toxicity is especially evident in rats. In this study, the oxidative metabolism of coumarin to active coumarin 3,4-epoxide (as judged by the formation rates of o-hydroxyphenylacetic acid) and excretable 7-hydroxycoumarin was investigated in liver fractions from rats and humans. In rat liver microsomes, the formation rate of o-hydroxyphenylacetic acid (~6 pmol/min/mg microsomal protein) from coumarin at 10 μM was dependent on the presence of liver cytosolic fractions. Rat hepatocytes mediated similar formation rates of o-hydroxyphenylacetic acid and 7-hydroxycoumarin (~0.1 nmol/hr/106 cells) at 0.20-20 μM coumarin. Human hepatocytes mediated the biotransformation of coumarin to o-hydroxyphenylacetic acid at roughly similar rates to those of rat hepatocytes. In contrast, the formation rates of 7-hydroxycoumarin by human hepatocytes were around 10-fold higher at ~1 nmol/hr/106 cells. In the presence of human liver cytosolic fractions, the oxidative formation rate of o-hydroxyphenylacetic acid was relatively high in cytochrome P450 (P450) 1A2-rich human liver microsomes. The inhibitory effects of furafylline/α-naphthoflavone and 8-methoxypsoralen, P450 1A2 and 2A6 inhibitors, respectively, were seen on the rates of o-hydroxyphenylacetic and 7-hydroxylation formations, respectively, in pooled human liver microsomes. Human liver microsomes selectively inactivated for P450 1A2 and 2A6 showed low rates of o-hydroxyphenylacetic acid and 7-hydroxylation formation (~20-30% of control), respectively. Among the P450 isoforms tested, recombinant human P450 1A2 predominantly mediated o-hydroxyphenylacetic formation. These results suggested that the metabolic activation and deactivation of coumarin were mediated mainly by P450 1A2 and 2A6 enzymes, respectively. The metabolic oxidation of coumarin via 3,4-epoxidation forming o-hydroxyphenylacetic acid could inform individual human risk assessments of dietary-derived coumarin, for which hepatotoxicity is especially evident in rats.
Collapse
|
6
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Zhu KX, Song PY, He-Li, Li MP, Du YX, Ma QL, Peng LM, Chen XP. Association of FMO3 rs1736557 polymorphism with clopidogrel response in Chinese patients with coronary artery disease. Eur J Clin Pharmacol 2020; 77:359-368. [PMID: 33089397 DOI: 10.1007/s00228-020-03024-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Dual antiplatelet therapy with aspirin and clopidogrel is commonly used for coronary artery disease (CAD) patients undergoing percutaneous coronary intervention to prevent stent thrombosis and ischemic events. However, some patients show high on-treatment platelet reactivity (HTPR) during clopidogrel therapy. Genetic factors such as loss-of-function variants of CYP2C19 are validated to increase the risk of HTPR. Flavin-containing monooxygenase 3 (FMO3) is reported to be associated with potency of platelet responsiveness and thrombosis. This study aimed to explore the association between FMO3 rs1736557 polymorphism and clopidogrel response. METHODS Five hundred twenty-two Chinese CAD patients treated with dual antiplatelet therapy were recruited from Xiangya Hospital. After oral administration of 300 mg loading dose (LD) clopidogrel for 12-24 h or 75 mg daily maintenance dose (MD) clopidogrel for at least 5 days, the platelet reaction index (PRI) was determined by vasodilator-stimulated phosphoprotein-phosphorylation assay. FMO3 rs1736557, CYP2C19*2, and CYP2C19*3 polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS Mean PRI value was significantly higher in CYP2C19 poor metabolizers (PMs) and intermediate metabolizers (IMs) than the extensive metabolizers (EMs) (p < 0.001). In addition, FMO3 rs1736557 AA homozygotes showed significantly lower PRI as compared with carriers of the major rs1736557 G allele in the entire cohort and in the MD cohort (p = 0.011, p = 0.008, respectively). The risk of HTPR was decreased significantly in carriers of the rs1736557 A allele (AA vs GG: OR = 0.316, 95% CI: 0.137-0.726, p = 0.005; AA vs GA: OR = 0.249, 95% CI: 0.104-0.597, p = 0.001; AA vs GG+GA: OR = 0.294, 95% CI: 0.129-0.669, p = 0.002), and the association was observed mainly in patients carrying the CYP2C19 LOF allele and in those administered with MD. CONCLUSION The FMO3 rs1736557 AA genotype was related to an increased the antiplatelet potency of clopidogrel in Chinese CAD patients. Additional studies are required to verify this finding.
