1
|
Sinclair T, Craig P, Maltby LL. Climate warming shifts riverine macroinvertebrate communities to be more sensitive to chemical pollutants. GLOBAL CHANGE BIOLOGY 2024; 30:e17254. [PMID: 38556898 DOI: 10.1111/gcb.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
Freshwaters are highly threatened ecosystems that are vulnerable to chemical pollution and climate change. Freshwater taxa vary in their sensitivity to chemicals and changes in species composition can potentially affect the sensitivity of assemblages to chemical exposure. Here we explore the potential consequences of future climate change on the composition and sensitivity of freshwater macroinvertebrate assemblages to chemical stressors using the UK as a case study. Macroinvertebrate assemblages under end of century (2080-2100) and baseline (1980-2000) climate conditions were predicted for 608 UK sites for four climate scenarios corresponding to mean temperature changes of 1.28 to 3.78°C. Freshwater macroinvertebrate toxicity data were collated for 19 chemicals and the hierarchical species sensitivity distribution model was used to predict the sensitivity of untested taxa using relatedness within a Bayesian approach. All four future climate scenarios shifted assemblage compositions, increasing the prevalence of Mollusca, Crustacea and Oligochaeta species, and the insect taxa of Odonata, Chironomidae, and Baetidae species. Contrastingly, decreases were projected for Plecoptera, Ephemeroptera (except for Baetidae) and Coleoptera species. Shifts in taxonomic composition were associated with changes in the percentage of species at risk from chemical exposure. For the 3.78°C climate scenario, 76% of all assemblages became more sensitive to chemicals and for 18 of the 19 chemicals, the percentage of species at risk increased. Climate warming-induced increases in sensitivity were greatest for assemblages exposed to metals and were dependent on baseline assemblage composition, which varied spatially. Climate warming is predicted to result in changes in the use, environmental exposure and toxicity of chemicals. Here we show that, even in the absence of these climate-chemical interactions, shifts in species composition due to climate warming will increase chemical risk and that the impact of chemical pollution on freshwater macroinvertebrate biodiversity may double or quadruple by the end of the 21st century.
Collapse
Affiliation(s)
- Tom Sinclair
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Peter Craig
- Department of Mathematical Sciences, Durham University, Durham, UK
| | | |
Collapse
|
2
|
Alloy M, Sundaravadivelu D, Conmy R, Meyer P, Barron MG. Determination of aquatic hazard concentrations for the oil spill response product class of surface washing agents using species sensitivity distributions. MARINE POLLUTION BULLETIN 2023; 193:115063. [PMID: 37302201 PMCID: PMC10870308 DOI: 10.1016/j.marpolbul.2023.115063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Surface washing agents (SWAs) are a diverse class of oil spill response products intended to facilitate removal of stranded oil from shorelines. This class of agents has high application rates relative to other categories of spill response products, but global toxicity data is generally limited to two standard test species: inland silverside and mysid shrimp. Here, we provide a framework to maximize the utility of limited toxicity data across a product class. To characterize species sensitivity to SWAs, the toxicity of three agents spanning a range of chemical and physical properties were tested in eight species. The relative sensitivity of mysids shrimp and inland silversides as surrogate test organisms was determined. Toxicity normalized species sensitivity distributions (SSDn) were used to estimate fifth centile hazard concentration (HC5) values for SWAs with limited toxicity data. Chemical toxicity distributions (CTD) of SWA HC5 values were used to compute a fifth centile chemical hazard distribution (HD5) to provide a more comprehensive assessment of hazard across a spill response product class with limited toxicity data than traditional single species or single agent approaches can give.
Collapse
Affiliation(s)
- Matthew Alloy
- Oak Ridge Institute for Science and Education, Cincinnati, OH, USA
| | | | - Robyn Conmy
- Office of Research & Development, US EPA, Cincinnati, OH, USA.
| | | | - Mace G Barron
- Office of Research & Development, US EPA, Gulf Breeze, FL, USA
| |
Collapse
|
3
|
Stubblefield WA, Barron M, Bragin G, DeLorenzo ME, de Jourdan B, Echols B, French-McCay DP, Jackman P, Loughery JR, Parkerton TF, Renegar DA, Rodriguez-Gil JL. Improving the design and conduct of aquatic toxicity studies with oils based on 20 years of CROSERF experience. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106579. [PMID: 37300923 DOI: 10.1016/j.aquatox.2023.106579] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/12/2023]
Abstract
Laboratory toxicity testing is a key tool used in oil spill science, spill effects assessment, and mitigation strategy decisions to minimize environmental impacts. A major consideration in oil toxicity testing is how to replicate real-world spill conditions, oil types, weathering states, receptor organisms, and modifying environmental factors under laboratory conditions. Oils and petroleum-derived products are comprised of thousands of compounds with different physicochemical and toxicological properties, and this leads to challenges in conducting and interpreting oil toxicity studies. Experimental methods used to mix oils with aqueous test media have been shown to influence the aqueous-phase hydrocarbon composition and concentrations, hydrocarbon phase distribution (i.e., dissolved phase versus in oil droplets), and the stability of oil:water solutions which, in turn, influence the bioavailability and toxicity of the oil containing media. Studies have shown that differences in experimental methods can lead to divergent test results. Therefore, it is imperative to standardize the methods used to prepare oil:water solutions in order to improve the realism and comparability of laboratory tests. The CROSERF methodology, originally published in 2005, was developed as a standardized method to prepare oil:water solutions for testing and evaluating dispersants and dispersed oil. However, it was found equally applicable for use in testing oil-derived petroleum substances. The goals of the current effort were to: (1) build upon two decades of experience to update existing CROSERF guidance for conducting aquatic toxicity tests and (2) to improve the design of laboratory toxicity studies for use in hazard evaluation and development of quantitative effects models that can then be applied in spill assessment. Key experimental design considerations discussed include species selection (standard vs field collected), test substance (single compound vs whole oil), exposure regime (static vs flow-through) and duration, exposure metrics, toxicity endpoints, and quality assurance and control.
