1
|
Slater C, Liu Y, Weiss E, Yu K, Wang Q. The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sci 2022; 12:890. [PMID: 35884697 PMCID: PMC9320657 DOI: 10.3390/brainsci12070890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
The noradrenergic and cholinergic modulation of functionally distinct regions of the brain has become one of the primary organizational principles behind understanding the contribution of each system to the diversity of neural computation in the central nervous system. Decades of work has shown that a diverse family of receptors, stratified across different brain regions, and circuit-specific afferent and efferent projections play a critical role in helping such widespread neuromodulatory systems obtain substantial heterogeneity in neural information processing. This review briefly discusses the anatomical layout of both the noradrenergic and cholinergic systems, as well as the types and distributions of relevant receptors for each system. Previous work characterizing the direct and indirect interaction between these two systems is discussed, especially in the context of higher order cognitive functions such as attention, learning, and the decision-making process. Though a substantial amount of work has been done to characterize the role of each neuromodulator, a cohesive understanding of the region-specific cooperation of these two systems is not yet fully realized. For the field to progress, new experiments will need to be conducted that capitalize on the modular subdivisions of the brain and systematically explore the role of norepinephrine and acetylcholine in each of these subunits and across the full range of receptors expressed in different cell types in these regions.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
- Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Yuxiang Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Evan Weiss
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Kunpeng Yu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| |
Collapse
|
2
|
Rastmanesh R, Pitkänen M. Can the Brain Be Relativistic? Front Neurosci 2021; 15:659860. [PMID: 34220421 PMCID: PMC8250859 DOI: 10.3389/fnins.2021.659860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Reza Rastmanesh
- Independent Researcher, Private Clinic, Tehran, Iran.,Independent Researcher, Washington, DC, United States
| | | |
Collapse
|
3
|
Fernandes TP, Hovis JK, Almeida N, Souto JJS, Bonifacio TA, Rodrigues S, Silva GM, Andrade MO, Silva JB, Gomes GH, Oliveira ME, Lima EH, Gomes ME, Junior MVA, Martins ML, Santos NA. Effects of Nicotine Gum Administration on Vision (ENIGMA-Vis): Study Protocol of a Double-Blind, Randomized, and Controlled Clinical Trial. Front Hum Neurosci 2020; 14:314. [PMID: 33100983 PMCID: PMC7506462 DOI: 10.3389/fnhum.2020.00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/12/2023] Open
Abstract
Studies reported that tobacco addiction was related to visual impairments, but one unresolved issue is whether the impairments are related to the many compounds existing in the cigarettes or to the effects of nicotine. On the other hand, nicotine gum can be used as replacement therapy or as a neuroprotective agent for some diseases. The main purpose of this controlled trial is to investigate the effects of nicotine gum on vision. The ENIGMA-Vis trial aims to compare two dosages of nicotine gum (2 and 4 mg) and a placebo gum in a randomized, double-blind, placebo-controlled trial of 100 participants to be allocated into a single group assignment of repeated measures (two studies; N = 50 for each one). Eligibility criteria are healthy non-smokers not diagnosed with substance abuse and without an acute or chronic medical condition. Intervention will last three sessions for each participant with a window frame of 1 week per session. Study outcomes are (1) short-term effects of nicotine gum on contrast sensitivity; (2) short-term effects of nicotine gum on chromatic contrast discrimination; and (3) whether demographics, body mass index, or serum cotinine predicts response of visual processing. This study addresses an important gap in the effects of nicotine on vision. One of the main takeaways of this study is to understand the effects of nicotine on contrast sensitivity and chromatic contrast discrimination. This information will provide a further understanding of how nicotine interacts with early visual processes and help determine how the different components present during smoking can affect vision. Clinical Trial Registration Number: RBR-46tjy3.
Collapse
Affiliation(s)
- Thiago P Fernandes
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Jeffery K Hovis
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Natalia Almeida
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Jandirlly J S Souto
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Thiago Augusto Bonifacio
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Stephanye Rodrigues
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Gabriella Medeiros Silva
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Michael Oliveira Andrade
- Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Department of Psychology, State University of Minas Gerais, Belo Horizonte, Brazil
| | - Jessica Bruna Silva
- Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Department of Psychology, State University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Milena Edite Oliveira
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Eveline Holanda Lima
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Maria Eduarda Gomes
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marcos V A Junior
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Mariana Lopes Martins
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Department of Speech Therapy, Federal University of Paraiba, João Pessoa, Brazil
| | - Natanael A Santos
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
4
|
Alhassan M, Hovis JK, Almeida QJ. Visual processing speed in freezing and non-freezing Parkinson's disease patients. Clin Park Relat Disord 2020; 3:100060. [PMID: 34316642 PMCID: PMC8298779 DOI: 10.1016/j.prdoa.2020.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/26/2020] [Accepted: 05/24/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Parkinson's disease patients are usually characterized by body motor dysfunction due to dopaminergic reduction in the central nervous system. Freezing of gait is a motor disorder that affects certain Parkinson's disease patients. However, it is hypothesized that non-motor functions mediated by the cholinergic system are also involved in developing freezing of gait. Visual information processing speed, or inspection time is independent of the motor response, and can be used a reliable measure of the cholinergic system integrity. Objective Inspection time can be used to investigate whether Parkinson's disease patients with freezing of gait symptoms have a larger impairment in cholinergic mediated functions than those patients who have no freezing of gait symptoms and healthy controls. Methods The inspection time was determined by a simple length discrimination task. Twenty-two Parkinson's disease patients with freezing of gait, 25 Parkinson's disease patients without freezing of gait, and 25 aged matched healthy controls participated in the study. Results Based on the log values of IT score, Parkinson's disease patients with freezing of gait symptoms had statistically significant slower inspection times (mean of 1.793 ms) than Parkinson's disease patients without freezing of gait (mean of 1.655 ms) and healthy controls (mean of 1.523 ms). Inspection times for the Parkinson's disease patients without FOG symptoms were also significantly slower than healthy controls. Conclusion The results of this study support the hypothesis that the cholinergic system integrity is affected more in Parkinson's disease patients with freezing of gait symptoms. Non-motor symptoms are associated with Parkinson’s disease patients. Inspection time can be used as a reliable tool to evaluate the integrity of the cholinergic system. Patients with Parkinson’s disease especially those who showed freezing of gait symptoms had longer inspection time score which suggest they have deficit in the cholinergic system.