Collapse
Affiliation(s)
- Kong-Xiang Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China
| | - Pei-Yuan Song
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China
| | - He-Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China
| | - Mu-Peng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China
| | - Yin-Xiao Du
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China
| | - Qi-Lin Ma
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Li-Ming Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China. .,Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Geib T, Thulasingam M, Haeggström JZ, Sleno L. Investigation of Clozapine and Olanzapine Reactive Metabolite Formation and Protein Binding by Liquid Chromatography-Tandem Mass Spectrometry. Chem Res Toxicol 2020; 33:2420-2431. [PMID: 32786547 DOI: 10.1021/acs.chemrestox.0c00191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug-induced toxicity has, in many cases, been linked to oxidative metabolism resulting in the formation of reactive metabolites and subsequent covalent binding to biomolecules. Two structurally related antipsychotic drugs, clozapine (CLZ) and olanzapine (OLZ), are known to form similar nitrenium ion reactive metabolites. CLZ-derived reactive metabolites have been linked to agranulocytosis and hepatotoxicity. We have studied the oxidative metabolism of CLZ and OLZ as well as two known metabolites of CLZ, desmethyl-CLZ (DCLZ), and CLZ-N-oxide (CLZ-NO), using in vitro rat liver microsomal (RLM) incubations with glutathione (GSH) trapping of reactive metabolites and liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS). Reactive metabolite binding to selected standard peptides and recombinant purified human proteins was also evaluated. Bottom-up proteomics was performed using two complementary proteases, prefractionation of peptides followed by LC-HRMS/MS for elucidating modifications of target proteins. Induced RLM was selected to form reactive metabolites enzymatically to assess the complex profile of reactive metabolite structures and their binding potential to standard human proteins. Multiple oxidative metabolites and several different GSH adducts were found for CLZ and OLZ. Modification sites were characterized on human glutathione S-transferase (hGST) alpha 1 (OLZ-modified at Cys112), hGST mu 2 (OLZ at Cys115), and hGST pi (CLZ, DCLZ, CLZ-NO and OLZ at Cys170), human microsomal GST 1 (hMGST1, CLZ and OLZ at Cys50), and human serum albumin (hSA, CLZ at Cys34). Furthermore, two modified rat proteins, microsomal GST 1 (CLZ and OLZ at Cys50) and one CYP (OLZ-modified, multiple possible isoforms), from RLM background were also characterized. In addition, direct effects of the reactive metabolite modifications on proteins were observed, including differences in protease cleavage specificity, chromatographic behavior, and charge-state distributions.
Collapse
Affiliation(s)
- Timon Geib
- Chemistry Department, Université du Québec à Montréal, Montréal, Québec H2X 2J6, Canada
| | - Madhuranayaki Thulasingam
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77 Solna, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77 Solna, Sweden
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, Montréal, Québec H2X 2J6, Canada
| |
Collapse
|
9
|
Fan L, Zhang L, Zheng H, Cheng J, Hu Y, Liu J, Fan H. Pharmacokinetics and Bioequivalence of 2 Olanzapine Orally Disintegrating Tablet Products in Healthy Chinese Subjects Under Fed and Fasting Conditions. Clin Pharmacol Drug Dev 2020; 9:593-601. [PMID: 32413238 DOI: 10.1002/cpdd.765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
To assess the bioequivalence of two 5-mg olanzapine orally disintegrating tablet (ODT) products, 2 randomized, open-label, single-dose, 2-way crossover studies were carried out under fasting or fed conditions. Blood samples were collected at scheduled times according to the study protocol. Statistical analysis of area under the concentration-time curve from time 0 to 168 hours (AUC0-t ), area under the curve from time zero to infinity (AUC0-∞ ), and peak plasma concentration (Cmax ) was conducted. Two formulations were considered bioequivalent if the 90% confidence intervals (CIs) of the geometric mean ratios for AUC0-t, AUC0-∞ , and Cmax were within the range of 0.80-1.25. Adverse events were recorded and evaluated throughout the studies. A total of 48 subjects with 24 in each study completed the 2 studies. In fasted subjects, the 90%CIs for the test product versus the reference product were 97.28%-105.13% for AUC0-t , 97.57%-105.54% for AUC0-∞ , and 90.94%-103.97% for Cmax . In fed subjects, the 90%CIs for AUC0-t , AUC0-∞ and Cmax were 99.73%-122.63%, 99.56%-121.75%, and 99.46%-120.46%, respectively. No serious adverse events were reported in the studies. The reference and the test product of 5-mg olanzapine ODT show comparable pharmacokinetic profiles under both fed and fasted conditions and were considered bioequivalent.
