1
|
Shaji V, Dagamajalu S, Sanjeev D, George M, Kanekar S, Prasad G, Keshava Prasad TS, Raju R, Devasahayam Arokia Balaya R. Deciphering the Receptor-Mediated Signaling Pathways of Interleukin-19 and Interleukin-20. J Interferon Cytokine Res 2024; 44:388-398. [PMID: 38451706 DOI: 10.1089/jir.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Affiliation(s)
- Vineetha Shaji
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Diya Sanjeev
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Mejo George
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Saptami Kanekar
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Ganesh Prasad
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
2
|
Toskas A, Milias S, Delis G, Meditskou S, Sioga A, Karachrysafi S, Papamitsou T. Immunohistochemical Analysis of IL-19 and IL-24 Expression in Inflammatory Bowel Disease (IBD) Patients: Results From a Single Center Retrospective Study. Cureus 2024; 16:e64441. [PMID: 39007024 PMCID: PMC11245665 DOI: 10.7759/cureus.64441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/16/2024] Open
Abstract
Background IL-19 and IL-24 induce proinflammatory cytokine production through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The primary objective of this study was to investigate any changes in IL-19 and IL-24 expression between inflammatory bowel disease (IBD) patients and healthy controls, as well as before and after the initiation of biologics. The secondary objective was to investigate any relation between their expression and disease phenotype and activity. Methods IL-19 and IL-24 expression was measured in intestinal tissue samples from 121 patients with moderate to severe IBD versus healthy controls using immunohistochemistry. Their expression was then measured 12 months after treatment on the patient group treated with biologics. The disease activity was measured before and after treatment using the Harvey Bradshaw Index (HBI) for Crohn's disease (CD) patients and the Mayo Score (MS) for ulcerative colitis (UC) patients. Data were analyzed using SPSS (IBM Inc., Armonk, New York). Results IL-19 expression was raised in the IBD group versus healthy controls. In the CD group, the IL-19 expression was related with the disease activity score post-biologic treatment. IL-24 was also highly expressed in patients with active UC and CD and was increased post-treatment. Its expression in UC was statistically related with the MS. Conclusions IL-24 and IL-19 are key factors in IBD-related intestinal inflammation and this is one of the few human studies to suggest that. An immunosuppressive role of IL-24 was demonstrated in the UC group. A future use as biomarkers of disease activity and response to treatment might be feasible.
Collapse
Affiliation(s)
| | - Stephanos Milias
- Histopathology, Private Histopathology Laboratory, Thessaloniki, GRC
| | - Georgios Delis
- Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Soultana Meditskou
- Histology and Embryology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Antonia Sioga
- Histology and Embryology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Sofia Karachrysafi
- Histology and Embryology, Aristotle University of Thessaloniki, Thessaloniki, GRC
- Medicine, "George Papanikolaou" General Hospital of Thessaloniki, Thessaloniki, GRC
| | - Theodora Papamitsou
- Histology and Embryology, Aristotele University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
3
|
Nishiyama K, Horikoshi J, Maehara T, Tanaka M, Tanida T, Kawada K, Takeshita S, Ono N, Izawa T, Kuwamura M, Azuma YT. Deficiency of interleukin-19 exacerbates acute lung injury induced by intratracheal treatment of hydrochloric acid. J Pharmacol Sci 2024; 155:94-100. [PMID: 38797538 DOI: 10.1016/j.jphs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Interleukin (IL-19) belongs to the IL-10 family of cytokines and plays diverse roles in inflammation, cell development, viral responses, and lipid metabolism. Acute lung injury (ALI) is a severe respiratory condition associated with various diseases, including severe pneumonia, sepsis, and trauma, lacking established treatments. However, the role of IL-19 in acute inflammation of the lungs is unknown. We reported the impact of IL-19 functional deficiency in mice crossed with an ALI model using HCl. Lungs damages, neutrophil infiltration, and pulmonary edema induced by HCl were significantly worse in IL-19 knockout (KO) mice than in wild-type (WT) mice. mRNA expression levels of C-X-C motif chemokine ligand 1 (CXCL1) and IL-6 in the lungs were significantly higher in IL-19 KO mice than in WT mice. Little apoptosis was detected in lung injury in WT mice, whereas apoptosis was observed in exacerbated area of lung injury in IL-19 KO mice. These results are the first to show that IL-19 is involved in acute inflammation of the lungs, suggesting a novel molecular mechanism in acute respiratory failures. If it can be shown that neutrophils have IL-19 receptors and that IL-19 acts directly on them, it would be a novel drug target.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka, Japan
| | - Joji Horikoshi
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka, Japan
| | - Toko Maehara
- Department of Veterinary Pharmacology and Toxicology, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka, 598-8531, Japan
| | - Takashi Tanida
- Laboratory of Veterinary Anatomy, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka, Japan
| | - Koichi Kawada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Susumu Takeshita
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka, Japan
| | - Naoshige Ono
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka, 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka, 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka, Japan.
| |
Collapse
|
4
|
He E, Sui H, Wang H, Zhao X, Guo W, Dai Z, Wu Z, Huang K, Zhao Q. Interleukin-19 in Bone Marrow Contributes to Bone Loss Via Suppressing Osteogenic Differentiation Potential of BMSCs in Old Mice. Stem Cell Rev Rep 2024; 20:1311-1324. [PMID: 38502291 DOI: 10.1007/s12015-024-10709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Cellular senescence is an important process related to the pathogenic mechanism of different disorders, especially bone loss. During senescence, bone marrow stromal cells (BMSCs) lose their self-renewal and functional differentiation abilities. Therefore, finding signals opposing the osteogenic differentiation of BMSCs within bone marrow microenvironment is the important for elucidating these above-mentioned mechanisms. Inflammatory cytokines affect bone physiology and remodeling. However, the function of interleukin-19 (IL-19) in skeletal system remains unclear. METHODS The mouse model of IL-19 knockout was established through embryonic stem cell injection for analyzing how IL-19 affected bone formation. Micro-CT examinations were performed to evaluate bone microstructures. We performed a three-point bending test to measure bone stiffness and the ultimate force. Antibody arrays were performed to detect interleukin family members in bone marrow aspirates. BMSCs were cultured and induced for osteogenic differentiation. RESULTS According to our findings, there was increased IL-19 accumulation within bone marrow in old mice relative to that in their young counterparts, resulting in bone loss via the inhibition of BMSCs osteogenic differentiation. Among Wnt/β-catenin pathway members, IL-19 strongly upregulated sFRP1 via STAT3 phosphorylation. The inhibition of STAT3 and sFRP1 abolished IL-19's inhibition against the BMSCs osteogenic differentiation. CONCLUSION To sum up, IL-19 inhibited BMSCs osteogenic differentiation in old mice. Our findings shed novel lights on pathogenic mechanism underlying age-related bone loss and laid a foundation for further research on identifying novel targets to treat senile osteoporosis.
Collapse
Affiliation(s)
- Enjun He
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Sui
- Department of Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Hongjie Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhao
- Department of Surgery of Spine and Spinal Cord, People's Hospital of Henan University, Henan Provincial People's Hospital, Henan, Zhengzhou, China
| | - Weihong Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Dai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenkai Wu
- Department of Pediatric Orthopaedics, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital of Jing'an District, Shanghai, China.
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Guglielmo A, Zengarini C, Agostinelli C, Motta G, Sabattini E, Pileri A. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets. Cells 2024; 13:584. [PMID: 38607023 PMCID: PMC11012008 DOI: 10.3390/cells13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs), encompassing mycosis fungoides (MF) and Sézary syndrome (SS), present a complex landscape influenced by cytokines and cellular responses. In this work, the intricate relationship between these inflammatory proteins and disease pathogenesis is examined, focusing on what is known at the clinical and therapeutic levels regarding the most well-known inflammatory mediators. An in-depth look is given to their possible alterations caused by novel immunomodulatory drugs and how they may alter disease progression. From this narrative review of the actual scientific landscape, Interferon-gamma (IFN-γ) emerges as a central player, demonstrating a dual role in both promoting and inhibiting cancer immunity, but the work navigates through all the major interleukins known in inflammatory environments. Immunotherapeutic perspectives are elucidated, highlighting the crucial role of the cutaneous microenvironment in shaping dysfunctional cell trafficking, antitumor immunity, and angiogenesis in MF, showcasing advancements in understanding and targeting the immune phenotype in CTCL. In summary, this manuscript aims to comprehensively explore the multifaceted aspects of CTCL, from the immunopathogenesis and cytokine dynamics centred around TNF-α and IFN-γ to evolving therapeutic modalities. Including all the major known and studied cytokines in this analysis broadens our understanding of the intricate interplay influencing CTCL, paving the way for improved management of this complex lymphoma.
Collapse
Affiliation(s)
- Alba Guglielmo
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Corrado Zengarini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
6
|
Chiriac MT, Hracsko Z, Günther C, Gonzalez-Acera M, Atreya R, Stolzer I, Wittner L, Dressel A, Schickedanz L, Gamez-Belmonte R, Erkert L, Hundorfean G, Zundler S, Rath T, Vetrano S, Danese S, Sturm G, Trajanoski Z, Kühl AA, Siegmund B, Hartmann A, Wirtz S, Siebler J, Finotto S, Becker C, Neurath MF. IL-20 controls resolution of experimental colitis by regulating epithelial IFN/STAT2 signalling. Gut 2024; 73:282-297. [PMID: 37884352 PMCID: PMC10850655 DOI: 10.1136/gutjnl-2023-329628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/10/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVE We sought to investigate the role of interleukin (IL)-20 in IBD and experimental colitis. DESIGN Experimental colitis was induced in mice deficient in components of the IL-20 and signal transducer and activator of transcription (STAT)2 signalling pathways. In vivo imaging, high-resolution mini-endoscopy and histology were used to assess intestinal inflammation. We further used RNA-sequencing (RNA-Seq), RNAScope and Gene Ontology analysis, western blot analysis and co-immunoprecipitation, confocal microscopy and intestinal epithelial cell (IEC)-derived three-dimensional organoids to investigate the underlying molecular mechanisms. Results were validated using samples from patients with IBD and non-IBD control subjects by a combination of RNA-Seq, organoids and immunostainings. RESULTS In IBD, IL20 levels were induced during remission and were significantly higher in antitumour necrosis factor responders versus non-responders. IL-20RA and IL-20RB were present on IECs from patients with IBD and IL-20-induced STAT3 and suppressed interferon (IFN)-STAT2 signalling in these cells. In IBD, experimental dextran sulfate sodium (DSS)-induced colitis and mucosal healing, IECs were the main producers of IL-20. Compared with wildtype controls, Il20-/-, Il20ra-/- and Il20rb-/- mice were more susceptible to experimental DSS-induced colitis. IL-20 deficiency was associated with increased IFN/STAT2 activity in mice and IFN/STAT2-induced necroptotic cell death in IEC-derived organoids could be markedly blocked by IL-20. Moreover, newly generated Stat2ΔIEC mice, lacking STAT2 in IECs, were less susceptible to experimental colitis compared with wildtype controls and the administration of IL-20 suppressed colitis activity in wildtype animals. CONCLUSION IL-20 controls colitis and mucosal healing by interfering with the IFN/STAT2 death signalling pathway in IECs. These results indicate new directions for suppressing gut inflammation by modulating IL-20-controlled STAT2 signals.