Collapse
Affiliation(s)
| | - M Barron
- United States Environmental Protection Agency (retired), USA
| | - G Bragin
- ExxonMobil Biomedical Sciences, Inc., USA
| | - M E DeLorenzo
- National Oceanic and Atmospheric Administration (NOAA), USA
| | - B de Jourdan
- Huntsman Marine Science Centre, St. Andrews, New Brunswick, Canada
| | - B Echols
- Environmental Toxicology Associates LLC, USA
| | | | - P Jackman
- Environment and Climate Change Canada (retired), Canada
| | - J R Loughery
- Huntsman Marine Science Centre, St. Andrews, New Brunswick, Canada
| | | | | | - J L Rodriguez-Gil
- International Institute for Sustainable Development Experimental Lakes Area (IISD-ELA), Canada
| |
Collapse
|
4
|
French-McCay DP, Parkerton TF, de Jourdan B. Bridging the lab to field divide: Advancing oil spill biological effects models requires revisiting aquatic toxicity testing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106389. [PMID: 36702035 DOI: 10.1016/j.aquatox.2022.106389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Oil fate and exposure modeling addresses the complexities of oil composition, weathering, partitioning in the environment, and the distributions and behaviors of aquatic biota to estimate exposure histories, i.e., oil component concentrations and environmental conditions experienced over time. Several approaches with increasing levels of complexity (i.e., aquatic toxicity model tiers, corresponding to varying purposes and applications) have been and continue to be developed to predict adverse effects resulting from these exposures. At Tiers 1 and 2, toxicity-based screening thresholds for assumed representative oil component compositions are used to inform spill response and risk evaluations, requiring limited toxicity data, analytical oil characterizations, and computer resources. Concentration-response relationships are employed in Tier 3 to quantify effects of assumed oil component mixture compositions. Oil spill modeling capabilities presently allow predictions of spatial and temporal compositional changes during exposure, which support mixture-based modeling frameworks. Such approaches rely on summed effects of components using toxic units to enable more realistic analyses (Tier 4). This review provides guidance for toxicological studies to inform the development of, provide input to, and validate Tier 4 aquatic toxicity models for assessing oil spill effects on aquatic biota. Evaluation of organisms' exposure histories using a toxic unit model reflects the current state-of the-science and provides an improved approach for quantifying effects of oil constituents on aquatic organisms. Since the mixture compositions in toxicity tests are not representative of field exposures, modelers rely on studies using single compounds to build toxicity models accounting for the additive effects of dynamic mixture exposures that occur after spills. Single compound toxicity data are needed to quantify the influence of exposure duration and modifying environmental factors (e.g., temperature, light) on observed effects for advancing use of this framework. Well-characterized whole oil bioassay data should be used to validate and refine these models.
Collapse
Affiliation(s)
- Deborah P French-McCay
- RPS Ocean Science, 55 Village Square Drive, South Kingstown, Rhode Island 02879, United States.