Collapse
Key Words
- ANOVA, analysis of variance
- FOG PD, Parkinson's disease patients with freezing of gait symptoms
- FOG, freezing of gait
- Freezing of gait
- HC, healthy controls
- IT, inspection time
- Inspection time
- MoCA, Montreal Cognitive Assessment Test
- Non-FOG PD, Parkinson's disease patients without freezing of gait symptoms
- Non-FOG, non-freezing of gait
- Non-motor symptom
- PD, Parkinson's disease
- Parkinson's disease
- RT, reaction time
- UPDRS, Unified Parkinson's disease Rating Scale
- Visual perception
- Visual speed processing
- mesc, millisecond
- nAChRs, nicotine acetylcholine receptors
Collapse
Affiliation(s)
- Mosaad Alhassan
- Department of Optometry & Vision Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jeffery K Hovis
- School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Quincy J Almeida
- Sun Life Financial Movement Disorders Research and Rehabilitation Center (MDRC), Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
5
|
Cornelissen AS, Klaassen SD, van Groningen T, Bohnert S, Joosen MJA. Comparative physiology and efficacy of atropine and scopolamine in sarin nerve agent poisoning. Toxicol Appl Pharmacol 2020; 396:114994. [PMID: 32251685 DOI: 10.1016/j.taap.2020.114994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 01/20/2023]
Abstract
Anticholinergic treatment is key for effective medical treatment of nerve agent exposure. Atropine is included at a 2 mg intramuscular dose in so-called autoinjectors designed for self- and buddy-aid. As patient cohorts are not available, predicting and evaluating the efficacy of medical countermeasures relies on animal models. The use of atropine as a muscarinic antagonist is based on efficacy achieved in studies in a variety of species. The dose of atropine administered varies considerably across these studies. This is a complicating factor in the prediction of efficacy in the human situation, largely because atropine dosing also influences therapeutic efficacy of oximes and anticonvulsants generally part of the treatment administered. To improve translation of efficacy of dosing regimens, including pharmacokinetics and physiology provide a promising approach. In the current study, pharmacokinetics and physiological parameters obtained using EEG and ECG were assessed in naïve rats and in sarin-exposed rats for two anticholinergic drugs, atropine and scopolamine. The aim was to find a predictive parameter for therapeutic efficacy. Scopolamine and atropine showed a similar bioavailability, but brain levels reached were much higher for scopolamine. Scopolamine exhibited a dose-dependent loss of beta power in naïve animals, whereas atropine did not show any such central effect. This effect was correlated with an enhanced anticonvulsant effect of scopolamine compared to atropine. These findings show that an approach including pharmacokinetics and physiology could contribute to improved dose scaling across species and assessing the therapeutic potential of similar anticholinergic and anticonvulsant drugs against nerve agent poisoning.
Collapse
Affiliation(s)
- Alex S Cornelissen
- TNO Defense, Security and Safety, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands.