Collapse
Affiliation(s)
- Mircea Teodor Chiriac
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Zsuzsanna Hracsko
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Leonie Wittner
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Anja Dressel
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Laura Schickedanz
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Gheorghe Hundorfean
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Timo Rath
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefania Vetrano
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Pieve Emanuele, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy & Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Universita Vita Salute San Raffaele, Milano, Italy
| | - Gregor Sturm
- Medical University of Innsbruck, Biocenter, Institute of Bioinformatics, Innsbruck, Austria
| | - Zlatko Trajanoski
- Medical University of Innsbruck, Biocenter, Institute of Bioinformatics, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin, Core Unit of Charité, Campus Benjamin Franklin, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Jürgen Siebler
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Susetta Finotto
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Molecular Pneumology, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
7
|
Ono N, Fujita T, Miki M, Nishiyama K, Izawa T, Aoyama T, Kuwamura M, Fujii H, Azuma YT. Interleukin-19 Gene-Deficient Mice Promote Liver Fibrosis via Enhanced TGF-β Signaling, and the Interleukin-19-CCL2 Axis Is Important in the Direction of Liver Fibrosis. Biomedicines 2023; 11:2064. [PMID: 37509702 PMCID: PMC10377488 DOI: 10.3390/biomedicines11072064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
IL-19 is a cytokine discovered by homologous searching with IL-10 and is produced by non-immune cells, such as keratinocytes, in addition to immune cells, such as macrophages. Liver fibrosis results from the inflammation and activation of hepatic stellate cells via chronic liver injury. However, the participation of IL-19 in liver fibrosis remains to be sufficiently elucidated. Our group studied the immunological function of IL-19 in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis. IL-19 gene-deficient (KO) mice and body weight-matched wild-type (WT) mice were used. A liver fibrosis mouse model was created via CCl4 administration (two times per week) for 8 weeks. In CCl4-induced liver fibrosis, serum analysis revealed that IL-19 KO mice had higher ALT levels compared to WT mice. IL-19 KO mice had worse fibrosis, as assessed by morphological evaluation of total area stained positive with Azan and Masson trichrome. In addition, the expression of α-SMA was increased in liver tissues of IL-19 KO mice compared to WT mice. Furthermore, mRNA expression levels of TGF-β and α-SMA were enhanced in IL-19 KO mice compared to WT mice. In vitro assays revealed that IL-19-high expressing RAW264.7 cells inhibited the migration of NIH3T3 cells via the inhibited expression of CCL2 in the presence of CCl4 and IL-4. These findings indicate that IL-19 plays a critical role in liver fibrosis by affecting TGF-β signaling and the migration of hepatic stellate cells during liver injury. Enhancement of the IL-19 signaling pathway is a potential treatment for liver fibrosis.
Collapse
Affiliation(s)
- Naoshige Ono
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| | - Takashi Fujita
- Molecular Toxicology Laboratory, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Mariko Miki
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| | - Tomoko Aoyama
- Molecular Toxicology Laboratory, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Yasu-Taka Azuma
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan
| |
Collapse
|
8
|
Chen SY, Chu CT, Yang ML, Lin JD, Wang CT, Lee CH, Lin IC, Shiau AL, Ling P, Wu CL. Amelioration of Murine Colitis by Attenuated Salmonella choleraesuis Encoding Interleukin-19. Microorganisms 2023; 11:1530. [PMID: 37375032 DOI: 10.3390/microorganisms11061530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The imbalance of mucosal immunity in the lower gastrointestinal tract can lead to chronic inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis. IBD is a chronic inflammatory disorder that causes small and/or large intestines ulceration. According to previous studies, recombinant interleukin (IL)-10 protein and genetically modified bacteria secreting IL-10 ameliorate dextran sulfate sodium (DSS)-induced colitis in mice. IL-19 is a transcriptional activator of IL-10 and can alter the balance of T helper 1 (Th)1/Th2 cells in favor of Th2. In this study, we aimed to investigate whether the expression of the murine IL-19 gene carried by Salmonella choleraesuis (S. choleraesuis) could ameliorate murine IBD. Our results showed that the attenuated S. choleraesuis could carry and express the IL-19 gene-containing plasmid for IBD gene therapy by reducing the mortality and clinical signs in DSS-induced acute colitis mice as compared to the untreated ones. We also found that IL-10 expression was induced in IL-19-treated colitis mice and prevented inflammatory infiltrates and proinflammatory cytokine expression in these mice. We suggest that S. choleraesuis encoding IL-19 provides a new strategy for treating IBD in the future.
Collapse
Affiliation(s)
- Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Chun-Ting Chu
- Division of Colorectal Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 539, Zhongxiao Road, Chiayi City 60002, Taiwan
| | - Mei-Lin Yang
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jian-Da Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City 10617, Taiwan
| | - Chung-Teng Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - I-Chen Lin
- Division of Colorectal Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 539, Zhongxiao Road, Chiayi City 60002, Taiwan
| | - Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pin Ling
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
9
|
Li Q, Meng F, Ma X, Sun Z, Dai J, Liu J, Li D, Cong P, Xu R, Zhao D, Wang W, Wang D, Liu C, Wang F, Li C, Lian H. The colonic interleukin-19 aggravates the dextran sodium sulfate/stress-induced comorbidities due to colitis and anxiety. Front Immunol 2023; 14:1153344. [PMID: 36936941 PMCID: PMC10018752 DOI: 10.3389/fimmu.2023.1153344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Comorbidities due to inflammatory bowel disease (IBD) and anxiety are commonly acknowledged; however, their underlying basis is unclear. In the current study, we first conducted a clinical retrospective analysis to identify the enhancive incidence rate of IBD before or after the epidemic of Corona Virus Disease 2019 (COVID-19), with higher Generalized Anxiety Disorder-7 (GAD-7), as well as poorer Gastrointestinal Quality of Life Index (GIQLI). Then, the dextran sodium sulfate (DSS) and chronic unpredictable stress (CUS)-induced IBD and anxiety comorbid models were established with the correlational relations between symptoms of IBD and anxiety-related behaviors. We found dysfunctional up-regulation of a new inflammatory factor interleukin (IL)-19 in the colon of DSS/CUS treated mice. Overexpression of IL-19 in colon induced anxious phenotypes, and accelerated the anxious condition and symptoms of colitis in the DSS/CUS model by promoting the expression of inducible nitric oxide synthase (iNOS), IL-1β, and IL-6 pro-inflammatory factors, and activating signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon. Furthermore, overexpression of IL-19 in the colon also reduced the expression levels of brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase (ERK), and cAMP-response element binding protein (CREB) signaling pathways activity in the hippocampus. These results suggest that IL-19 was a pivotal player in DSS/CUS-induced comorbidities of colitis and anxiety with different signaling pathways for the colon and hippocampus, which provides a candidate gene to explore the pathophysiology of comorbidities due to colitis and anxiety.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Fantao Meng
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Xiangxian Ma
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, China
| | - Zhe Sun
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Juanjuan Dai
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Jing Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Li
- College of Nursing, Binzhou Medical University, Binzhou, China
| | - Peijia Cong
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Ruixue Xu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Di Zhao
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Wentao Wang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Wang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Cuilan Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Faxiang Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- *Correspondence: Chen Li, ; Haifeng Lian, ; Faxiang Wang,
| | - Chen Li
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Chen Li, ; Haifeng Lian, ; Faxiang Wang,
| | - Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Chen Li, ; Haifeng Lian, ; Faxiang Wang,
| |
Collapse
|
10
|
Carter LE, Bugiel S, Nunnikhoven A, Verster AJ, Bondy GS, Curran IHA. Genomic analysis of Fisher F344 rat kidneys from a reproductive study following dietary ochratoxin A exposure. Food Chem Toxicol 2022; 167:113302. [PMID: 35843423 DOI: 10.1016/j.fct.2022.113302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by species of Penicillium and Aspergillus, and is found in many commodities including cereal grains, nuts, and coffee. OTA is a renal carcinogen and nephrotoxin at high concentrations, targeting the proximal tubules. This study uses transcriptomics and the previously reported apical data (Bondy et al., 2021) to infer mode-of-action of OTA toxicity in male and female rats exposed to low doses of OTA in utero and throughout development. Our findings support a male-specific activation of the innate and adaptive immune responses in F1 pups to OTA exposure. This was not found in the female F1 pups, and may be due to female-specific increased p38 activity and VDR signaling. Differentially expressed genes related to karyomegaly, MAPK activity, and immune activation appears to develop from in utero exposure to OTA whereas those related to decreased kidney and liver function, and changes to reproductive pathways occur in both rat generations. Together, these transcriptional results confirm that dietary exposure to OTA causes renal toxicity as well as alterations to hepatic and reproductive pathways in rats. In utero exposure of rats to OTA results in sex-specific alterations in immune response pathways, VDR signaling, and p38 activity.
Collapse
Affiliation(s)
- L E Carter
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - S Bugiel
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A Nunnikhoven
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A J Verster
- Bureau of Food Surveillance and Science Integration, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - G S Bondy
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - I H A Curran
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
11
|
Liu Z, Zhao J, Sun R, Wang M, Wang K, Li Y, Shang H, Hou J, Jiang Z. Lactobacillus plantarum 23-1 improves intestinal inflammation and barrier function through the TLR4/NF-κB signaling pathway in obese mice. Food Funct 2022; 13:5971-5986. [PMID: 35546499 DOI: 10.1039/d1fo04316a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a natural active ingredient, lactic acid bacteria have potential anti-inflammatory effects. In this study, male C57BL/6J mice were given a high-fat diet (HFD) to establish an obese mouse model. Lactobacillus plantarum 23-1 (LP23-1) with prebiotic characteristics was intervened for 8 weeks to evaluate its remission effect on obese animals and related mechanisms. The effects of LP23-1 on lipid accumulation and intestinal inflammation in HFD-fed mice were systematically evaluated by detecting lipid accumulation, blood lipid level, pathological changes in the liver and small intestine, oxidative stress and inflammatory cell level, lipid transport-related gene expression, the inflammatory signaling pathway, and intestinal tight junction (TJ) mRNA and protein expression. The results showed that LP23-1 could significantly reduce the body weight and fat index of HFD-fed mice, improve the lipid levels of serum and liver, reduce the histopathological damage to the liver and small intestine, and alleviate oxidative stress and inflammatory response caused by obesity. In addition, reverse transcription-polymerase chain reaction and western blot analysis showed that LP23-1 could regulate the mRNA expression of lipid transport-related genes; activate the TLR4/NF-κB signaling pathway; reduce intestinal inflammation; improve the mRNA and protein expression of intestinal TJ proteins zona occludens-1 (ZO-1), occludin, claudin-1, and Muc2; repair intestinal mucosal injury; and enhance intestinal barrier function. The aforementioned results showed that LP23-1 through the TLR4/NF-κB signaling pathway and intestinal barrier function reduced obesity symptoms. This study provided new insights into the mechanism of LP23-1 in reducing obesity and provided a theoretical basis for developing new functional foods.