| | - Thomas F Parkerton
- EnviSci Consulting, LLC, 5900 Balcones Dr, Suite 100, Austin, Texas 77433, United States
| | - Benjamin de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, New Brunswick E5B 2L7, Canada
| |
Collapse
|
5
|
Techtmann SM, Santo Domingo J, Conmy R, Barron M. Impacts of dispersants on microbial communities and ecological systems. Appl Microbiol Biotechnol 2023; 107:1095-1106. [PMID: 36648524 PMCID: PMC10111227 DOI: 10.1007/s00253-022-12332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
Accidental oil spills can result in catastrophic ecological insults and therefore require rapid intervention to mitigate the potential impacts to aquatic ecosystems. One of the largest oil spills, known as the Deepwater Horizon oil spill, occurred in the Spring of 2010 near the coast of Louisiana (USA) due to an explosion during oil drilling activities. Millions of gallons of oil were released into the Gulf of Mexico, impacting thousands of ocean miles and coastal areas linked to the gulf. Among the actions taken during the remediation efforts was the unprecedented large use of Corexit dispersants, including at the subsurface to prevent oil from reaching the surface. While there is evidence that dispersants can accelerate the biodegradation of oil, reports on their potential toxicity to aquatic biota and to microbial functions have also been documented. In this review, we will examine the most recent literature on the impact of dispersants on microbial communities implicated in oil degradation and overall ecological networks. The primary focus will be on studies using Corexit but other dispersants will be discussed if data are available. We will share the literature gaps identified and discuss future work that is needed to reconcile some of the discrepancies found on the effectiveness of dispersants on oil degradation and their potential toxicity. KEY POINTS: • Chemical dispersants have been applied as a chemical response measure for oil spills. • The effects of chemical dispersants on microbial communities have been the subject of substantial research. • This work seeks to review recent work on the impact of chemical dispersants on oil biodegradation, microbial communities, and ecosystems.
Collapse
Affiliation(s)
- Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
| | - Jorge Santo Domingo
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA.
| | - Robyn Conmy
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Mace Barron
- Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, FL, USA
| |
Collapse
|
6
|
Manfra L, Mannozzi M, Onorati F. Current knowledge of approval procedures of dispersant use at sea: looking for potential harmonization from global to Mediterranean scale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18380-18394. [PMID: 36215011 DOI: 10.1007/s11356-022-23462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Dispersants are approved for use in many countries (UK, South Korea, Australia, Egypt, France, Greece, Indonesia, Italy, Japan, Malaysia, Norway, Singapore, Spain, Thailand, and several coastal African, South American, and Middle Eastern countries). Here, the protocols of the most advanced (France, Norway, UK, Spain, Greece, Italy, USA, and Australia) are compared for identifying possible harmonization of approval procedures. Pre-toxicity testing, recognized oil datasets, common thresholds, standardized protocols, zoning, and monitoring are some of the aspects that can be discussed between countries.
Collapse
Affiliation(s)
- Loredana Manfra
- Institute for Environmental Protection and Research (ISPRA), Via Brancati 60, 00144, Rome, Italy.
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Michela Mannozzi
- Institute for Environmental Protection and Research (ISPRA), Via Brancati 60, 00144, Rome, Italy
| | - Fulvio Onorati
- Institute for Environmental Protection and Research (ISPRA), Via Brancati 60, 00144, Rome, Italy
| |
Collapse
|
7
|
Wade TL, Driscoll SK, McGrath J, Coolbaugh T, Liu Z, Buskey EJ. Exposure methodologies for dissolved individual hydrocarbons, dissolved oil, water oil dispersions, water accommodated fraction and chemically enhanced water accommodated fraction of fresh and weathered oil. MARINE POLLUTION BULLETIN 2022; 184:114085. [PMID: 36113174 DOI: 10.1016/j.marpolbul.2022.114085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Characterizing the nature and effects of oil released into the marine environment is very challenging. It is generally recognized that "environmentally relevant" conditions for exposure involve a range of temporal and spatial conditions, a range of exposure pathways (e.g., dissolved, emulsions, sorbed onto particulates matter), and a multitude of organisms, populations, and ecosystems. Various exposure methodologies have been used to study the effects of oil on aquatic organisms, and uniform protocols and exposure methods have been developed for the purposes of regulatory toxicological assessments. Ultimately, all exposure methods have drawbacks, it is impossible to totally mimic field conditions, and the choice of exposure methodology depends on the specific regulatory, toxicological, or other research questions to be addressed. The aim of this paper is to provide a concise review of the state of knowledge to identify gaps in that knowledge and summarize challenges for the future.
Collapse
Affiliation(s)
- Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, Chemical Oceanography and Crude Oil Chemistry, USA.
| | - Susan Kane Driscoll
- Exponent, Inc., Aquatic Toxicology, One Mill & Main, Suite 150, Maynard, MA 01754, USA.
| | | | | | - Zhanfei Liu
- The University of Texas at Austin Marine Science Institute, Crude and Weathered Oil Chemistry, USA.
| | - Edward J Buskey
- The University of Texas at Austin Marine Science Institute, Biological Oceanography and Estuarine Ecology, USA.
| |
Collapse
|
8
|
Liu B, Chen B, Ling J, Matchinski EJ, Dong G, Ye X, Wu F, Shen W, Liu L, Lee K, Isaacman L, Potter S, Hynes B, Zhang B. Development of advanced oil/water separation technologies to enhance the effectiveness of mechanical oil recovery operations at sea: Potential and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129340. [PMID: 35728323 DOI: 10.1016/j.jhazmat.2022.129340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Mechanical oil recovery (i.e., booming and skimming) is the most common tool for oil spill response. The recovered fluid generated from skimming processes may contain a considerable proportion of water (10 % ~ 70 %). As a result of regulatory prohibition on the discharge of contaminated waters at sea, vessels and/or storage barges must make frequent trips to shore for oil-water waste disposal. This practice can be time- consuming thus reduces the overall efficiency and capacity of oil recovery. One potential solution is on-site oil-water separation and disposal of water fraction at sea. However, currently available decanting processes may have limited oil/water separation capabilities, especially in the presence of oil-water emulsion, which is inevitable in mechanical oil recovery. The decanted water may not meet the discharge standards and cause severe ecotoxicological impacts. This paper therefore comprehensively reviews the principles and progress in oil/water separation, demulsification, and on-site treatment technologies, investigates their applicability on decanting at sea, and discusses the ecotoxicity of decanted water in the marine environment. The outputs provide the fundamental and practical knowledge on decanting and help enhance response effectiveness and consequently reducing the environmental impacts of oil spills.