| | - Steven D Klaassen
- TNO Defense, Security and Safety, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands
| | - Tomas van Groningen
- TNO Defense, Security and Safety, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands
| | - Sara Bohnert
- Defence Research and Development Canada-Suffield Research Centre, Department of National Defence, Suffield, Alberta, Canada
| | - Marloes J A Joosen
- TNO Defense, Security and Safety, CBRN Protection, Lange Kleiweg 137, 2288, GJ, Rijswijk, the Netherlands
| |
Collapse
|
6
|
Zink N, Bensmann W, Arning L, Stock AK, Beste C. CHRM2 Genotype Affects Inhibitory Control Mechanisms During Cognitive Flexibility. Mol Neurobiol 2019; 56:6134-6141. [PMID: 30729426 DOI: 10.1007/s12035-019-1521-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
Abstract
The cholinergic system is one of the most important neurotransmitter systems, but knowledge about the relevance of the cholinergic muscarinergic receptor system for cognitive functions is still scarce. Evidence suggests that the cholinergic muscarinic 2 receptor (CHRM2) plays an important role in the processing of cueing/prior information that help to increase the efficacy of lower-level attentional processes. In the current study, we investigated whether this is also the case for higher-level cognitive flexibility mechanisms. To this end, we tested N = 210 healthy adults with a backward inhibition task, in which prior information needs to be used to guide cognitive flexibility mechanisms. Testing different polymorphisms of the CHRM2 gene, we found that variation in this gene play a role in cognitive flexibility. It could be demonstrated that rs8191992 TT genotype carriers are better able to suppress no longer relevant information and to use prior information for cognitive flexibility, compared to A allele carriers. We further found that rs2350780 GG genotype carriers performed worse than A allele carriers. The results broaden the relevance of the CHRM2 system for cognitive functions beyond attentional selection processes. Corroborating recent theories on the relevance of the cholinergic system for cognitive processes, these results suggest that CHRM2 is important to process of "prior information" needed to inform subsequent cognitive operations. Considering the importance of prior information for adaptive behavioral control, it is possible that CHRM2 also modulates other instances of higher-level cognitive processes as long as these require the processing of "prior information."
Collapse
Affiliation(s)
- Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, 01309, Dresden, Germany
| | - Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, 01309, Dresden, Germany
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, 01309, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, 01309, Dresden, Germany.
| |
Collapse
|
7
|
Simpraga S, Mansvelder HD, Groeneveld GJ, Prins S, Hart EP, Poil SS, Linkenkaer-Hansen K. An EEG nicotinic acetylcholine index to assess the efficacy of pro-cognitive compounds. Clin Neurophysiol 2018; 129:2325-2332. [DOI: 10.1016/j.clinph.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/27/2018] [Accepted: 08/23/2018] [Indexed: 11/26/2022]
|
8
|
Baakman AC, Alvarez‐Jimenez R, Rissmann R, Klaassen ES, Stevens J, Goulooze SC, den Burger JCG, Swart EL, van Gerven JMA, Groeneveld GJ. An anti-nicotinic cognitive challenge model using mecamylamine in comparison with the anti-muscarinic cognitive challenge using scopolamine. Br J Clin Pharmacol 2017; 83:1676-1687. [PMID: 28217868 PMCID: PMC5510063 DOI: 10.1111/bcp.13268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 01/06/2023] Open
Abstract
AIMS The muscarinic acetylcholine receptor antagonist scopolamine is often used for proof-of-pharmacology studies with pro-cognitive compounds. From a pharmacological point of view, it would seem more rational to use a nicotinic rather than a muscarinic anticholinergic challenge to prove pharmacology of a nicotinic acetylcholine receptor agonist. This study aims to characterize a nicotinic anticholinergic challenge model using mecamylamine and to compare it to the scopolamine model. METHODS In this double-blind, placebo-controlled, four-way cross-over trial, 12 healthy male subjects received oral mecamylamine 10 and 20 mg, intravenous scopolamine 0.5 mg and placebo. Pharmacokinetics were analysed using non-compartmental analysis. Pharmacodynamic effects were measured with a multidimensional test battery that includes neurophysiological, subjective, (visuo)motor and cognitive measurements. RESULTS All treatments were safe and well tolerated. Mecamylamine had a tmax of 2.5 h and a Cmax of 64.5 ng ml-1 for the 20 mg dose. Mecamylamine had a dose-dependent effect decreasing the adaptive tracking performance and VAS alertness, and increasing the finger tapping and visual verbal learning task performance time and errors. Scopolamine significantly affected almost all pharmacodynamic tests. CONCLUSION This study demonstrated that mecamylamine causes nicotinic receptor specific temporary decline in cognitive functioning. Compared with the scopolamine model, pharmacodynamic effects were less pronounced at the dose levels tested; however, mecamylamine caused less sedation. The cognitive effects of scopolamine might at least partly be caused by sedation. Whether the mecamylamine model can be used for proof-of-pharmacology of nicotinic acetylcholine receptor agonists remains to be established.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeroen C. G. den Burger
- Department of Clinical Pharmacology and PharmacyVU University Medical CenterAmsterdamThe Netherlands
| | - Eleonora L. Swart
- Department of Clinical Pharmacology and PharmacyVU University Medical CenterAmsterdamThe Netherlands
| | | | | |
Collapse
|
9
|
Simpraga S, Alvarez-Jimenez R, Mansvelder HD, van Gerven JMA, Groeneveld GJ, Poil SS, Linkenkaer-Hansen K. EEG machine learning for accurate detection of cholinergic intervention and Alzheimer's disease. Sci Rep 2017; 7:5775. [PMID: 28720796 PMCID: PMC5515842 DOI: 10.1038/s41598-017-06165-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Monitoring effects of disease or therapeutic intervention on brain function is increasingly important for clinical trials, albeit hampered by inter-individual variability and subtle effects. Here, we apply complementary biomarker algorithms to electroencephalography (EEG) recordings to capture the brain’s multi-faceted signature of disease or pharmacological intervention and use machine learning to improve classification performance. Using data from healthy subjects receiving scopolamine we developed an index of the muscarinic acetylcholine receptor antagonist (mAChR) consisting of 14 EEG biomarkers. This mAChR index yielded higher classification performance than any single EEG biomarker with cross-validated accuracy, sensitivity, specificity and precision ranging from 88–92%. The mAChR index also discriminated healthy elderly from patients with Alzheimer’s disease (AD); however, an index optimized for AD pathophysiology provided a better classification. We conclude that integrating multiple EEG biomarkers can enhance the accuracy of identifying disease or drug interventions, which is essential for clinical trials.