Collapse
Affiliation(s)
- Zhijing Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jiale Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Rongbo Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Min Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Kunyang Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yanan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hang Shang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Kamyshna I, Kamyshnyi A. Transcription factors and regulators pathway-focused genes expression analysis in patients with different forms of thyroid pathology. Curr Pharm Biotechnol 2022; 23:1396-1404. [PMID: 35176984 DOI: 10.2174/1389201023666220217123454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autoimmune thyroiditis (AIT) is a T cell-mediated organ-specific disorder and transcription factors have a critical role in the regulation of immune responses, especially in the fate of T-helper cells. OBJECTIVE This study aims to investigate changes in the gene expression profile of transcription factors and regulators in patients with different forms of thyroid pathology Methods. We used the pathway-specific real-time PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and verify transcription factors and regulators pathway-focused genes expression in peripheral white blood cells of patients with postoperative hypothyroidism, hypothyroidism as a result of AIT and AIT with elevated serum an anti-thyroglobulin (anti-Tg) and anti-thyroid peroxidase (anti-TPO) antibodies. RESULTS It was shown that in patients with postoperative hypothyroidism FOS, NR1I2, STAT4, and TP53 significantly increased their expression whereas the expression of STAT1, STAT2, and STAT3 decreased. In patients with hypothyroidism as a result of AIT, we have found increased expression of NR1I2, STAT2, and STAT3. In contrast, the expression of STAT1 and TP53 decreased. FOS and STAT4 mRNAs did not change their expression. In patients with AIT and elevated serum anti-Tg and anti-TPO antibodies, the expression of FOS and NR1I2 reduced whereas the mRNA level of STAT3 increased. STAT1, STAT2, and STAT4 mRNAs did not change their expression. MYC did not change its expression in all groups of patients. CONCLUSIONS The results of this study demonstrate that autoimmune thyroiditis and hypothyroidism affect the mRNA-level expression of transcription factors and regulators genes in a gene-specific manner and that these changes to genes expression can be among the triggers of autoimmune inflammation progression in the thyroid gland.
Collapse
Affiliation(s)
- Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, Ternopil, Ukraine
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, Ternopil, Ukraine
| |
Collapse
|
13
|
Peluzzo AM, Autieri MV. Challenging the Paradigm: Anti-Inflammatory Interleukins and Angiogenesis. Cells 2022; 11:cells11030587. [PMID: 35159396 PMCID: PMC8834461 DOI: 10.3390/cells11030587] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis is a vital biological process, and neovascularization is essential for the development, wound repair, and perfusion of ischemic tissue. Neovascularization and inflammation are independent biological processes that are linked in response to injury and ischemia. While clear that pro-inflammatory factors drive angiogenesis, the role of anti-inflammatory interleukins in angiogenesis remains less defined. An interleukin with anti-inflammatory yet pro-angiogenic effects would hold great promise as a therapeutic modality to treat many disease states where inflammation needs to be limited, but revascularization and reperfusion still need to be supported. As immune modulators, interleukins can polarize macrophages to a pro-angiogenic and reparative phenotype, which indirectly influences angiogenesis. Interleukins could also potentially directly induce angiogenesis by binding and activating its receptor on endothelial cells. Although a great deal of attention is given to the negative effects of pro-inflammatory interleukins, less is described concerning the potential protective effects of anti-inflammatory interleukins on various disease processes. To focus this review, we will consider IL-4, IL-10, IL-13, IL-19, and IL-33 to be anti-inflammatory interleukins, all of which have recognized immunomodulatory effects. This review will summarize current research concerning anti-inflammatory interleukins as potential drivers of direct and indirect angiogenesis, emphasizing their role in future therapeutics.
Collapse
|
14
|
Ranjbar R, Ghasemian M, Maniati M, Hossein Khatami S, Jamali N, Taheri-Anganeh M. Gastrointestinal disorder biomarkers. Clin Chim Acta 2022; 530:13-26. [DOI: 10.1016/j.cca.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/19/2023]
|
15
|
Nishiyama K, Nishimura A, Shimoda K, Tanaka T, Kato Y, Shibata T, Tanaka H, Kurose H, Azuma YT, Ihara H, Kumagai Y, Akaike T, Eaton P, Uchida K, Nishida M. Redox-dependent internalization of the purinergic P2Y 6 receptor limits colitis progression. Sci Signal 2022; 15:eabj0644. [PMID: 35015570 DOI: 10.1126/scisignal.abj0644] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki 444-8787, Japan
| | - Kakeru Shimoda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), NINS, Tokyo 105-0001, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H-101, Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Hitoshi Kurose
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasu-Taka Azuma
- Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka 598-8531, Japan
| | - Hideshi Ihara
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takaaki Akaike
- Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Philip Eaton
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, Graduate University for Advanced Studies), Okazaki 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), NINS, Tokyo 105-0001, Japan
| |
Collapse
|
16
|
Small SH, Tang EJ, Ragland RL, Ruzankina Y, Schoppy DW, Mandal RS, Glineburg MR, Ustelenca Z, Powell DJ, Simpkins F, Johnson FB, Brown EJ. Induction of
IL19
expression through JNK and cGAS-STING modulates DNA damage–induced cytokine production. Sci Signal 2021; 14:eaba2611. [DOI: 10.1126/scisignal.aba2611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sara H. Small
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. Jessica Tang
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan L. Ragland
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yaroslava Ruzankina
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Schoppy
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul S. Mandal
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M. Rebecca Glineburg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zgjim Ustelenca
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Powell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fiona Simpkins
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - F. Bradley Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric J. Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
IL-19 Contributes to the Development of Nonalcoholic Steatohepatitis by Altering Lipid Metabolism. Cells 2021; 10:cells10123513. [PMID: 34944021 PMCID: PMC8699936 DOI: 10.3390/cells10123513] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Interleukin (IL)-19, a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. Nonalcoholic steatohepatitis (NASH) is a disease that has progressed from nonalcoholic fatty liver disease (NAFLD) and is characterized by inflammation and fibrosis. We evaluated the functions of IL-19 in a NAFLD/NASH mouse model using a 60% high fat diet with 0.1% methionine, without choline, and with 2% cholesterol (CDAHFD). Wild-type (WT) and IL-19 gene-deficient (KO) mice were fed a CDAHFD or standard diet for 9 weeks. Liver injury, inflammation, and fibrosis induced by CDAHFD were significantly worse in IL-19 KO mice than in WT mice. IL-6, TNF-α, and TGF-β were significantly higher in IL-19 KO mice than in WT mice. As a mechanism using an in vitro experiment, palmitate-induced triglyceride and cholesterol contents were decreased by the addition of IL-19 in HepG2 cells. Furthermore, addition of IL-19 decreased the expression of fatty acid synthesis-related enzymes and increased ATP content in HepG2 cells. The action of IL-19 in vitro suppressed lipid metabolism. In conclusion, IL-19 may play an important role in the development of steatosis and fibrosis by directly regulating liver metabolism and may be a potential target for the treatment of liver diseases.
Collapse
|
18
|
Ferhat E, Karabekir E, Gultekin K, Orhan K, Onur Y, Nilnur E. Evaluation of the relationship between anti-inflammatory cytokines and adverse cardiac remodeling after myocardial infarction. KARDIOLOGIIA 2021; 61:61-70. [PMID: 34763640 DOI: 10.18087/cardio.2021.10.n1749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Aim To clarify the role of interleukin (IL) - 10 and members of its subfamily (IL-19 and IL-26) in cardiac remodeling during the post-myocardial infarction (MI) period.Material and methods A total of 45 patients with ST-segment elevation MI were enrolled. Serum cytokine concentrations were measured at the first day and 14 days post-MI. Left ventricular (LV) reverse remodeling (RR) was defined as the reduction of LV end-diastolic volume or LV end-systolic volume by ≥ 12 % in cardiac magnetic resonance images at 6‑mo follow-up. A 12 % increase was defined as adverse remodeling (AR).Results The post-MI first-day median IL-10 (9.7 pg / ml vs. 17.6 pg / ml, p<0.001), median IL-19 (28.7 pg / ml vs. 36.9 pg / ml, p<0.001), and median IL-26 (47.8 pg / ml vs. 90.7 pg / ml, p<0.001) were lower in the RR group compared to the AR group. There was a significant decrease in the concentration of anti-inflammatory cytokines in the AR group from the first to the 14 days post-MI. However, no significant change was observed in the RR group. Regression analysis revealed that a low IL-10 concentration on the post-MI first day was related to RR (OR=0.76, p=0.035). A 1 % increase in change of IL-10 concentration increased the probability of RR by 1.07 times.Conclusion The concentrations of cytokines were higher in the AR group, but this elevation was not sustained and significantly decreased for the 14 days post-MI. In the RR group, the concentrations of cytokines did not change and stable for the 14 days post-MI. As a reflection of this findings, stable IL-10 concentration may play a role the improvement of cardiac functions.
