1
|
Tsermpini EE, Redenšek S, Dolžan V. Genetic Factors Associated With Tardive Dyskinesia: From Pre-clinical Models to Clinical Studies. Front Pharmacol 2022; 12:834129. [PMID: 35140610 PMCID: PMC8819690 DOI: 10.3389/fphar.2021.834129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 01/14/2023] Open
Abstract
Tardive dyskinesia is a severe motor adverse event of antipsychotic medication, characterized by involuntary athetoid movements of the trunk, limbs, and/or orofacial areas. It affects two to ten patients under long-term administration of antipsychotics that do not subside for years even after the drug is stopped. Dopamine, serotonin, cannabinoid receptors, oxidative stress, plasticity factors, signaling cascades, as well as CYP isoenzymes and transporters have been associated with tardive dyskinesia (TD) occurrence in terms of genetic variability and metabolic capacity. Besides the factors related to the drug and the dose and patients’ clinical characteristics, a very crucial variable of TD development is individual susceptibility and genetic predisposition. This review summarizes the studies in experimental animal models and clinical studies focusing on the impact of genetic variations on TD occurrence. We identified eight genes emerging from preclinical findings that also reached statistical significance in at least one clinical study. The results of clinical studies are often conflicting and non-conclusive enough to support implementation in clinical practice.
Collapse
|
2
|
Levchenko A, Kanapin A, Samsonova A, Fedorenko OY, Kornetova EG, Nurgaliev T, Mazo GE, Semke AV, Kibitov AO, Bokhan NA, Gainetdinov RR, Ivanova SA. A genome-wide association study identifies a gene network associated with paranoid schizophrenia and antipsychotics-induced tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110134. [PMID: 33065217 DOI: 10.1016/j.pnpbp.2020.110134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
In the present study we conducted a genome-wide association study (GWAS) in a cohort of 505 patients with paranoid schizophrenia (SCZ), of which 95 had tardive dyskinesia (TD), and 503 healthy controls. Using data generated by the PsychENCODE Consortium (PEC) and other bioinformatic databases, we revealed a gene network, implicated in neurodevelopment and brain function, associated with both these disorders. Almost all these genes are in gene or isoform co-expression PEC network modules important for the functioning of the brain; the activity of these networks is also altered in SCZ, bipolar disorder and autism spectrum disorders. The associated PEC network modules are enriched for gene ontology terms relevant to the brain development and function (CNS development, neuron development, axon ensheathment, synapse, synaptic vesicle cycle, and signaling receptor activity) and to the immune system (inflammatory response). Results of the present study suggest that orofacial and limbtruncal types of TD seem to share the molecular network with SCZ. Paranoid SCZ and abnormal involuntary movements that indicate the orofacial type of TD are associated with the same genomic loci on chromosomes 3p22.2, 8q21.13, and 13q14.2. The limbtruncal type of TD is associated with a locus on chromosome 3p13 where the best functional candidate is FOXP1, a high-confidence SCZ gene. The results of this study shed light on common pathogenic mechanisms for SCZ and TD, and indicate that the pathogenesis of the orofacial and limbtruncal types of TD might be driven by interacting genes implicated in neurodevelopment.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | | | - Galina E Mazo
- Department of Endocrine Psychiatry, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russia
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexander O Kibitov
- Department of Endocrine Psychiatry, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russia; Laboratory of Molecular Genetics, Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
3
|
Pozhidaev IV, Paderina DZ, Fedorenko OY, Kornetova EG, Semke AV, Loonen AJM, Bokhan NA, Wilffert B, Ivanova SA. 5-Hydroxytryptamine Receptors and Tardive Dyskinesia in Schizophrenia. Front Mol Neurosci 2020; 13:63. [PMID: 32390801 PMCID: PMC7193905 DOI: 10.3389/fnmol.2020.00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background Tardive dyskinesia (TD) is a common side effect of antipsychotic treatment. This movement disorder consists of orofacial and limb-truncal components. The present study is aimed at investigating the role of serotonin receptors (HTR) in modulating tardive dyskinesia by genotyping patients with schizophrenia. Methods A set of 29 SNPs of genes of serotonin receptors HTR1A, HTR1B, HTR2A, HTR2C, HTR3A, HTR3B, and HTR6 was studied in a population of 449 Caucasians (226 females and 223 males) with verified clinical diagnosis of schizophrenia (according to ICD-10: F20). Five SNPs were excluded because of low minor allele frequency or for not passing the Hardy-Weinberg equilibrium test. Affinity of antipsychotics to 5-HT2 receptors was defined according to previous publications. Genotyping was carried out with SEQUENOM Mass Array Analyzer 4. Results Statistically significant associations of rs1928040 of HTR2A gene in groups of patients with orofacial type of TD and total diagnosis of TD was found for alleles, and a statistical trend for genotypes. Moreover, statistically significant associations were discovered in the female group for rs1801412 of HTR2C for alleles and genotypes. Excluding patients who used HTR2A, respectively, HTR2C antagonists changed little to the associations of HTR2A polymorphisms, but caused a major change of the magnitude of the association of HTR2C variants. Due to the low patient numbers, these sub-analyses did not have significant results. Conclusion We found significant associations in rs1928040 of HTR2A and for rs1801412 of X-bound HTR2C in female patients. The associations were particularly related to the orofacial type of TD. Excluding patients using relevant antagonists particularly affected rs1801412, but not rs1928040-related associations. This suggest that rs1801412 is directly or indirectly linked to the functioning of HTR2C. Further study of variants of the HTR2C gene in a larger group of male patients who were not using HTR2C antagonists is necessary in order to verify a possible functional role of this receptor.
Collapse
Affiliation(s)
- Ivan V Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Department of Cytology and Genetics, National Research Tomsk State University, Tomsk, Russia
| | - Diana Z Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Department of Cytology and Genetics, National Research Tomsk State University, Tomsk, Russia
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Division for Control and Diagnostics, School of Non-Destructive Testing and Security, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Hospital, Siberian State Medical University, Tomsk, Russia
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Anton J M Loonen
- PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,Policy Office for Quality and Innovation of Care (BZI), GGZ Westelijk Noord-Brabant, Halsteren, Netherlands
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Tomsk, Russia.,Department of Psychotherapy and Psychological Counseling, National Research Tomsk State University, Tomsk, Russia
| | - Bob Wilffert
- PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Division for Control and Diagnostics, School of Non-Destructive Testing and Security, National Research Tomsk Polytechnic University, Tomsk, Russia.,Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|