Collapse
Affiliation(s)
- Sonja Simpraga
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Simon-Shlomo Poil
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,NBT Analytics BV, Amsterdam, The Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Noda Y, Zomorrodi R, Backhouse F, Cash RFH, Barr MS, Rajji TK, Chen R, Daskalakis ZJ, Blumberger DM. Reduced Prefrontal Short-Latency Afferent Inhibition in Older Adults and Its Relation to Executive Function: A TMS-EEG Study. Front Aging Neurosci 2017; 9:119. [PMID: 28512429 PMCID: PMC5411436 DOI: 10.3389/fnagi.2017.00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
Combining transcranial magnetic stimulation (TMS) with electroencephalography (EEG) allows for the assessment of various neurophysiological processes in the human cortex. One of these paradigms, short-latency afferent inhibition (SAI), is thought to be a sensitive measure of cholinergic activity. In a previous study, we demonstrated the temporal pattern of this paradigm from both the motor (M1) and dorsolateral prefrontal cortex (DLPFC) using simultaneous TMS-EEG recording. The SAI paradigm led to marked modulations at N100. In this study, we aimed to investigate the age-related effects on TMS-evoked potentials (TEPs) with the SAI from M1 and the DLPFC in younger (18-59 years old) and older (≥60 years old) participants. Older participants showed significantly lower N100 modulation in M1-SAI as well as DLPFC-SAI compared to the younger participants. Furthermore, the modulation of N100 by DLPFC-SAI in the older participants correlated with executive function as measured with the Trail making test. This paradigm has the potential to non-invasively identify cholinergic changes in cortical regions related to cognition in older participants.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada
| | - Felicity Backhouse
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada
| | - Robin F H Cash
- Division of Neurology, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Department of Medicine, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada.,Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University, The AlfredMelbourne, VIC, Australia
| | - Mera S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| | - Robert Chen
- Division of Neurology, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Department of Medicine, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| |
Collapse
|
11
|
Fitzpatrick CM, Caballero-Puntiverio M, Gether U, Habekost T, Bundesen C, Vangkilde S, Woldbye DPD, Andreasen JT, Petersen A. Theory of Visual Attention (TVA) applied to mice in the 5-choice serial reaction time task. Psychopharmacology (Berl) 2017; 234:845-855. [PMID: 28070619 DOI: 10.1007/s00213-016-4520-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE The 5-choice serial reaction time task (5-CSRTT) is widely used to measure rodent attentional functions. In humans, many attention studies in healthy and clinical populations have used testing based on Bundesen's Theory of Visual Attention (TVA) to estimate visual processing speeds and other parameters of attentional capacity. OBJECTIVES We aimed to bridge these research fields by modifying the 5-CSRTT's design and by mathematically modelling data to derive attentional parameters analogous to human TVA-based measures. METHODS C57BL/6 mice were tested in two 1-h sessions on consecutive days with a version of the 5-CSRTT where stimulus duration (SD) probe length was varied based on information from previous TVA studies. Thereafter, a scopolamine hydrobromide (HBr; 0.125 or 0.25 mg/kg) pharmacological challenge was undertaken, using a Latin square design. Mean score values were modelled using a new three-parameter version of TVA to obtain estimates of visual processing speeds, visual thresholds and motor response baselines in each mouse. RESULTS The parameter estimates for each animal were reliable across sessions, showing that the data were stable enough to support analysis on an individual level. Scopolamine HBr dose-dependently reduced 5-CSRTT attentional performance while also increasing reward collection latency at the highest dose. Upon TVA modelling, scopolamine HBr significantly reduced visual processing speed at both doses, while having less pronounced effects on visual thresholds and motor response baselines. CONCLUSIONS This study shows for the first time how 5-CSRTT performance in mice can be mathematically modelled to yield estimates of attentional capacity that are directly comparable to estimates from human studies.