Collapse
Affiliation(s)
- Eyyupkoca Ferhat
- Dr.Nafiz Korez Sincan State Hospital, Department of Cardiology, Ankara, Turkey
| | - Ercan Karabekir
- Ankara Bilkent City Hospital, Department of Radiology, Ankara, Turkey
| | - Karakus Gultekin
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Department of Cardiology, Istanbul, Turkey
| | - Karayigit Orhan
- Ministry of Health Yozgat City Hospital, Department of Cardiology, Yozgat, Turkey
| | - Yildirim Onur
- Dr.Nafiz Korez Sincan State Hospital, Department of Cardiology, Ankara, Turkey
| | - Eyerci Nilnur
- Faculty of Medicine, Ataturk University, Department of Medical Biology, Erzurum, Turkey
| |
Collapse
|
19
|
Tian L, Zhao JL, Kang JQ, Guo SB, Zhang N, Shang L, Zhang YL, Zhang J, Jiang X, Lin Y. Astragaloside IV Alleviates the Experimental DSS-Induced Colitis by Remodeling Macrophage Polarization Through STAT Signaling. Front Immunol 2021; 12:740565. [PMID: 34589089 PMCID: PMC8473681 DOI: 10.3389/fimmu.2021.740565] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing intestinal inflammation, which currently lacks safe and effective medicine. Some previous studies indicated that Astragaloside IV (AS-IV), a natural saponin extracted from the traditional Chinese medicine herb Ligusticum chuanxiong, alleviates the experimental colitis symptoms in vitro and in vivo. However, the mechanism of AS-IV on IBD remains unclear. Accumulating evidence suggests that M2-polarized intestinal macrophages play a pivotal role in IBD progression. Here, we found that AS-IV attenuated clinical activity of DSS-induced colitis that mimics human IBD and resulted in the phenotypic transition of macrophages from immature pro-inflammatory macrophages to mature pro-resolving macrophages. In vitro, the phenotype changes of macrophages were observed by qRT-PCR after bone marrow-derived macrophages (BMDMs) were induced to M1/M2 and incubated with AS-IV, respectively. In addition, AS-IV was effective in inhibiting pro-inflammatory macrophages and promoting the pro-resolving macrophages to ameliorate experimental colitis via the regulation of the STAT signaling pathway. Hence, we propose that AS-IV can ameliorate experimental colitis partially by modulating macrophage phenotype by remodeling the STAT signaling, which seems to have an essential function in the ability of AS-IV to alleviate the pathological progress of IBD.
Collapse
Affiliation(s)
- Lianlian Tian
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jun-Long Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Jian-Qin Kang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shi-Bo Guo
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Nini Zhang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Lei Shang
- Department of Health Statistics and Ministry of Education, Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Air Force Medical University, Xi'an, China
| | - Ya-Long Zhang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yan Lin
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
20
|
Osteocytes regulate neutrophil development through IL-19: a potent cytokine for neutropenia treatment. Blood 2021; 137:3533-3547. [PMID: 33684929 DOI: 10.1182/blood.2020007731] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/13/2021] [Indexed: 12/29/2022] Open
Abstract
Osteocytes are the most abundant (90% to 95%) cells in bone and have emerged as an important regulator of hematopoiesis, but their role in neutrophil development and the underlying mechanisms remain unclear. Interleukin 19 (IL-19) produced predominantly by osteocytes stimulated granulopoiesis and neutrophil formation, which stimulated IL-19 receptor (IL-20Rβ)/Stat3 signaling in neutrophil progenitors to promote their expansion and neutrophil formation. Mice with constitutive activation of mechanistic target of rapamycin complex (mTORC1) signaling in osteocytes (Dmp1-Cre) exhibited a dramatic increase in IL-19 production and promyelocyte/myelocytic expansion, whereas mTORC1 inactivation in osteocytes reduced IL-19 production and neutrophil numbers in mice. We showed that IL-19 administration stimulated neutrophil development, whereas neutralizing endogenous IL-19 or depletion of its receptor inhibited the process. Importantly, low-dose IL-19 reversed chemotherapy, irradiation, or chloramphenicol-induced neutropenia in mice more efficiently than granulocyte colony-stimulating factor. This evidence indicated that IL-19 was an essential regulator of neutrophil development and a potent cytokine for neutropenia treatment.
Collapse
|
21
|
Phytochemicals Targeting JAK-STAT Pathways in Inflammatory Bowel Disease: Insights from Animal Models. Molecules 2021; 26:molecules26092824. [PMID: 34068714 PMCID: PMC8126249 DOI: 10.3390/molecules26092824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract that consists of Crohn’s disease (CD) and ulcerative colitis (UC). Cytokines are thought to be key mediators of inflammation-mediated pathological processes of IBD. These cytokines play a crucial role through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) signaling pathways. Several small molecules inhibiting JAK have been used in clinical trials, and one of them has been approved for IBD treatment. Many anti-inflammatory phytochemicals have been shown to have potential as new drugs for IBD treatment. This review describes the significance of the JAK–STAT pathway as a current therapeutic target for IBD and discusses the recent findings that phytochemicals can ameliorate disease symptoms by affecting the JAK–STAT pathway in vivo in IBD disease models. Thus, we suggest that phytochemicals modulating JAK–STAT pathways are potential candidates for developing new therapeutic drugs, alternative medicines, and nutraceutical agents for the treatment of IBD.
Collapse
|
22
|
Komiya H, Takeuchi H, Ogawa Y, Suzuki K, Ogasawara A, Takahashi K, Azuma YT, Doi H, Tanaka F. Ablation of interleukin-19 improves motor function in a mouse model of amyotrophic lateral sclerosis. Mol Brain 2021; 14:74. [PMID: 33931083 PMCID: PMC8086093 DOI: 10.1186/s13041-021-00785-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/24/2021] [Indexed: 11/25/2022] Open
Abstract
Neuroinflammation by activated microglia and astrocytes plays a critical role in progression of amyotrophic lateral sclerosis (ALS). Interleukin-19 (IL-19) is a negative-feedback regulator that limits pro-inflammatory responses of microglia in an autocrine and paracrine manner, but it remains unclear how IL-19 contributes to ALS pathogenesis. We investigated the role of IL-19 in ALS using transgenic mice carrying human superoxide dismutase 1 with the G93A mutation (SOD1G93A Tg mice). We generated IL-19-deficient SOD1G93A Tg (IL-19-/-/SOD1G93A Tg) mice by crossing SOD1G93A Tg mice with IL-19-/- mice, and then evaluated disease progression, motor function, survival rate, and pathological and biochemical alternations in the resultant mice. In addition, we assessed the effect of IL-19 on glial cells using primary microglia and astrocyte cultures from the embryonic brains of SOD1G93A Tg mice and IL-19-/-/SOD1G93A Tg mice. Expression of IL-19 in primary microglia and lumbar spinal cord was higher in SOD1G93A Tg mice than in wild-type mice. Unexpectedly, IL-19-/-/SOD1G93A Tg mice exhibited significant improvement of motor function. Ablation of IL-19 in SOD1G93A Tg mice increased expression of both neurotoxic and neuroprotective factors, including tumor necrosis factor-α (TNF-α), IL-1β, glial cell line-derived neurotrophic factor (GDNF), and transforming growth factor β1, in lumbar spinal cord. Primary microglia and astrocytes from IL-19-/-/SOD1G93A Tg mice expressed higher levels of TNF-α, resulting in release of GDNF from astrocytes. Inhibition of IL-19 signaling may alleviate ALS symptoms.
Collapse
Affiliation(s)
- Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yuki Ogawa
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kosuke Suzuki
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Akihiro Ogasawara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka, 598-9531, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
23
|
Horiuchi H, Parajuli B, Komiya H, Ogawa Y, Jin S, Takahashi K, Azuma YT, Tanaka F, Suzumura A, Takeuchi H. Interleukin-19 Abrogates Experimental Autoimmune Encephalomyelitis by Attenuating Antigen-Presenting Cell Activation. Front Immunol 2021; 12:615898. [PMID: 33776998 PMCID: PMC7990911 DOI: 10.3389/fimmu.2021.615898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin-19 (IL-19) acts as a negative-feedback regulator to limit proinflammatory response of macrophages and microglia in autocrine/paracrine manners in various inflammatory diseases. Multiple sclerosis (MS) is a major neuroinflammatory disease in the central nervous system (CNS), but it remains uncertain how IL-19 contributes to MS pathogenesis. Here, we demonstrate that IL-19 deficiency aggravates experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by promoting IL-17-producing helper T cell (Th17 cell) infiltration into the CNS. In addition, IL-19-deficient splenic macrophages expressed elevated levels of major histocompatibility complex (MHC) class II, co-stimulatory molecules, and Th17 cell differentiation-associated cytokines such as IL-1β, IL-6, IL-23, TGF-β1, and TNF-α. These observations indicated that IL-19 plays a critical role in suppression of MS pathogenesis by inhibiting macrophage antigen presentation, Th17 cell expansion, and subsequent inflammatory responses. Furthermore, treatment with IL-19 significantly abrogated EAE. Our data suggest that IL-19 could provide significant therapeutic benefits in patients with MS.
Collapse
Affiliation(s)
- Hiroshi Horiuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Bijay Parajuli
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Ogawa
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shijie Jin
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
24
|
Ono N, Azuma YT. [Therapeutic application utilizing the anti-inflammatory effect of IL-19]. Nihon Yakurigaku Zasshi 2021; 156:288-291. [PMID: 34470933 DOI: 10.1254/fpj.21021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interleukin-19 (IL-19) is a member of the IL-10 family and is an anti-inflammatory cytokine produced mainly by macrophages, epithelial cells, and vascular smooth muscle cells. In addition, receptors for IL-19, IL-20 receptor 1 and IL-20 receptor 2, are also expressed in the cells mentioned above. The last 10 years from the finding of IL-19, investigations underline the anti-inflammatory role of IL-19 in the human diseases such as psoriasis, asthma, arteriosclerosis, and inflammatory bowel disease. If it is a pro-inflammatory cytokine, therapeutic applications may include the use of neutralizing antibodies, however, because IL-19 exhibits anti-inflammatory effects, recombinant products may be useful in therapeutic applications. However, the therapeutic applications of IL-19 for human disease have not yet been developed. In this review, we present the new findings on the preventive and therapeutic effects of IL-19 on various mouse disease models. Increasing knowledge about mouse disease models will increase the feasibility of future human disease applications.