Collapse
Affiliation(s)
- Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Jingjing Ling
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Ethan James Matchinski
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Xudong Ye
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Fei Wu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Wanhua Shen
- Environmental Engineering Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Lei Liu
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| | - Lisa Isaacman
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| | - Stephen Potter
- SL Ross Environmental Research Ltd., Ottawa, ON K2H 8S9, Canada
| | - Brianna Hynes
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
9
|
Alloy MM, Sundaravadivelu D, Moso E, Meyer P, Barron MG. Comparative Toxicity of Oil Spill Herding Agents to Aquatic Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1311-1318. [PMID: 35156233 PMCID: PMC11474249 DOI: 10.1002/etc.5310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/11/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Chemical herding agents are surfactant mixtures used to coalesce spilled oil and increase slick thickness to facilitate mechanical recovery or in situ burning. Only two herders are currently listed on the United States' National Oil and Hazardous Substances Pollution Contingency Plan or National Contingency Plan product schedule for potential use in spill response: the surface collecting agents Siltech OP-40™ and ThickSlick 6535™. Toxicity data for spill response agents are frequently available only for two estuarine species, mysid shrimp (Americamysis bahia) and inland silversides (Menidia beryllina), and are particularly limited for herding agents. Toxicity can vary over several orders of magnitude across product type and species, even within specific categories of spill response agents. Seven aquatic species were tested with both Siltech OP-40™ and ThickSlick 6535™ to evaluate acute herder toxicity and relative species sensitivity. The toxicity assessment included: acute tests with A. bahia and M. beryllina, the freshwater crustacean Ceriodaphina dubia, and the freshwater fish Pimephales promelas; development of the echinoderm Arbacia unctulate; and growth of a freshwater alga Raphidocelis subcapitata and marine alga Dunaliella tertiolecta. Siltech acute toxicity values ranged from 1.1 to 32.8 ppm. ThickSlick acute toxicity values ranged from 2.2 to 126.4 ppm. The results of present study show greater toxicity of Siltech compared to ThickSlick with estimated acute hazard concentrations intended to provide 95% species protection of 1.1 and 3.6 ppm, respectively, on empirical data and 0.64 and 3.3 ppm, respectively, with the addition of interspecies correlation data. The present study provides a greater understanding of species sensitivity of these two oil spill response agents. Environ Toxicol Chem 2022;41:1311-1318. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Matthew M. Alloy
- Office of Research & Development, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | | | - Elizabeth Moso
- Office of Research & Development, U.S. Environmental Protection Agency, Gulf Breeze, Florida, USA
| | | | - Mace G. Barron
- Office of Research & Development, U.S. Environmental Protection Agency, Gulf Breeze, Florida, USA
| |
Collapse
|
10
|
Negri AP, Brinkman DL, Flores F, van Dam J, Luter HM, Thomas MC, Fisher R, Stapp LS, Kurtenbach P, Severati A, Parkerton TF, Jones R. Derivation of toxicity thresholds for gas condensate oils protective of tropical species using experimental and modelling approaches. MARINE POLLUTION BULLETIN 2021; 172:112899. [PMID: 34523424 DOI: 10.1016/j.marpolbul.2021.112899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Toxicity thresholds for dissolved oil applied in tropical ocean risk assessments are largely based on the sensitivities of temperate and/or freshwater species. To explore the suitability of these thresholds for tropical habitats we experimentally determined toxicity thresholds for eight tropical species for a partially weathered gas condensate, applied the target lipid model (TLM) to predict toxicity of fresh and weathered condensates and compared sensitivities of the tropical species with model predictions. The experimental condensate-specific hazard concentration (HC5) was 167 μg L-1 total aromatic hydrocarbons (TAH), with the TLM-modelled HC5 (78 μg L-1 TAH) being more conservative, supporting TLM-modelled thresholds for tropical application. Putative species-specific critical target lipid body burdens (CTLBBs) indicated that several of the species tested were among the more sensitive species in the TLM database ranging from 5.1 (coral larvae) to 97 (sponge larvae) μmol g-1 octanol and can be applied in modelling risk for tropical marine ecosystems.