Collapse
Affiliation(s)
- C M Fitzpatrick
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - M Caballero-Puntiverio
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - U Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - T Habekost
- Center for Visual Cognition, Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353, Copenhagen, Denmark
| | - C Bundesen
- Center for Visual Cognition, Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353, Copenhagen, Denmark
| | - S Vangkilde
- Center for Visual Cognition, Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353, Copenhagen, Denmark
| | - D P D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 3 Blegdamsvej, 2200, Copenhagen, Denmark
| | - J T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - A Petersen
- Center for Visual Cognition, Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353, Copenhagen, Denmark
| |
Collapse
|
12
|
Yegla B, Parikh V. Rejuvenating procholinergic treatments for cognition enhancement in AD: current challenges and future prospects. Front Syst Neurosci 2015; 8:254. [PMID: 25674054 PMCID: PMC4309160 DOI: 10.3389/fnsys.2014.00254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/29/2014] [Indexed: 11/23/2022] Open
|
13
|
Scarr E, Dean B. Role of the cholinergic system in the pathology and treatment of schizophrenia. Expert Rev Neurother 2014; 9:73-86. [DOI: 10.1586/14737175.9.1.73] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Lucas N, Saj A, Schwartz S, Ptak R, Thomas C, Conne P, Leroy R, Pavin S, Diserens K, Vuilleumier P. Effects of pro-cholinergic treatment in patients suffering from spatial neglect. Front Hum Neurosci 2013; 7:574. [PMID: 24062674 PMCID: PMC3771310 DOI: 10.3389/fnhum.2013.00574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/27/2013] [Indexed: 11/13/2022] Open
Abstract
Spatial neglect is a neurological condition characterized by a breakdown of spatial cognition contralateral to hemispheric damage. Deficits in spatial attention toward the contralesional side are considered to be central to this syndrome. Brain lesions typically involve right fronto-parietal cortices mediating attentional functions and subcortical connections in underlying white matter. Convergent findings from neuroimaging and behavioral studies in both animals and humans suggest that the cholinergic system might also be critically implicated in selective attention by modulating cortical function via widespread projections from the basal forebrain. Here we asked whether deficits in spatial attention associated with neglect could partly result from a cholinergic deafferentation of cortical areas subserving attentional functions, and whether such disturbances could be alleviated by pro-cholinergic therapy. We examined the effect of a single-dose transdermal nicotine treatment on spatial neglect in 10 stroke patients in a double-blind placebo-controlled protocol, using a standardized battery of neglect tests. Nicotine-induced systematic improvement on cancellation tasks and facilitated orienting to single visual targets, but had no significant effect on other tests. These results support a global effect of nicotine on attention and arousal, but no effect on other spatial mechanisms impaired in neglect.
Collapse
Affiliation(s)
- N Lucas
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva , Geneva , Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Demeter E, Sarter M. Leveraging the cortical cholinergic system to enhance attention. Neuropharmacology 2013; 64:294-304. [PMID: 22796110 PMCID: PMC3445745 DOI: 10.1016/j.neuropharm.2012.06.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/18/2012] [Accepted: 06/28/2012] [Indexed: 12/26/2022]
Abstract
Attentional impairments are found in a range of neurodegenerative and neuropsychiatric disorders. However, the development of procognitive enhancers to alleviate these impairments has been hindered by a lack of comprehensive hypotheses regarding the circuitry mediating the targeted attentional functions. Here we discuss the role of the cortical cholinergic system in mediating cue detection and attentional control and propose two target mechanisms for cognition enhancers: stimulation of prefrontal α4β2* nicotinic acetylcholine receptors (nAChR) for the enhancement of cue detection and augmentation of tonic acetylcholine levels for the enhancement of attentional control. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Elise Demeter
- Psychiatry Department, 4250 Plymouth Road, University of Michigan, Ann Arbor, MI 48109-5765, USA.
| | | |
Collapse
|
16
|
Y-Maze memory task in zebrafish (Danio rerio): The role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol Learn Mem 2012; 98:321-8. [DOI: 10.1016/j.nlm.2012.09.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/18/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022]
|
17
|
Bipolar disorder: clinical perspectives and implications with cognitive dysfunction and dementia. DEPRESSION RESEARCH AND TREATMENT 2012; 2012:275957. [PMID: 22685638 PMCID: PMC3368175 DOI: 10.1155/2012/275957] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 03/13/2012] [Accepted: 03/27/2012] [Indexed: 01/28/2023]
Abstract
Introduction. Cognitive dysfunction as a core feature in the course of bipolar affective disorder (BPD) is a current subject of debate and represents an important source of psychosocial and functional burden. Objectives. To stand out the connection and clinical implications between cognitive dysfunction, dementia, and BPD. Methods. A nonsystematic review of all English language PubMed articles published between 1995 and 2011 using the terms "bipolar disorder," "cognitive dysfunction," and "dementia". Discussion. As a manifestation of an affective trait or stage, both in the acute phases and in remission, the domains affected include attention, executive function, and verbal memory. The likely evolution or overlap with the behavioural symptoms of an organic dementia allows it to be considered as a dementia specific to BPD. This is named by some authors, as BPD type VI, but others consider it a form of frontotemporal dementia. It is still not known if this process is neurodevelopmental or neurodegenerative in nature, or both simultaneously. The assessment should consider the iatrogenic effects of medication, the affective symptoms, and a neurocognitive evaluation. Conclusion. More specific neuropsychological tests and functional imaging studies are needed and will assume an important role in the near future for diagnosis and treatment.