Collapse
Affiliation(s)
- Naoshige Ono
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences
| |
Collapse
|
25
|
Manicassamy S, Prasad PD, Swafford D. Mouse Models of Colitis-Associated Colon Cancer. Methods Mol Biol 2021; 2224:133-146. [PMID: 33606212 DOI: 10.1007/978-1-0716-1008-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crohn's disease (CD) and ulcerative colitis are two main clinically defined forms of chronic inflammatory bowel disease (IBD). Chronic intestinal inflammation is inextricably linked to colitis-associated colon carcinogenesis (CAC). Patients with ulcerative colitis (UC) and Crohn's disease (CD) have an increased risk of colon cancer. Our understanding of IBD and IBD-associated colon carcinogenesis depends largely on rodent models. AOM-DSS-induced colitis-associated colon cancer in mice is the most widely used and accepted model that can recapitulate the human IBD-associated colon cancer. Here, we have provided detailed protocols of this mouse model of experimentally induced chronic intestinal inflammation-associated colon cancer. We will also discuss the protocols for the isolation and analysis of inflammatory immune cells from the colon.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Georgia Cancer Center, Augusta University, Augusta, GA, USA. .,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA. .,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | |
Collapse
|
26
|
FUJIMOTO Y, KUWAMURA M, AZUMA YT. Deficiency of interleukin-19 exacerbates lipopolysaccharide/D-galactosamine-induced acute liver failure. J Vet Med Sci 2020; 82:1450-1455. [PMID: 32779617 PMCID: PMC7653317 DOI: 10.1292/jvms.20-0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/28/2020] [Indexed: 01/16/2023] Open
Abstract
Interleukin (IL)-19 is a cytokine clustered in the IL-20 cytokine superfamily with both anti-inflammatory and pro-inflammatory aspects depending on the etiology of inflammatory disease. The function of IL-19 has been evaluated in cutaneous and inflammatory bowel diseases, but has not been studied in liver diseases. Here, we examined the effect of IL-19 on acute liver failure (ALF) using two mouse models of ALF: lipopolysaccharide and D-galactosamine (LPS/GalN)-induced model and concanavalin A (ConA)-induced model. In the LPS/GalN-induced ALF model, which is mainly caused by the innate immune response of liver macrophages, IL-19 knockout (KO) mice showed increased plasma level of liver deviation enzymes, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) compared with wild-type (WT) mice. In histopathology of liver sections, IL-19 KO mice exacerbated liver injury with marked hemorrhagic lesions and hepatocellular death in the liver compared with WT mice. In this model, mRNA expressions of pro-inflammatory chemokines, CCL2 and CCL5 were increased in liver tissue from IL-19 KO mice compared with WT mice. Moreover, the mRNA expressions of IL-19 and its receptor subunit were induced in liver tissue by LPS/GalN administration. However, there is no difference in liver injury between WT and IL-19KO in the ConA-induced ALF model induced by CD4+ T cell activation. These data suggest that IL-19 has a protective effect against inflammation-mediated liver injury, which is dependent on the etiology.
Collapse
Affiliation(s)
- Yasuyuki FUJIMOTO
- Laboratory of Veterinary Pharmacology, Division of
Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental
Sciences, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru KUWAMURA
- Laboratory of Veterinary Pathology, Division of Veterinary
Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences,
Izumisano, Osaka 598-8531, Japan
| | - Yasu-Taka AZUMA
- Laboratory of Veterinary Pharmacology, Division of
Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental
Sciences, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
27
|
Leigh T, Scalia RG, Autieri MV. Resolution of inflammation in immune and nonimmune cells by interleukin-19. Am J Physiol Cell Physiol 2020; 319:C457-C464. [PMID: 32667867 PMCID: PMC7509264 DOI: 10.1152/ajpcell.00247.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
The inflammatory response is a complex, tightly regulated process activated by tissue wounding, foreign body invasion, and sterile inflammation. Over the decades, great progress has been made to advance our understanding of this process. One often overlooked aspect of inflammation is its sequel: resolution. We know that dysregulated resolution often results in numerous chronic degenerative diseases such as arthritis, cancer, and asthma. However, identification of components and mechanisms of resolving pathways lags behind those of proinflammatory processes, yet represents overlooked therapeutic opportunities. One approach is identification of endogenous, negative compensatory mechanisms, which are activated in response to inflammation for the purpose of resolution of that inflammatory stimuli. This review will focus on literature that describes expression and function of interleukin-19, a proposed anti-inflammatory cytokine, in numerous inflammatory diseases. The literature concerning IL-19 is complex, context-dependent, and often contradictory. The expression and function of IL-19 in the inflammatory response are in no way settled. We will attempt to clarify the role that this interesting and understudied cytokine plays in resolution of inflammation and discuss its mechanisms of action in different cell types. We will present a hypothesis that endogenous IL-19 expression in response to inflammatory stimuli is a cellular compensatory mechanism to dampen inflammation. We further present studies suggesting that while endogenously expressed IL-19 may be a response to inflammation, pharmacological levels may be necessary to effectively resolve the inflammatory cascade.
Collapse
Affiliation(s)
- Tani Leigh
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Rosario G Scalia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, Vetrano S, Vande Casteele N. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:323-337. [PMID: 32203403 DOI: 10.1038/s41575-020-0273-0] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Cytokines are involved in intestinal homeostasis and pathological processes associated with inflammatory bowel disease (IBD). The biological effects of cytokines, including several involved in the pathology of Crohn's disease and ulcerative colitis, occur as a result of receptor-mediated signalling through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) DNA-binding families of proteins. Although therapies targeting cytokines have revolutionized IBD therapy, they have historically targeted individual cytokines, and an unmet medical need exists for patients who do not respond to or lose response to these treatments. Several small-molecule inhibitors of JAKs that have the potential to affect multiple pro-inflammatory cytokine-dependent pathways are in clinical development for the treatment of IBD, with one agent, tofacitinib, already approved for ulcerative colitis and several other agents with demonstrated efficacy in early phase trials. This Review describes the current understanding of JAK-STAT signalling in intestinal homeostasis and disease and the rationale for targeting this pathway as a treatment for IBD. The available evidence for the efficacy, safety and pharmacokinetics of JAK inhibitors in IBD as well as the potential approaches to optimize treatment with these agents, such as localized delivery or combination therapy, are also discussed.
Collapse
Affiliation(s)
- Azucena Salas
- Department of Gastroenterology, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristian Hernandez-Rocha
- Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital Inflammatory Bowel Disease Group, Toronto, Ontario, Canada
| | - Marjolijn Duijvestein
- Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - William Faubion
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MI, USA
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Severine Vermeire
- Department of Gastroenterology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IBD Center, Laboratory of Immunology in Gastroenterology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Niels Vande Casteele
- Robarts Clinical Trials, London, ON, Canada. .,Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Azuma YT, Nishiyama K. Interleukin-19 enhances cytokine production induced by lipopolysaccharide and inhibits cytokine production induced by polyI:C in BALB/c mice. J Vet Med Sci 2020; 82:891-896. [PMID: 32378521 PMCID: PMC7399314 DOI: 10.1292/jvms.20-0137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-19 is a cytokine of the IL-10 family. There are many reports on the involvement of IL-19 in several human diseases. There also are many reports elucidating the role of IL-19 using mouse disease models. Most reports use C57BL/6 mice, whereas few reports use BALB/c mice, in terms of the mouse disease model that the researchers used in the present study. To date, research on the role of IL-19 is diversified, yet some basic mechanisms are still unclear. In this study, we administered lipopolysaccharide (LPS), polyI:C, and CpG to BALB/c mice, measured more than 20 cytokines in the blood and compared them with that of the wild-type and IL-19-deficient (IL-19 KO) mice. LPS is associated with bacterial infection, polyI:C is associated with viral infection, and CpG is associated with both bacterial and viral infections. Among the cytokines measured, the results of experiments using LPS revealed that the production of some cytokines was suppressed in IL-19 KO mice. Interestingly, the experiments using polyI:C revealed that production of some cytokines was enhanced in IL-19 KO mice. However, the experiments using CpG have shown that the production of only one cytokine was enhanced in IL-19 KO mice. These results revealed that cytokine production in the blood was regulated by IL-19, and the type of regulation was dependent on the administered stimulant.
Collapse
Affiliation(s)
- Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
30
|
Pap D, Veres-Székely A, Szebeni B, Rokonay R, Ónody A, Lippai R, Takács IM, Tislér A, Kardos M, Oswald F, Fekete A, Szabó AJ, Vannay Á. Characterization of IL-19, -20, and -24 in acute and chronic kidney diseases reveals a pro-fibrotic role of IL-24. J Transl Med 2020; 18:172. [PMID: 32306980 PMCID: PMC7168946 DOI: 10.1186/s12967-020-02338-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recently, the role of IL-19, IL-20 and IL-24 has been reported in renal disorders. However, still little is known about their biological role. METHODS Localization of IL-20RB was determined in human biopsies and in the kidneys of mice that underwent unilateral ureteral obstruction (UUO). Renal Il19, Il20 and Il24 expression was determined in ischemia/reperfusion, lipopolysaccharide, streptozotocin, or UUO induced animal models of kidney diseases. The effects of H2O2, LPS, TGF-β1, PDGF-B and IL-1β on IL19, IL20 and IL24 expression was determined in peripheral blood mononuclear cells (PBMCs). The extents of extracellular matrix (ECM) and α-SMA, Tgfb1, Pdgfb, and Ctgf expression were determined in the kidneys of Il20rb knockout (KO) and wild type (WT) mice following UUO. The effect of IL-24 was also examined on HK-2 tubular epithelial cells and NRK49F renal fibroblasts. RESULTS IL-20RB was present in the renal biopsies of patients with lupus nephritis, IgA and diabetic nephropathy. Amount of IL-20RB increased in the kidneys of mice underwent UUO. The expression of Il19, Il20 and Il24 increased in the animal models of various kidney diseases. IL-1β, H2O2 and LPS induced the IL19, IL20 and IL24 expression of PBMCs. The extent of ECM, α-SMA, fibronectin, Tgfb1, Pdgfb, and Ctgf expression was lower in the kidney of Il20rb KO compared to WT mice following UUO. IL-24 treatment induced the apoptosis and TGF-β1, PDGF-B, CTGF expression of HK-2 cells. CONCLUSIONS Our data confirmed the significance of IL-19, IL-20 and IL-24 in the pathomechanism of renal diseases. Furthermore, we were the first to demonstrate the pro-fibrotic effect of IL-24.
Collapse
Affiliation(s)
- Domonkos Pap
- MTA-SE, Pediatrics and Nephrology Research Group, Budapest, Hungary. .,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.
| | | | - Beáta Szebeni
- MTA-SE, Pediatrics and Nephrology Research Group, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Réka Rokonay
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Anna Ónody
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Rita Lippai
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | | | - András Tislér
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Magdolna Kardos
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Franz Oswald
- University Medical Center, Center of Internal Medicine, Department of Internal Medicine I, Ulm, Germany
| | - Andrea Fekete
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE, Lendület Diabetes Research Group, Budapest, Hungary
| | - Attila J Szabó
- MTA-SE, Pediatrics and Nephrology Research Group, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Ádám Vannay
- MTA-SE, Pediatrics and Nephrology Research Group, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
Xuan H, Ou A, Hao S, Shi J, Jin X. Galangin Protects against Symptoms of Dextran Sodium Sulfate-induced Acute Colitis by Activating Autophagy and Modulating the Gut Microbiota. Nutrients 2020; 12:E347. [PMID: 32013062 PMCID: PMC7071155 DOI: 10.3390/nu12020347] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Galangin is a natural flavonoid that has been reported to provide substantial health benefits. Nevertheless, little is known about the potential effects of galangin against inflammatory bowel diseases. Here, an in vivo study was performed to investigate the preventive effects of galangin against dextran sulphate sodium (DSS)-induced acute murine colitis, which mimics the symptoms of human ulcerative colitis (UC). Pre-treatment with galangin (15 mg/kg, p.o.) resulted in a significant decreased in the macroscopic signs of DSS-induced colitic symptoms, including a decreased disease activity index, prevention of the colon length shortening, and alleviation of the pathological changes occurring in the colon. Colonic pro-inflammatory mediators, including tumor necrosis factor-alpha, interleukin (IL)-1 beta, and IL-6, as well as myeloperoxidase activities were decreased following galangin pre-treatment when compared with the DSS control group. Moreover, galangin pre-treatment significantly increased the expressions of autophagy-related proteins and promoted the formation of autophagosome in the colon. Galangin pre-treatment increased the diversity of the gut microbiota, and this was accompanied by increased levels of short-chain fatty acids. These observed changes could involve the modulating effects conferred by galangin in relation to some specific bacteria populations, including the recovery of Lactobacillus spp., and increased Butyricimonas spp. Overall, these results support the use of galangin in the prevention of UC.