Collapse
Affiliation(s)
- Andrew P Negri
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Florita Flores
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Joost van Dam
- Australian Institute of Marine Science, Casuarina 0811, Northern Territory, Australia
| | - Heidi M Luter
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Marie C Thomas
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Rebecca Fisher
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | - Laura S Stapp
- Australian Institute of Marine Science, Casuarina 0811, Northern Territory, Australia
| | - Paul Kurtenbach
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | - Andrea Severati
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| | | | - Ross Jones
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| |
Collapse
|
11
|
Donohoe RM, Duke BM, Clark SL, Joab BM, Dugan JE, Hubbard DM, DaSilva AR, Anderson MJ. Toxicity of Refugio Beach Oil to Sand Crabs (Emerita analoga), Blue Mussels (Mytilus sp.), and Inland Silversides (Menidia beryllina). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2578-2586. [PMID: 34192809 DOI: 10.1002/etc.5148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/04/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Monterey formation crude oil spilled from an onshore pipeline and entered the surf zone near Refugio State Beach, Santa Barbara County, California (USA) on 19 May 2015. During this season, early life stages of many marine fish and invertebrates were present. Surf zone water and beach porewater samples were collected during the 4 mo after the spill and 2 yr later for chemical analyses. Elevated polycyclic aromatic hydrocarbon (PAH) and total petroleum hydrocarbon concentrations were observed in surf zone water and porewater near the release point, declining with distance and time. Early life stage toxicity was investigated by conducting 6- and 7-d static renewal bioassays with sand crab (Emerita analoga) post larvae (megalopae) and inland silverside larvae (Menidia beryllina), respectively, and a 48-h blue mussel (Mytilus sp.) embryo development bioassay. Dilutions of a high-energy water accommodated fraction of the Refugio Beach oil and a seawater control were prepared to simulate surf zone PAH concentrations (nominal PAH45 ; 0, 0.5, 1, 5, 10, 50, 100, and 500 µg/L). The PAH45 median lethal concentrations (LC50s), based on measured concentrations, were 381 µg/L for Mytilus sp., 75.6 µg/L for Menidia, and 40.9 µg/L for Emerita. Our results suggest that PAH concentrations in coastal waters of the spill-affected area were potentially lethal to early life stages of fish and invertebrates. Environ Toxicol Chem 2021;40:2578-2586. © 2021 SETAC.
Collapse
Affiliation(s)
- Regina M Donohoe
- Office of Spill Prevention and Response, California Department of Fish and Wildlife, Sacramento, California, USA
| | - Bryand M Duke
- Office of Spill Prevention and Response, California Department of Fish and Wildlife, Sacramento, California, USA
| | | | - Bruce M Joab
- Office of Spill Prevention and Response, California Department of Fish and Wildlife, Sacramento, California, USA
| | - Jenifer E Dugan
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - David M Hubbard
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - April R DaSilva
- Office of Spill Prevention and Response, California Department of Fish and Wildlife, Sacramento, California, USA
| | - Michael J Anderson
- Office of Spill Prevention and Response, California Department of Fish and Wildlife, Sacramento, California, USA
| |
Collapse
|
12
|
Bytingsvik J, Parkerton TF, Guyomarch J, Tassara L, LeFloch S, Arnold WR, Brander SM, Volety A, Camus L. The sensitivity of the deepsea species northern shrimp (Pandalus borealis) and the cold-water coral (Lophelia pertusa) to oil-associated aromatic compounds, dispersant, and Alaskan North Slope crude oil. MARINE POLLUTION BULLETIN 2020; 156:111202. [PMID: 32510422 DOI: 10.1016/j.marpolbul.2020.111202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the sensitivity of two deepsea species using mortality of northern shrimp (Pandalus borealis) and polyp activity of stony coral (Lophelia pertusa) to dispersant, Corexit 9500 and aromatic hydrocarbons (toluene, 2-methylnaphthalene, phenanthrene) in 96-h tests. Resulting hydrocarbon toxicity data were fit to the Target Lipid Model to generate predictive models and determine species sensitivity. Toxicity of chemically enhanced water accommodated fractions of Alaskan North Slope crude oil (ANS-oil) was also investigated with shrimp using nominal loading, total petroleum hydrocarbons and biomimetic extraction (BE) as oil exposure metrics. Coral were more sensitive to dispersant than shrimp while similar sensitivity was observed for hydrocarbons. Study and literature findings indicate deepsea species exhibit acute sensitivities to dispersant, hydrocarbons and oil that are comparable to pelagic species. Results support use of passive sampling methods to quantify dissolved oil for interpreting oil toxicity tests and suggest models for predicting time-dependence of toxicity warrant re-evaluation.