Collapse
|
18
|
Ginani GE, Tufik S, Bueno OFA, Pradella-Hallinan M, Rusted J, Pompéia S. Acute effects of donepezil in healthy young adults underline the fractionation of executive functioning. J Psychopharmacol 2011; 25:1508-16. [PMID: 21262858 DOI: 10.1177/0269881110391832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cholinergic system is involved in the modulation of both bottom-up and top-down attentional control. Top-down attention engages multiple executive control processes, but few studies have investigated whether all or selective elements of executive functions are modulated by the cholinergic system. To investigate the acute effects of the pro-cholinergic donepezil in young, healthy volunteers on distinct components of executive functions we conducted a double-blind, placebo-controlled, independent-groups design study including 42 young healthy male participants who were randomly assigned to one of three oral treatments: glucose (placebo), donepezil 5 mg or donepezil 7.5 mg. The test battery included measures of different executive components (shifting, updating, inhibition, dual-task performance, planning, access to long-term memory), tasks that evaluated arousal/vigilance/visuomotor performance, as well as functioning of working memory subsidiary systems. Donepezil improved sustained attention, reaction times, dual-task performance and the executive component of digit span. The positive effects in these executive tasks did not correlate with arousal/visuomotor/vigilance measures. Among the various executive domains investigated donepezil selectively increased dual-task performance in a manner that could not be ascribed to improvement in arousal/vigilance/visuomotor performance nor working memory slave systems. Other executive tasks that rely heavily on visuospatial processing may also be modulated by the cholinergic system.
Collapse
Affiliation(s)
- G E Ginani
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Prog Neurobiol 2011; 94:360-88. [PMID: 21708219 PMCID: PMC3382716 DOI: 10.1016/j.pneurobio.2011.06.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022]
Abstract
Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications.
Collapse
|
20
|
Abstract
As indicated by the profound cognitive impairments caused by cholinergic receptor antagonists, cholinergic neurotransmission has a vital role in cognitive function, specifically attention and memory encoding. Abnormally regulated cholinergic neurotransmission has been hypothesized to contribute to the cognitive symptoms of neuropsychiatric disorders. Loss of cholinergic neurons enhances the severity of the symptoms of dementia. Cholinergic receptor agonists and acetylcholinesterase inhibitors have been investigated for the treatment of cognitive dysfunction. Evidence from experiments using new techniques for measuring rapid changes in cholinergic neurotransmission provides a novel perspective on the cholinergic regulation of cognitive processes. This evidence indicates that changes in cholinergic modulation on a timescale of seconds is triggered by sensory input cues and serves to facilitate cue detection and attentional performance. Furthermore, the evidence indicates cholinergic induction of evoked intrinsic, persistent spiking mechanisms for active maintenance of sensory input, and planned responses. Models have been developed to describe the neuronal mechanisms underlying the transient modulation of cortical target circuits by cholinergic activity. These models postulate specific locations and roles of nicotinic and muscarinic acetylcholine receptors and that cholinergic neurotransmission is controlled in part by (cortical) target circuits. The available evidence and these models point to new principles governing the development of the next generation of cholinergic treatments for cognitive disorders.
Collapse
|
21
|
Cholinergic modulation of hippocampal activity during episodic memory encoding in postmenopausal women: a pilot study. Menopause 2010; 17:852-9. [PMID: 20616672 DOI: 10.1097/gme.0b013e3181e04db9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The cholinergic system has been shown to modulate estrogen effects on cognitive performance in postmenopausal women. In an effort to further understand cholinergic contributions to cognition after menopause, this pilot study investigated the effects of two receptor-specific anticholinergic drugs on brain activation and episodic memory encoding in postmenopausal women not taking estrogen. METHODS Six healthy postmenopausal women took part in three drug challenges using the antimuscarinic drug scopolamine (2.5 microg/kg IV), the antinicotinic drug mecamylamine (20 mg PO), and placebo. During functional magnetic resonance imaging, participants performed a visual-verbal continuous recognition memory test that allowed for the separation of encoding and recognition processes. RESULTS Functional magnetic resonance imaging results showed greater hippocampal and frontal activation and less occipital activation during encoding relative to retrieval conditions. This pattern of activation was similar under both drug challenges. CONCLUSIONS These results suggest that the changes in the cholinergic system may, in part, be responsible for menopause-related increases in brain activation.