Collapse
Affiliation(s)
- Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China;
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Aiqun Ou
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shengyu Hao
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Jiajun Shi
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
32
|
Fujimoto Y, Azuma YT. [Recent progress in the pathophysiological role of interleukin-19]. Nihon Yakurigaku Zasshi 2019; 154:66-71. [PMID: 31406045 DOI: 10.1254/fpj.154.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cytokine signal is essential for the biological function including development, maintenance of homeostasis and progression of disease. There are growing evidences that signaling via pro-inflammatory cytokines underlie a variety of immunological diseases such as psoriasis, atopic dermatitis, inflammatory bowel disease, and metabolic syndromes, in which cytokine signals are known as a potential therapeutic target of antibody drugs. In contrast, anti-inflammatory cytokines, which is represented by IL-10, largely contribute to suppression of inflammation and restoration of injured tissues. IL-19 is a member of IL-10 cytokine family, which comprises IL-20 cytokine subfamily with IL-20, IL-22, IL-24, and IL-26. IL-19 is produced by myeloid and epithelial cells with stimulation of bacterial components and cytokines. Although IL-19 has been originally recognized as a potential Th2-related cytokine, in recent researches, it has been reported that this cytokine upregulates Th17 response to reflect and promote progression of Th17-related disease including psoriasis. On the other hand, IL-19 has anti-inflammatory effects on inflammatory diseases such as infectious skin disease, inflammatory bowel disease, and cardiovascular disease. Therefore, IL-19 may exert pleiotropic effects dependent on the pathological mechanism of inflammatory diseases. In this review, we summarize recent studies about IL-19 and introduce the pathophysiological and therapeutic role of IL-19 in inflammatory diseases.
Collapse
Affiliation(s)
- Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences
| |
Collapse
|
33
|
Fujimoto Y, Aono K, Azuma YT. The clarified role of interleukin-19 in the inflammatory bowel disease and hypersensitivity: Insights from animal models and humans. J Vet Med Sci 2019; 81:1067-1073. [PMID: 31189783 PMCID: PMC6715912 DOI: 10.1292/jvms.19-0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The cytokine interleukin-19 (IL-19) is a member of the IL-10 family that includes IL-20,
IL-22, IL-24, and IL-26. Previous studies indicated that IL-19 is produced by
keratinocytes, epithelial cells, macrophages, and B-cells. Especially, the number of
IL-4-producing T cells increased, whereas the number of IFN-γ-producing T cells decreased
when naive T cells from healthy people were cultured in the presence of IL-19. There is an
increasing body of data demonstrating that IL-19 is associated with the development of
type 1 helper T cell-responses, although IL-19 was originally associated with the
development of type 2 helper T cell-responses. In this review, we will attempt to discuss
current knowledge about the role of IL-19 on several T cell response-mediated inflammatory
diseases including inflammatory bowel disease and hypersensitivity.
Collapse
Affiliation(s)
- Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| | - Kimiya Aono
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
34
|
Aono K, Azuma YT, Nabetani T, Hatoya S, Furuya M, Miki M, Hirota K, Fujimoto Y, Nishiyama K, Ogata Y, Mochizuki T, Tani H. Correlation between toll-like receptor 4 and nucleotide-binding oligomerization domain 2 (NOD2) and pathological severity in dogs with chronic gastrointestinal diseases. Vet Immunol Immunopathol 2019; 210:15-22. [PMID: 30947975 DOI: 10.1016/j.vetimm.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/27/2019] [Accepted: 03/09/2019] [Indexed: 12/12/2022]
Abstract
Toll-like receptor 4 (TLR4), nucleotide-binding oligomerization domain 2 (NOD2), and TNF-α play important roles in human inflammatory bowel diseases. The aim of this study was to elucidate the relationship between Toll-like receptor 4, NOD2, and TNF-α and the severity of chronic gastrointestinal diseases in dogs. We examined the expression levels of TLR4, NOD2, and TNF-α in the stomach, duodenum, ileum, colon, and rectum obtained from 21 dogs with chronic gastrointestinal disease, including inflammatory bowel disease, high-grade lymphoma, food responsive enteropathy, chronic pancreatitis, low-grade lymphoma, inflammatory colorectal polyp, and chronic colitis. Next, we demonstrated whether there is good correlation between the expression levels of TLR4, NOD2, and TNF-α and the histopathological analysis of each sample. We found that the level of TLR4 expression in the ileum of dogs with chronic gastrointestinal disease was positively associated with the histopathological severity. We also found that the level of NOD2 expression in the duodenum, stomach, and rectum was positively associated with the histopathological severity. However, there was no correlation between TNF-α expression in the 5 regions tested in this study and the histopathological severity. These findings indicate that TLR4 and NOD2 are remarkably associated with the severity of chronic gastrointestinal disease in dogs.
Collapse
Affiliation(s)
- Kimiya Aono
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan.
| | - Tomoyo Nabetani
- Veterinary Medical Center, Osaka Prefecture University College of Life, Environmental, and Advanced Sciences, Izumisano, Osaka, Japan
| | - Shingo Hatoya
- Laboratory of Cell Pathobiology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Masaru Furuya
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Mariko Miki
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Kana Hirota
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Yoshiyuki Ogata
- Laboratory of Functional Genomics, Course of Integrated Bioscience, Division of Applied Life Sciences, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Sakai, Osaka, Japan
| | - Tomofumi Mochizuki
- Laboratory of Plant Pathology, Course of Plant Production Science, Division of Applied Life Sciences, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Sakai, Osaka, Japan
| | - Hiroyuki Tani
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan.
| |
Collapse
|
35
|
Wei H, Li B, Sun A, Guo F. Interleukin-10 Family Cytokines Immunobiology and Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:79-96. [PMID: 31628652 DOI: 10.1007/978-981-13-9367-9_4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Interleukin (IL)-10 cytokine family includes IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26, which are considered as Class 2α-helical cytokines. IL-10 is the most important cytokine in suppressing pro-inflammatory responses in all kinds of autoimmune diseases and limiting excessive immune responses. Due to protein structure homology and shared usage of receptor complexes as well as downstream signaling pathway, other IL-10 family cytokines also show indispensable functions in immune regulation, tissue homeostasis, and host defense. In this review, we focus on immune functions and structures of different cytokines in this family and try to better understand how their molecular mechanisms connect to their biological functions. The molecular details regarding their actions also provide useful information in developing candidate immune therapy reagents for a variety of diseases.
Collapse
Affiliation(s)
- Huaxing Wei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Bofeng Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.
| | - Anyuan Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Feng Guo
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| |
Collapse
|
36
|
Chen J, Caspi RR, Po Chong W. IL-20 receptor cytokines in autoimmune diseases. J Leukoc Biol 2018; 104:953-959. [PMID: 30260500 PMCID: PMC6298946 DOI: 10.1002/jlb.mr1117-471r] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/08/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
IL-19, IL-20, and IL-24 are the members of IL-10 family. They are also known as IL-20 receptor (IL-20R) cytokines as they all signal through the IL-20RA/IL-20RB receptor complex; IL-20 and IL-24 (but not IL-19) also signal through the IL-20RB/IL22RA1 receptor complex. Despite their protein structure homology and shared use of receptor complexes, they display distinct biological functions in immune regulation, tissue homeostasis, host defense, and oncogenesis. IL-20R cytokines can be expressed by both immune cells and epithelial cells, and are important for their interaction. In general, these cytokines are considered to be associated with pathogenesis of chronic inflammation and autoimmune diseases, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. However, a number of studies also highlighted their suppressive functions in regulating both innate and adaptive T cell responses and other immune cells, suggesting that the role of IL-20R cytokines in autoimmunity may be complex. In this review, we will discuss the immunobiological functions of IL-20R cytokines and how they are involved in regulating autoimmune diseases.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-1857, USA
| | - Wai Po Chong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| |
Collapse
|
37
|
Nishiyama K, Aono K, Fujimoto Y, Kuwamura M, Okada T, Tokumoto H, Izawa T, Okano R, Nakajima H, Takeuchi T, Azuma YT. Chronic kidney disease after 5/6 nephrectomy disturbs the intestinal microbiota and alters intestinal motility. J Cell Physiol 2018; 234:6667-6678. [PMID: 30317589 DOI: 10.1002/jcp.27408] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
Organ-organ crosstalk is involved in homeostasis. Gastrointestinal symptoms are common in patients with renal failure. The aim of this study was to elucidate the relationship between gastrointestinal motility and gastrointestinal symptoms in chronic kidney disease. We performed studies in C57BL/6 mice with chronic kidney disease after 5/6 nephrectomy. Gastrointestinal motility was evaluated by assessing the ex vivo responses of ileum and distal colon strips to electrical field stimulation. Feces were collected from mice, and the composition of the gut microbiota was analyzed using 16S ribosomal RNA sequencing. Mice with chronic kidney disease after 5/6 nephrectomy showed a decreased amount of stool, and this constipation was correlated with a suppressed contraction response in ileum motility and decreased relaxation response in distal colon motility. Spermine, one of the uremic toxins, inhibited the contraction response in ileum motility, but four types of uremic toxins showed no effect on the relaxation response in distal colon motility. The 5/6 nephrectomy procedure disturbed the balance of the gut microbiota in the mice. The motility dysregulation and constipation were resolved by antibiotic treatments. The expression levels of interleukin 6, tumor necrosis factor-α, and iNOS in 5/6 nephrectomy mice were increased in the distal colon but not in the ileum. In addition, macrophage infiltration in 5/6 nephrectomy mice was increased in the distal colon but not in the ileum. We found that 5/6 nephrectomy altered gastrointestinal motility and caused constipation by changing the gut microbiota and causing colonic inflammation. These findings indicate that renal failure was remarkably associated with gastrointestinal dysregulation.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Kimiya Aono
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Toshiya Okada
- Department of Laboratory Animal Science, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Hayato Tokumoto
- Laboratory of Bioscience and Biotechnology, Division of Biological Science, Osaka Prefecture University Graduate School of Science, Osaka, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Ryoichi Okano
- Laboratory of Separation Science and Engineering, Division of Chemical Engineering, Osaka Prefecture University Graduate School of Engineering, Osaka, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| |
Collapse
|
38
|
Brown MA, Wordsworth BP. Genetics in ankylosing spondylitis - Current state of the art and translation into clinical outcomes. Best Pract Res Clin Rheumatol 2018; 31:763-776. [PMID: 30509439 DOI: 10.1016/j.berh.2018.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022]
Abstract
Ankylosing spondylitis (AS) is the prototypic form of axial spondyloarthritis (axSpA). It is highly heritable, with studies conducted in twins and in unrelated cases and controls showing that the heritability for AS is much higher than those for inflammatory bowel disease or rheumatoid arthritis. To date, 116 loci have been identified, contributing to 28% of the genetic variation in the disease. These loci provide important clues into pathogenic pathways in the disease that have led to therapeutic advances such as the repositioning of IL-17 inhibitors in the disease. Much more research is currently required to determine the functional mechanisms by which the genetic associations operate, from which it is likely that novel therapeutic approaches will be developed.