Collapse
Affiliation(s)
- Lin Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | | | - Hongquan Zheng
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junlin Cheng
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfang Hu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghui Liu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongwei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Phillips IR, Shephard EA. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease. Xenobiotica 2019; 50:19-33. [DOI: 10.1080/00498254.2019.1643515] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ian R. Phillips
- Research Department of Structural and Molecular Biology, University College London, London, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Elizabeth A. Shephard
- Research Department of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
11
|
Yamazaki H. Differences in Toxicological and Pharmacological Responses Mediated by Polymorphic Cytochromes P450 and Related Drug-Metabolizing Enzymes. Chem Res Toxicol 2016; 30:53-60. [PMID: 27750412 DOI: 10.1021/acs.chemrestox.6b00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Research over the past 30 years has elucidated the roles of polymorphic human liver cytochrome P450 (P450) enzymes associated with toxicological and/or pharmacological actions. Thalidomide exerts its various pharmacological and toxic actions in primates through multiple mechanisms, including nonspecific modification of many protein networks after bioactivation by autoinduced human P450 enzymes. To overcome species differences between rodents, currently, nonhuman primates and/or mouse models with transplanted human hepatocytes are used. Interindividual variability of P450-dependent drug clearances in cynomolgus monkeys and common marmosets is partly accounted for by polymorphic P450 variants and/or aging, just as it is in humans with increased prevalence of polypharmacy. Genotyping of P450 genes in nonhuman primates would be beneficial before and/or after drug metabolism and toxicity testing and evaluation as well in humans. Genome-wide association studies in humans have been rapidly advanced; however, unique whole-gene deletion of P450 2A6 was subsequently developed to cover nicotine-related lung cancer risk study. Regarding polypharmacy, toxicological research should generally be aimed at identifying the risk of adverse drug events following specific potential drug exposures by examining single or multiple metabolic pathways involving single or multiple drug-metabolizing enzymes. Current and next-generation research of drug metabolism and disposition resulting in drug toxicity would be addressed under advanced knowledge of polymorphic and age-related intra- and/or interspecies differences of drug-metabolizing enzymes. In the near future, humanized animal models combining transplanted hepatocytes and a humanized immune system may be available to study human immune reactions caused by human-type drug metabolites. Such sophisticated models should provide preclinical predictions of human drug metabolism and potential toxicity.
Collapse
Affiliation(s)
- Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
12
|
Phillips IR, Shephard EA. Drug metabolism by flavin-containing monooxygenases of human and mouse. Expert Opin Drug Metab Toxicol 2016; 13:167-181. [PMID: 27678284 DOI: 10.1080/17425255.2017.1239718] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Flavin-containing monooxygenases (FMOs) play an important role in drug metabolism. Areas covered: We focus on the role of FMOs in the metabolism of drugs in human and mouse. We describe FMO genes and proteins of human and mouse; the catalytic mechanism of FMOs and their significance for drug metabolism; differences between FMOs and CYPs; factors contributing to potential underestimation of the contribution of FMOs to drug metabolism; the developmental and tissue-specific expression of FMO genes and differences between human and mouse; and factors that induce or inhibit FMOs. We discuss the contribution of FMOs of human and mouse to the metabolism of drugs and how genetic variation of FMOs affects drug metabolism. Finally, we discuss the utility of animal models for FMO-mediated drug metabolism in humans. Expert opinion: The contribution of FMOs to drug metabolism may be underestimated. As FMOs are not readily induced or inhibited and their reactions are generally detoxifications, the design of drugs that are metabolized predominantly by FMOs offers clinical advantages. Fmo1(-/-),Fmo2(-/-),Fmo4(-/-) mice provide a good animal model for FMO-mediated drug metabolism in humans. Identification of roles for FMO1 and FMO5 in endogenous metabolism has implications for drug therapy and initiates an exciting area of research.
Collapse
Affiliation(s)
- Ian R Phillips
- a Institute of Structural and Molecular Biology , University College London , London , UK.,b School of Biological and Chemical Sciences , Queen Mary University of London , London , UK
| | - Elizabeth A Shephard
- a Institute of Structural and Molecular Biology , University College London , London , UK
| |
Collapse
|