Collapse
|
22
|
Blin O, Audebert C, Pitel S, Kaladjian A, Casse-Perrot C, Zaim M, Micallef J, Tisne-Versailles J, Sokoloff P, Chopin P, Marien M. Effects of dimethylaminoethanol pyroglutamate (DMAE p-Glu) against memory deficits induced by scopolamine: evidence from preclinical and clinical studies. Psychopharmacology (Berl) 2009; 207:201-12. [PMID: 19756528 DOI: 10.1007/s00213-009-1648-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Dimethylaminoethanol pyroglutamate (DMAE p-Glu) is a compound resulting from the reaction between dimethylaminoethanol (an indirect precursor of acetylcholine) and pyroglutamic acid (a cyclic derivative of glutamic acid having procholinergic properties and promnesic effects in both animals and man). OBJECTIVES The present study undertook preclinical and clinical evaluations to test a potential therapeutic utility for DMAE p-Glu in cognitive impairments related to central cholinergic deficit. MATERIALS AND METHODS In preclinical study, DMAE p-Glu was studied in rats by intracerebral microdialysis in conscious freely moving animals, on performance of rats in the Morris water maze test of spatial memory, and on the deficit in passive avoidance behavior induced by scopolamine. The clinical study examined the effect of DMAE p-Glu on cognitive deficits induced by an intravenous injection of scopolamine in healthy young male subjects. RESULTS In rat experiments, DMAE p-Glu increased the extracellular levels of choline and acetylcholine in the medial prefrontal cortex, as assessed by intracerebral microdialysis, improved performance in a test of spatial memory, and reduced scopolamine-induced memory deficit in passive avoidance behavior. Clinical study results show that scopolamine induced a memory deficit and that DMAE p-Glu produced a significant positive effect on scores in the Buschke test, as well as a slight but significant difference on choice reaction time. CONCLUSION These results indicate that DMAE p-Glu reduces the deleterious effect of scopolamine on long-term memory in healthy volunteers and suggest that DMAE p-Glu might be effective in reducing memory deficits in patients with cognitive impairment.
Collapse
Affiliation(s)
- Olivier Blin
- CIC-UPCET, UMR CNRS-Université de la Méditerranée 6193, Hôpital de la Timone, 13385, Marseille cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
OBJECTIVES The presence of cognitive deficits has become increasingly appreciated across all phases of bipolar disorder. The present review sought to identify domains of cognitive dysfunction, methods of assessment, discrimination of iatrogenic from illness-specific etiologies, and pharmacologic strategies to manage cognitive problems in patients with bipolar disorder. METHODS A selective literature review was performed focusing on studies of descriptive phenomenology and pharmacologic intervention (favoring randomized comparisons when existent but open trials or case reports when not) involving cognition in bipolar disorder populations, healthy volunteers, or other clinical populations. Identification was made of (i) practical strategies for clinical assessment and management of cognitive complaints, (ii) limitations of existing intervention studies, and (iii) recommendations for the design and direction of future research. RESULTS Cognitive deficits involving attention, executive function, and verbal memory are evident across all phases of bipolar disorder. Most existing treatment studies involve nonbipolar populations, prompting caution when extrapolating outcomes to individuals with bipolar disorder. Differentiating medication- from illness-induced cognitive dysfunction requires comprehensive assessment with an appreciation for the cognitive domains most affected by specific medications. No current pharmacotherapies substantially improve cognition in bipolar disorder, although preliminary findings suggest some potential value for adjunctive stimulants such as modafinil and novel experimental agents. CONCLUSIONS Circumscribed cognitive deficits may be both iatrogenic and intrinsic to bipolar disorder. Optimal management hinges on a knowledge of illness-specific cognitive domains as well as of the beneficial or adverse cognitive profiles of common psychotropic medications.
Collapse
Affiliation(s)
- Joseph F Goldberg
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
24
|
Synergistic effects of genetic variation in nicotinic and muscarinic receptors on visual attention but not working memory. Proc Natl Acad Sci U S A 2009; 106:3633-8. [PMID: 19211801 DOI: 10.1073/pnas.0807891106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is widely appreciated that neurotransmission systems interact in their effects on human cognition, but those interactions have been little studied. We used genetics to investigate pharmacological evidence of synergisms in nicotinic/muscarinic interactions on cognition. We hypothesized that joint influences of nicotinic and muscarinic systems would be reflected in cognitive effects of normal variation in known SNPs in nicotinic (CHRNA4 rs1044396) and muscarinic (CHRM2 rs8191992) receptor genes. Exp. 1 used a task of cued visual search. The slope of the cue size/reaction time function showed a trend level effect of the muscarinic CHRM2 SNP, no effect of the nicotinic CHRNA4 SNP, but a significant interaction between the 2 SNPs. Slopes were steepest in individuals who were both CHRNA4 C/C and CHRM2 T/T homozygotes. To determine the specificity of this synergism, Exp. 2 assessed working memory for 1-3 locations over 3 s and found no significant effects on either SNP. Interpreting these results in light of Sarter's [Briand LA, et al. (2007) Modulators in concert for cognition: Modulator interactions in the prefrontal cortex. Prog Neurobiol 83:69-91] claims of tonic and phasic modes of cholinergic activity, we argue that reorienting attention to the target after invalid cues requires a phasic response, dependent on the nicotinic system, whereas orienting attention to valid cues requires a tonic response, dependent on the muscarinic system. Consistent with that, shifting and scaling after valid cues (tonic) were strongest in CHRNA4 C/C homozygotes who were also CHRM2 T/T homozygotes. This shows synergistic effects within the human cholinergic system.