Collapse
Affiliation(s)
- Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| | - B Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Kragstrup TW, Andersen T, Heftdal LD, Hvid M, Gerwien J, Sivakumar P, Taylor PC, Senolt L, Deleuran B. The IL-20 Cytokine Family in Rheumatoid Arthritis and Spondyloarthritis. Front Immunol 2018; 9:2226. [PMID: 30319661 PMCID: PMC6167463 DOI: 10.3389/fimmu.2018.02226] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
This review describes the IL-20 family of cytokines in rheumatoid arthritis (RA) and spondyloartrhitits (SpA) including psoriatic arthritis. The IL-20 receptor (R) cytokines IL-19, IL-20, and IL-24 are produced in both the peripheral blood and the synovial joint and are induced by Toll-like receptor ligands and autoantibody-associated immune complexes in monocytes. IL-19 seems to have anti-inflammatory functions in arthritis. In contrast, IL-20 and IL-24 increase the production of proinflammatory molecules such as monocyte chemoattractant protein 1 and are associated with bone degradation and radiographic progression. IL-22 is also associated with progression of bone erosions. This suggests that the IL-22RA1 subunit shared by IL-20, IL-22, and IL-24 is important for bone homeostasis. In line with this, the IL-22RA1 has been found on preosteoclasts in early RA. IL-26 is produced in high amounts by myofibroblasts and IL-26 stimulation of monocytes is an important inducer of Th17 cells in RA. This indicates a role for IL-26 as an important factor in the interactions between resident synovial cells and infiltrating leukocytes. Clinical trials that investigate inhibitors of IL-20 (fletikumab) and IL-22 (fezakinumab) in psoriasis and RA have been terminated. Instead, it seems that the strategy for modulating the IL-20 cytokine family should take the overlap in cellular sources and effector mechanisms into account. The redundancy encourages inhibition of more than one cytokine or one of the shared receptors. All IL-20 family members utilize the Janus kinase signaling pathway and are therefore potentially inhibited by drugs targeting these enzymes. Effects and adverse effects in ongoing clinical trials with inhibitors of IL-22 and the IL-22RA1 subunit and recombinant IL-22 fusion proteins will possibly provide important information about the IL-20 subfamily of cytokines in the future.
Collapse
Affiliation(s)
- Tue W Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Line D Heftdal
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Pallavur Sivakumar
- Immuno Oncology Translational Development, Celgene Corportation, Seattle, WA, United States
| | - Peter C Taylor
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Ladislav Senolt
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
40
|
Fujimoto Y, Fujita T, Kuramoto N, Kuwamura M, Izawa T, Nishiyama K, Yoshida N, Nakajima H, Takeuchi T, Azuma YT. The Role of Interleukin-19 in Contact Hypersensitivity. Biol Pharm Bull 2018; 41:182-189. [PMID: 29386478 DOI: 10.1248/bpb.b17-00594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-19 is a member of the IL-10 family of interleukins and is an immuno-modulatory cytokine produced by the main macrophages. The gastrointestinal tissues of IL-19 knockout mice show exacerbated experimental colitis mediated by the innate immune system and T cells. There is an increasing focus on the interaction and relationship of IL-19 with the function of T cells. Contact hypersensitivity (CHS) is T cell-mediated cutaneous inflammation. Therefore, we asked whether IL-19 causes CHS. We investigated the immunological role of IL-19 in CHS induced by 1-fluoro-2,4-dinitrofluorobenzene as a hapten. IL-19 was highly expressed in skin exposed to the hapten, and ear swelling was increased in IL-19 knockout mice. The exacerbation of the CHS response in IL-19 knockout mice correlated with increased levels of IL-17 and IL-6, but no alterations were noted in the production of interferon (IFN)γ and IL-4 in the T cells of the lymph nodes. In addition to the effect on T cell response, IL-19 knockout mice increased production of inflammatory cytokines. These results show that IL-19 suppressed hapten-dependent skin inflammation in the elicitation phase of CHS.
Collapse
Affiliation(s)
- Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Takashi Fujita
- Laboratory of Molecular Toxicology, Department of Pharmaceutical Sciences, Ritsumeikan University
| | - Nobuyuki Kuramoto
- Laboratory of Molecular Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Natsuho Yoshida
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| |
Collapse
|
41
|
Niess JH, Hruz P, Kaymak T. The Interleukin-20 Cytokines in Intestinal Diseases. Front Immunol 2018; 9:1373. [PMID: 29967613 PMCID: PMC6015891 DOI: 10.3389/fimmu.2018.01373] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Autoimmune/inflammatory intestinal diseases, such as Crohn’s disease and ulcerative colitis, infectious gastrointestinal diseases, and gastrointestinal cancers, such as colorectal cancer, are worldwide a significant health problem. Intercellular communication and direct contact with the environment as the microbiota colonizes the gastrointestinal surface facilitates these diseases. Cytokines mediate the intercellular communication to maintain the equilibrium between host and environment and to regulate immune responses. One cytokine family that exchange information between immune cells and epithelial cells is the IL-20 cytokine family which includes the cytokines IL-19, IL-20, IL-22, IL-24, and IL-26. These cytokines share common receptor subunits and signaling pathways. IL-22 is the most intensively studied cytokine within this family in contexts of gastrointestinal disease, but the importance of other family members is more and more appreciated. In this review, the potential function of IL-20 cytokines concerning gastrointestinal conditions is discussed.
Collapse
Affiliation(s)
- Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Gastroenterology and Hepatology, University Hospital of Basel, Basel, Switzerland
| | - Petr Hruz
- Department of Gastroenterology and Hepatology, University Hospital of Basel, Basel, Switzerland
| | - Tanay Kaymak
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
42
|
Reiss-Mandel A, Rubin C, Zayoud M, Rahav G, Regev-Yochay G. Staphylococcus aureus Colonization Induces Strain-Specific Suppression of Interleukin-17. Infect Immun 2018; 86:e00834-17. [PMID: 29311230 PMCID: PMC5820966 DOI: 10.1128/iai.00834-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 12/14/2017] [Indexed: 01/02/2023] Open
Abstract
Staphylococcus aureus is a pathogen that causes significant morbidity and mortality. Nasal carriage is a major source of transmission and of endogenous infection. Persistent carriage is detected in ∼30% of healthy individuals. While Th17 cells have been shown to play a role in S. aureus infection and clearance, the immune response to carriage is not well understood. Here, we evaluate the Th17 response and its potential inhibitors during S. aureus carriage. We recruited 25 volunteers, of whom 11 were persistent carriers. Volunteers' peripheral blood mononuclear cells (PBMCs) were stimulated with either their endogenous strain (a strain isolated from that carrier) or exogenous ones (strains not carried by that volunteer). Changes in Th17 cell frequency and numbers, interleukin-17 (IL-17) mRNA expression, and IL-17 protein abundance were measured by fluorescence-activated cell sorting, real-time PCR, and enzyme-linked immunosorbent assay. Similarly, responses of IL-17 suppressors (regulatory T cells [FOXP3], IL-10, IL-27, and IL-19) were measured. Th17 and IL-17 levels in response to stimulation with endogenous strains were significantly lower than those in response to stimulation with exogenous ones. Of the suppressive cytokines tested, only IL-19 exhibited a stronger response to endogenous than to exogenous strains. Addition of recombinant IL-19 to exogenous-strain-stimulated PBMCs caused decreased IL-17 expression, whereas addition of IL-19 antibodies to endogenous-strain-stimulated cells resulted in an increased IL-17 response. Together, our results suggest that S. aureus carriage induced a tolerogenic response to a carried strain that could be reproduced through the addition of recombinant IL-19 or prevented by the addition of IL-19 antibodies. This differential immune response may play a role in the determination of S. aureus carriage patterns.
Collapse
Affiliation(s)
- Aylana Reiss-Mandel
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Rubin
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, Israel
| | - Morad Zayoud
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Galia Rahav
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gili Regev-Yochay
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Fatty acid transport protein 1 enhances the macrophage inflammatory response by coupling with ceramide and c-Jun N-terminal kinase signaling. Int Immunopharmacol 2017; 55:205-215. [PMID: 29272817 DOI: 10.1016/j.intimp.2017.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Macrophages are important cells that need to be controlled at the site of inflammation. Several factors are involved in chronic inflammation and its timely resolution. Free fatty acids drive the inflammatory response in macrophages and contribute to the vicious cycle of the inflammatory response. However, the identity of the uptake pathways of fatty acids is not fully clear in macrophages and how the inflammatory responses are regulated by the uptake of fatty acids remain poorly understood. We investigated the relationship between fatty acid transport protein (FATP) and the inflammatory response signaling pathway in macrophages as the first report. The FATP family has composed six isoforms, FATP1-6. We found that FATP1 is the most highly expressed isoform in macrophages. Forced expression of FATP1 enhanced production of inflammatory cytokines, such as TNFα and IL-6 concomitant with the increased uptake of fatty acids, increased level of ceramide, and increased phosphorylation of c-Jun N-terminal kinase (JNK). The enhancement by FATP1 was abolished by treatment with a JNK inhibitor, NF-κB inhibitor, or ceramide synthesis inhibitor. siRNA-mediated knockdown of FATP1 strongly inhibited the production of TNFα and IL-6. Similarly, an inhibitor of FATP1 inhibited the production of TNFα and IL-6. Finally, an inhibitor of FATP1 attenuated the production of inflammatory cytokines in bronchoalveolar lavage fluid in an LPS-induced acute lung injury in vivo mouse model. In summary, we propose that FATP1 is an important regulator of inflammatory response signaling in macrophages. Our findings suggest that ceramide-JNK signaling is important to terminate or sustain inflammation.