Collapse
Affiliation(s)
| | | | - Julien Guyomarch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (Cedre), Brest, France
| | - Luca Tassara
- Akvaplan-niva, Fram Centre, Tromsø, Troms, Norway
| | - Stephane LeFloch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (Cedre), Brest, France
| | | | - Susanne M Brander
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Aswani Volety
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC, USA; Department of Biology, Elon University, Elon, NC, USA
| | - Lionel Camus
- Akvaplan-niva, Fram Centre, Tromsø, Troms, Norway
| |
Collapse
|
13
|
Barron MG, Bejarano AC, Conmy RN, Sundaravadivelu D, Meyer P. Toxicity of oil spill response agents and crude oils to five aquatic test species. MARINE POLLUTION BULLETIN 2020; 153:110954. [PMID: 32056858 PMCID: PMC7425839 DOI: 10.1016/j.marpolbul.2020.110954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 05/27/2023]
Abstract
The majority of aquatic toxicity data for petroleum products has been limited to a few intensively studied crude oils and Corexit chemical dispersants, and acute toxicity testing in two standard estuarine test species: mysids (Americamysis bahia) and inland silversides (Menidia beryllina). This study compared the toxicity of two chemical dispersants commonly stock piled for spill response (Corexit EC9500A®, Finasol®OSR 52), three less studied agents (Accell Clean®DWD dispersant; CytoSol® surface washing agent; Gelco200® solidifier), and three crude oils differing in hydrocarbon composition (Dorado, Endicott, Alaska North Slope). Consistent with listings on the U.S. National Contingency Plan Product Schedule, general rank order toxicity was greatest for dispersants and lowest for the solidifier. The results indicate that freshwater species can have similar sensitivity as the conventionally tested mysids and silversides, and that the sea urchin (Arbacia punctulata) appears to be a reasonable addition to increase taxa diversity in standardized oil agent testing.
Collapse
Affiliation(s)
- Mace G Barron
- Office of Research & Development, U.S. EPA, Gulf Breeze, FL 32561, USA.
| | | | - Robyn N Conmy
- Office of Research & Development, U.S. EPA, Cincinnati, OH 45268, USA
| | | | - Peter Meyer
- Hydrosphere Research, Alachua, FL 32615, USA
| |
Collapse
|
14
|
Echols BS, Langdon CJ, Stubblefield WA, Rand GM, Gardinali PR. A Comparative Assessment of the Aquatic Toxicity of Corexit 9500 to Marine Organisms. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:40-50. [PMID: 30255342 DOI: 10.1007/s00244-018-0568-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
The use of chemical dispersants during oil spill responses has long been controversial. During the Deepwater Horizon (DWH) oil spill, 1.8 million gallons of dispersant, mainly Corexit 9500, were applied in offshore waters to mitigate the human health and coastal environmental impact of surface oil contamination. To evaluate the potential impact of the dispersant on marine life, 18 species, representing important ecological and commercial taxa, were tested using low-energy, dispersant-only water accommodated fractions (WAFs) of Corexit 9500 and standard acute toxicity test methods. All prepared WAFs were analytically characterized. Analyses included the two dispersant markers found in the dispersant and evaluated in samples collected during the DWH Response, dioctylsulfosuccinate sodium salt, and dipropylene glycol n-butyl ether (DPnB). The median lethal and effective concentrations (LC/EC50s) were calculated using a nominal exposure concentration (mg/L, based on the experimental loading rate of 50 mg/L) and measured DPnB (µg/L). Results ranged from 5.50 to > 50 mg/L dispersant and 492 to > 304,000 µg/L DPnB. Species sensitivity distributions of the data demonstrated that taxa were evenly distributed; however, algae and oysters were among the more sensitive organisms. The calculated 5% hazard concentration (HC5) for DPnB (1172 µg/L) was slightly higher than the USEPA chronic criteria of 1000 µg/L and substantially higher than all measured concentrations of DPnB measured in the Gulf of Mexico during the DWH oil spill response.
Collapse
Affiliation(s)
- B S Echols
- Environmental Toxicology Associates, LLC, Gate City, VA, USA.
| | - C J Langdon
- Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - W A Stubblefield
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - G M Rand
- Department of Earth and the Environment, Southeast Environmental Research Center, Florida International University, North Miami, FL, USA
| | - P R Gardinali
- Department of Chemistry and Biochemistry, Southeast Environmental Research Center, Florida International University, North Miami, FL, USA
| |
Collapse
|
15
|
Prince RC. An Opportunity Lost? Research on Alternative Oil Spill Response Technologies Requires Active Engagement with the Professionals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14029-14030. [PMID: 30489071 DOI: 10.1021/acs.est.8b06390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Roger C Prince
- Stonybrook Apiary, Pittstown , New Jersey 08867 , United States
| |
Collapse
|
16
|
Bejarano AC. Critical review and analysis of aquatic toxicity data on oil spill dispersants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2989-3001. [PMID: 30125977 DOI: 10.1002/etc.4254] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Oil spill response requires consideration of several countermeasures including chemical dispersants, but their potential toxicity to aquatic species poses a concern. Considerable in vivo aquatic toxicity data from laboratory exposures have been generated since 2010 for current-use dispersants. The objective of the present review is to provide a synthesis of these data to improve dispersant hazard assessments. Data from multiple studies were evaluated based on reliability criteria. Although procedures, standards, endpoints, and statistical approaches were usually described, nearly a quarter of sources did not provide sufficient information to judge study quality but were considered on a case-by-case basis. Data were used to develop dispersant-specific species sensitivity distributions and hazard concentrations protective of 95% of the species (HC5). Given data limitations, post-2010 toxicity data were augmented with pre-2010 data and model predictions. The HC5s calculated for 54 dispersants fell mostly within the moderate to slightly toxic range and were compared to field dispersant-only concentrations estimated from operational application rates under conservative assumptions. Based on available evidence, dispersants may not pose a significant risk under field conditions to most aquatic species, if proper application and dilution are taken into account. Recommendations on improved toxicity testing and reporting as well as research needs are also provided. Environ Toxicol Chem 2018;37:2989-3001. © 2018 SETAC.