Collapse
|
25
|
Dumas JA, Saykin AJ, McAllister TW, McDonald BC, Hynes ML, Newhouse PA. Nicotinic versus muscarinic blockade alters verbal working memory-related brain activity in older women. Am J Geriatr Psychiatry 2008; 16:272-82. [PMID: 18378552 PMCID: PMC3114443 DOI: 10.1097/jgp.0b013e3181602a2b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES An important aspect of furthering our understanding of the central nervous system function after menopause is to examine the cerebral circuitry that appears to be influenced by cholinergic antagonist drugs in the presence and absence of estrogen. This pilot study investigated the effects of two anticholinergic drugs on brain activation and working memory performance in postmenopausal women not taking estrogen. This approach simulates the effects of age- or disease-related neuroreceptor or neuronal loss by temporarily blocking pre- and postsynaptic muscarinic and nicotinic cholinergic receptors. DESIGN Six healthy postmenopausal women took part in three drug challenges using the antinicotinic drug mecamylamine (MECA, 20 mg, oral), the antimuscarinic drug scopolamine (SCOP, 2.5 microg/kg, i.v.), and placebo during functional magnetic resonance imaging. The cognitive measure was a visually presented verbal N-back test of working memory. RESULTS Neither MECA nor SCOP significantly impaired performance on the verbal N-back. Functional magnetic resonance imaging results showed greater increases in frontal lobe activation in the placebo condition relative to each drug condition with different specific regional activation for MECA and SCOP. CONCLUSIONS These preliminary results suggest that brain activation patterns are sensitive to cholinergic modulation in postmenopausal women and that differential effects may be observed following nicotinic versus muscarinic blockade. This approach offers a potentially valuable method for modeling age-related changes in brain function, and the findings may have implications for cholinergic contributions to normal and pathologic aging.
Collapse
Affiliation(s)
- Julie A. Dumas
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology, Indiana University School of Medicine
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School
| | | | - Brenna C. McDonald
- Center for Neuroimaging, Department of Radiology, Indiana University School of Medicine
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School
| | - Mary L. Hynes
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School
| | - Paul A. Newhouse
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine
| |
Collapse
|
26
|
Liu Y, LeBoeuf B, Garcia LR. G alpha(q)-coupled muscarinic acetylcholine receptors enhance nicotinic acetylcholine receptor signaling in Caenorhabditis elegans mating behavior. J Neurosci 2007; 27:1411-21. [PMID: 17287516 PMCID: PMC6673585 DOI: 10.1523/jneurosci.4320-06.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/28/2006] [Accepted: 12/12/2006] [Indexed: 11/21/2022] Open
Abstract
In this study, we address why metabotropic and ionotropic cholinergic signaling pathways are used to facilitate motor behaviors. We demonstrate that a G alpha(q)-coupled muscarinic acetylcholine receptor (mAChR) signaling pathway enhances nicotinic acetylcholine receptor (nAChR) signaling to facilitate the insertion of the Caenorhabditis elegans male copulatory spicules into the hermaphrodite during mating. Previous studies showed that ACh (acetylcholine) activates nAChRs on the spicule protractor muscles to induce the attached spicules to extend from the tail. Using the mAChR agonist Oxo M (oxotremorine M), we identified a GAR-3(mAChR)-G alpha(q) pathway that promotes protractor muscle contraction by upregulating nAChR signaling before mating. GAR-3(mAChR) is expressed in the protractor muscles and in the spicule-associated SPC and PCB cholinergic neurons. However, ablation of these neurons or impairing cholinergic transmission reduces drug-induced spicule protraction, suggesting that drug-stimulated neurons directly activate muscle contraction. Behavioral analysis of gar-3 mutants indicates that, in wild-type males, GAR-3(mAChR) expression in the SPC and PCB neurons is required for the male to sustain rhythmic spicule muscle contractions during attempts to breach the vulva. We propose that the GAR-3(mAChR)/G alpha(q) pathway sensitizes the spicule neurons and muscles before and during mating so that the male can respond to hermaphrodite vulva efficiently.
Collapse
MESH Headings
- Acetylcholine/physiology
- Animals
- Animals, Genetically Modified
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins/drug effects
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/physiology
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Disorders of Sex Development
- GTP-Binding Protein alpha Subunits, Gq-G11/deficiency
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Genitalia/innervation
- Genitalia/physiology
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Isoenzymes/physiology
- Levamisole/pharmacology
- Muscarinic Agonists/pharmacology
- Muscle Contraction/physiology
- Mutation, Missense
- Neurons/physiology
- Oxotremorine/pharmacology
- Periodicity
- Phospholipase C beta
- Potassium Channels/deficiency
- Potassium Channels/genetics
- Potassium Channels/physiology
- Receptors, Muscarinic/deficiency
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/physiology
- Receptors, Nicotinic/physiology
- Recombinant Fusion Proteins/physiology
- Ryanodine Receptor Calcium Release Channel/drug effects
- Sexual Behavior, Animal/physiology
- Signal Transduction/physiology
- Syntaxin 1/deficiency
- Syntaxin 1/genetics
- Syntaxin 1/physiology
- Type C Phospholipases/deficiency
- Type C Phospholipases/genetics
- Type C Phospholipases/physiology
- Vesicular Acetylcholine Transport Proteins/deficiency
- Vesicular Acetylcholine Transport Proteins/genetics
- Vesicular Acetylcholine Transport Proteins/physiology
Collapse
Affiliation(s)
- Yishi Liu
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - L. René Garcia
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| |
Collapse
|