Collapse
|
44
|
Steinert A, Linas I, Kaya B, Ibrahim M, Schlitzer A, Hruz P, Radulovic K, Terracciano L, Macpherson AJ, Niess JH. The Stimulation of Macrophages with TLR Ligands Supports Increased IL-19 Expression in Inflammatory Bowel Disease Patients and in Colitis Models. THE JOURNAL OF IMMUNOLOGY 2017; 199:2570-2584. [PMID: 28864472 DOI: 10.4049/jimmunol.1700350] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/02/2017] [Indexed: 12/25/2022]
Abstract
IL-19, a member of the IL-10 cytokine family that signals through the IL-20 receptor type I (IL-20Rα:IL-20Rβ), is a cytokine whose function is not completely known. In this article, we show that the expression of IL19 in biopsies of patients with active ulcerative colitis was increased compared with patients with quiescent ulcerative colitis and that colitis was attenuated in IL-19-deficient mice. The disruption of the epithelial barrier with dextran sodium sulfate leads to increased IL-19 expression. Attenuated colitis in IL-19-deficient animals was associated with reduced numbers of IL-6-producing macrophages in the inflamed colonic lamina propria. Microbial-driven expression of IL-19 by intestinal macrophages may contribute to the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Anna Steinert
- Division of Gastroenterology and Hepatology, University Hospital Basel, 4031 Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.,Division of Gastroenterology, Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University of Bern, 3010 Bern, Switzerland
| | - Ioannis Linas
- Division of Gastroenterology, Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University of Bern, 3010 Bern, Switzerland
| | - Berna Kaya
- Division of Gastroenterology and Hepatology, University Hospital Basel, 4031 Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Mohamed Ibrahim
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany.,Single Cell Genomics and Epigenomics Unit, German Center for Neurodegenerative Diseases, University of Bonn, 53115 Bonn, Germany
| | - Andreas Schlitzer
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany.,Single Cell Genomics and Epigenomics Unit, German Center for Neurodegenerative Diseases, University of Bonn, 53115 Bonn, Germany.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, 138648 Singapore; and
| | - Petr Hruz
- Division of Gastroenterology and Hepatology, University Hospital Basel, 4031 Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Katarina Radulovic
- Division of Gastroenterology and Hepatology, University Hospital Basel, 4031 Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Andrew J Macpherson
- Division of Gastroenterology, Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University of Bern, 3010 Bern, Switzerland
| | - Jan Hendrik Niess
- Division of Gastroenterology and Hepatology, University Hospital Basel, 4031 Basel, Switzerland; .,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.,Division of Gastroenterology, Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
45
|
Anti-inflammatory mechanisms of neovestitol from Brazilian red propolis in LPS-activated macrophages. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
46
|
Bruns DR, Ghincea AR, Ghincea CV, Azuma YT, Watson PA, Autieri MV, Walker LA. Interleukin-19 is cardioprotective in dominant negative cyclic adenosine monophosphate response-element binding protein-mediated heart failure in a sex-specific manner. World J Cardiol 2017; 9:673-684. [PMID: 28932356 PMCID: PMC5583540 DOI: 10.4330/wjc.v9.i8.673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of interleukin-19 (IL-19) in a murine model of female-dominant heart failure (HF).
METHODS Expression of one copy of a phosphorylation-deficient cyclic adenosine monophosphate response-element binding protein (dnCREB) causes HF, with accelerated morbidity and mortality in female mice compared to males. We assessed expression of IL-19, its receptor isoforms IL-20R α/β, and downstream IL-19 signaling in this model of female-dominant HF. To test the hypothesis that IL-19 is cardioprotective in dnCREB-mediated HF, we generated a novel double transgenic (DTG) mouse of dnCREB and IL-19 knockout and assessed cardiac morbidity by echocardiography and survival of male and female mice.
RESULTS IL-19 is expressed in the murine heart with decreased expression in dnCREB female compared to male mice. Further, the relative expression of the two IL-19 receptor isoforms manifests differently in the heart by sex and by disease. Male DTG mice had accelerated mortality and cardiac morbidity compared to dnCREB males, while female DTG mice showed no additional detriment, supporting the hypothesis that IL-19 is cardioprotective in this model.
CONCLUSION Together, these data suggest IL-19 is an important cytokine mediating sex-specific cardiac (dys) function. Ongoing investigations will elucidate the mechanism(s) of sex-specific IL-19 mediated cardiac remodeling.
Collapse
Affiliation(s)
- Danielle R Bruns
- Division of Cardiology, Department of Medicine, University of Colorado-Denver, Aurora, CO 80045, United States
| | - Alexander R Ghincea
- Division of Cardiology, Department of Medicine, University of Colorado-Denver, Aurora, CO 80045, United States
| | - Christian V Ghincea
- Division of Cardiology, Department of Medicine, University of Colorado-Denver, Aurora, CO 80045, United States
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka 599-8351, Japan
| | - Peter A Watson
- Department of Medicine and Endocrinology, University of Colorado-Denver, Aurora, CO 80045, United States
- Denver Veterans Affairs Medical Center, Denver, CO 80220, United States
| | - Michael V Autieri
- Independence Blue Cross Cardiovascular Research Center, Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19122, United States
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado-Denver, Aurora, CO 80045, United States
| |
Collapse
|
47
|
Shooshtari P, Huang H, Cotsapas C. Integrative Genetic and Epigenetic Analysis Uncovers Regulatory Mechanisms of Autoimmune Disease. Am J Hum Genet 2017; 101:75-86. [PMID: 28686857 DOI: 10.1016/j.ajhg.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/31/2017] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies in autoimmune and inflammatory diseases (AID) have uncovered hundreds of loci mediating risk. These associations are preferentially located in non-coding DNA regions and in particular in tissue-specific DNase I hypersensitivity sites (DHSs). While these analyses clearly demonstrate the overall enrichment of disease risk alleles on gene regulatory regions, they are not designed to identify individual regulatory regions mediating risk or the genes under their control, and thus uncover the specific molecular events driving disease risk. To do so we have departed from standard practice by identifying regulatory regions which replicate across samples and connect them to the genes they control through robust re-analysis of public data. We find significant evidence of regulatory potential in 78/301 (26%) risk loci across nine autoimmune and inflammatory diseases, and we find that individual genes are targeted by these effects in 53/78 (68%) of these. Thus, we are able to generate testable mechanistic hypotheses of the molecular changes that drive disease risk.
Collapse
|
48
|
Khelifi L, Soufli I, Labsi M, Touil-Boukoffa C. Immune-protective effect of echinococcosis on colitis experimental model is dependent of down regulation of TNF-α and NO production. Acta Trop 2017; 166:7-15. [PMID: 27983971 DOI: 10.1016/j.actatropica.2016.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022]
Abstract
Hydatid disease (echinococcosis) is a chronic, endemic helminthic disease caused by the larval stage of the tapeworm, Echinococcus granulosus. This disease is endemic in many parts of the world, such as the Mediterranean area, and in particular in Algeria. Helminth parasites have developed complex strategies to modulate the immune responses of their hosts through versatile immune-regulatory mechanisms. These mechanisms may regulate immune responses associated with inflammatory diseases such as inflammatory bowel diseases (IBD). the goal of this study was to investigate the effect of Echinococcus granulosus infection on the development of dextran sulfate sodium (DSS)-induced colitis. Our results demonstrated that E. granulosus infection significantly improved the clinical symptoms and histological scores observed during DSS-induced colitis, and also maintained mucus production by goblet cells. Interestingly, this infection reduced Nitric oxide (NO) and tumor necrosis factor α (TNF-α) production and attenuated inducible nitric oxide synthase (iNOS) and nuclear factor-κB (NF-κB) expression in colonic tissues. Collectively, our data support the hygiene hypothesis and indicate that prior infection with E. granulosus can effectively protect mice from DSS-induced colitis by enhancing immune-regulatory mechanisms.
Collapse
Affiliation(s)
- Lila Khelifi
- Laboratory of Cellular and Molecular Biology, Department of Biology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.
| | - Imene Soufli
- Laboratory of Cellular and Molecular Biology, Department of Biology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.
| | - Moussa Labsi
- Laboratory of Cellular and Molecular Biology, Department of Biology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.
| | - Chafia Touil-Boukoffa
- Laboratory of Cellular and Molecular Biology, Department of Biology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.
| |
Collapse
|
49
|
Interleukin-19 contributes as a protective factor in experimental Th2-mediated colitis. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:261-268. [DOI: 10.1007/s00210-016-1329-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
|
50
|
Nishiyama K, Tanioka K, Azuma YT, Hayashi S, Fujimoto Y, Yoshida N, Kita S, Suzuki S, Nakajima H, Iwamoto T, Takeuchi T. Na +/Ca 2+ exchanger contributes to stool transport in mice with experimental diarrhea. J Vet Med Sci 2016; 79:403-411. [PMID: 27928109 PMCID: PMC5326949 DOI: 10.1292/jvms.16-0475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Na+/Ca2+ exchanger (NCX) is a bidirectional transporter that is
controlled by membrane potential and transmembrane gradients of Na+ and
Ca2+. To reveal the functional role of NCX on gastrointestinal motility, we
have previously used NCX1 and NCX2 heterozygote knockout mice (HET). We found that NCX1
and NCX2 play important roles in the motility of the gastric fundus, ileum and distal
colon. Therefore, we believed that NCX1 and NCX2 play an important role in transport of
intestinal contents. Here, we investigated the role of NCX in a mouse model of
drug-induced diarrhea. The fecal consistencies in NCX1 HET and NCX2 HET were assessed
using a diarrhea induced by magnesium sulfate, 5-hydroxytryptamine (5-HT) and
prostaglandin E2 (PGE2). NCX2 HET, but not NCX1 HET, exacerbated
magnesium sulfate-induced diarrhea by increasing watery fecals. Likewise, 5-HT-induced
diarrheas were exacerbated in NCX2 HET, but not NCX1 HET. However, NCX1 HET and NCX2 HET
demonstrated PGE2 induced diarrhea similar to those of wild-type mice (WT). As
well as the result of the distal colon shown previously, in the proximal and transverse
colons of WT, the myenteric plexus layers and the longitudinal and circular muscle layers
were strongly immunoreactive to NCX1 and NCX2. In this study, we demonstrate that NCX2 has
important roles in development of diarrhea.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|