Collapse
|
17
|
Adamovsky O, Buerger AN, Wormington AM, Ector N, Griffitt RJ, Bisesi JH, Martyniuk CJ. The gut microbiome and aquatic toxicology: An emerging concept for environmental health. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2758-2775. [PMID: 30094867 DOI: 10.1002/etc.4249] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
The microbiome plays an essential role in the health and onset of diseases in all animals, including humans. The microbiome has emerged as a central theme in environmental toxicology because microbes interact with the host immune system in addition to its role in chemical detoxification. Pathophysiological changes in the gastrointestinal tissue caused by ingested chemicals and metabolites generated from microbial biodegradation can lead to systemic adverse effects. The present critical review dissects what we know about the impacts of environmental contaminants on the microbiome of aquatic species, with special emphasis on the gut microbiome. We highlight some of the known major gut epithelium proteins in vertebrate hosts that are targets for chemical perturbation, proteins that also directly cross-talk with the microbiome. These proteins may act as molecular initiators for altered gut function, and we propose a general framework for an adverse outcome pathway that considers gut dysbiosis as a major contributing factor to adverse apical endpoints. We present 2 case studies, nanomaterials and hydrocarbons, with special emphasis on the Deepwater Horizon oil spill, to illustrate how investigations into the microbiome can improve understanding of adverse outcomes. Lastly, we present strategies to functionally relate chemical-induced gut dysbiosis with adverse outcomes because this is required to demonstrate cause-effect relationships. Further investigations into the toxicant-microbiome relationship may prove to be a major breakthrough for improving animal and human health. Environ Toxicol Chem 2018;37:2758-2775. © 2018 SETAC.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Amanda N Buerger
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Alexis M Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Naomi Ector
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, USA
| | - Joseph H Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
McConville MM, Roberts JP, Boulais M, Woodall B, Butler JD, Redman AD, Parkerton TF, Arnold WR, Guyomarch J, LeFloch S, Bytingsvik J, Camus L, Volety A, Brander SM. The sensitivity of a deep-sea fish species (Anoplopoma fimbria) to oil-associated aromatic compounds, dispersant, and Alaskan North Slope crude oil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2210-2221. [PMID: 29729028 DOI: 10.1002/etc.4165] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
A predominant concern following oil spills is toxicity to aquatic organisms. However, few data are available on effects in deep-sea cold water fishes. The present study had 3 major objectives. The first was to investigate the relative sensitivity of the deep-sea species Anoplopoma fimbria (sablefish) to acute effects of 3 aromatic compounds (toluene, 2-methylnaphthalene, and phenanthrene), dispersant alone, and chemically enhanced water accommodated fractions (CEWAFs) of Alaskan North Slope crude oil. The second was to determine the critical target lipid body burden (CTLBB) for sablefish by fitting aromatic hydrocarbon toxicity data to the target lipid model (TLM), which then allowed expression of CEWAF exposures in terms of dissolved oil toxic units. The final aim was to apply a passive sampling method that targets bioavailable, dissolved hydrocarbons as an alternative analytical technique for improved CEWAF exposure assessment. The results indicate that sablefish exhibit sensitivity to Corexit 9500 (96-h median lethal concentration [LC50] = 72.2 mg/L) within the range reported for other fish species. However, the acute CTLBB of 39.4 ± 2.1 μmol/goctanol lies at the lower end of the sensitivity range established for aquatic species. The utility of both toxic units and passive sampling measurements for describing observed toxicity of dispersed oil is discussed. The present study is novel in that a new test species is investigated to address the uncertainty regarding the sensitivity of deep-sea fishes, while also employing modeling and measurements to improve exposure characterization in oil toxicity tests. Environ Toxicol Chem 2018;37:2210-2221. © 2018 SETAC.
Collapse
Affiliation(s)
- Megan M McConville
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | - John P Roberts
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | - Myrina Boulais
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | - Benjamin Woodall
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | | | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | | | - Julian Guyomarch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution, Brest, France
| | - Stéphane LeFloch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution, Brest, France
| | | | | | - Aswani Volety
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | - Susanne M Brander
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
19
|
Lewis A, Prince RC. Integrating Dispersants in Oil Spill Response in Arctic and Other Icy Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6098-6112. [PMID: 29709187 DOI: 10.1021/acs.est.7b06463] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Future oil exploration and marine navigation may well extend into the Arctic Ocean, and government agencies and responders need to plan for accidental oil spills. We argue that dispersants should play an important role in these plans, since they have substantial logistical benefits, work effectively under Arctic conditions, and stimulate the rapid biodegradation of spilled oil. They also minimize the risk of surface slicks to birds and mammals, the stranding of oil on fragile shorelines and minimize the need for large work crews to be exposed to Arctic conditions.
Collapse
Affiliation(s)
| | - Roger C Prince
- Stonybrook Apiary, Pittstown , New Jersey 08867 , United States
| |
Collapse
|
20
|
Del Brio J, Montagna CM, Lares BA, Parolo ME, Venturino A. Chemical characterization and toxicity of water-accommodated fraction of oil on the South American native species Hyalella curvispina. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:209-215. [PMID: 29747152 DOI: 10.1016/j.etap.2018.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
Chemical and toxicological crude oil analysis was performed on water-accommodated fraction of oil (WAF). This study characterized the chemical composition of WAF and its dissipation over a period of 192 h. Acute (96 h) and chronic (14 d) toxicity of WAF were evaluated on Hyalella curvispina from both reference (Los Barreales lake, LB) and hydrocarbon-contaminated (Durán stream, DS) sites. The total hydrocarbon (TPHs) concentration in WAF was 2.18 mg L-1. The dissipation rates of hydrocarbons in WAF showed a first-order kinetics, with half-lives ranging between 65 h-200 h. Amphipods from LB showed acute and chronic LC50 values of 0.33 and 0.018 mg L-1, respectively. Amphipods from DS exposed to pure WAF showed no mortality in either acute or chronic assays. Further biochemical and molecular research is required to determine the mechanisms underlying the resistance to WAF exposure on DS amphipods.
Collapse
Affiliation(s)
- Josefina Del Brio
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, CP 8300 Neuquén, Argentina
| | - Cristina Mónica Montagna
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, CP 8300 Neuquén, Argentina
| | - Betsabé Ailén Lares
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, CP 8300 Neuquén, Argentina
| | - María Eugenia Parolo
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, CP 8300 Neuquén, Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, CP 8300 Neuquén, Argentina.
| |
Collapse
|
21
|
Abstract
Oil spill responders require information on the absolute and relative toxicities of chemical dispersants to relevant receptor species to assess their use in spill response. However, little toxicity data are available for tropical marine species including reef-building corals. In this study, we experimentally assessed the sub-lethal toxicity of five dispersants to larvae of the coral Acropora millepora over three short exposure periods (2, 6 and 24 h) reflecting real-world spill response scenario durations. Inhibition of larval settlement increased rapidly between 2 and 6 h, and was highest at 24 h: EC50 Corexit EC9500A = 4.0 mg l−1; Ardrox 6120 = 4.0 mg l−1; Slickgone LTSW = 2.6 mg L−1; Slickgone NS = 11.1 mg L−1 and Finasol OSR52 = 3.4 mg L−1. Coral larvae were more sensitive to dispersants than most other coral life stages and marine taxa, but the toxic thresholds (EC10s) exceeded most realistic environmental dispersant concentrations. Estimating toxic threshold values for effects of dispersants on coral should benefit the decision-making of oil spill responders by contributing to the development of species sensitivity distributions (SSDs) for dispersant toxicity, and by informing net environmental benefit assessment (NEBA) for dispersant use.
Collapse
|
22
|
Barron MG, Conmy RN, Holder EL, Meyer P, Wilson GJ, Principe VE, Willming MM. Toxicity of Cold Lake Blend and Western Canadian Select dilbits to standard aquatic test species. CHEMOSPHERE 2018; 191:1-6. [PMID: 29020608 PMCID: PMC6016379 DOI: 10.1016/j.chemosphere.2017.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 05/11/2023]
Abstract
Dilbits are blends of bitumen and natural gas condensates or crude oils with only limited toxicity data. Two dilbits, Cold Lake Blend and Western Canadian Select, were tested as either unweathered or weathered oils for acute and chronic toxicity to standard freshwater and estuarine organisms. Water accommodated fractions of the dilbits were characterized for total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and monoaromatics (BTEX). Acute toxicity of unweathered and weathered dilbits ranged from 4 to 16 mg/L TPH, 8 to 40 μg/L total PAHs, and 0.7 to 16 mg/L BTEX in Ceriodaphnia dubia, Pimephales promelas, Americamysis bahia, and Menidia beryllina. Concentrations of weathered dilbits causing impaired growth (A. bahia) and reproduction (C. dubia) ranged from 0.8 to 3.5 mg/L TPH and 6 to 16 μg/L PAHs. The two dilbits had generally similar acute and short term chronic toxicity expressed as TPH or total PAHs as other crude oils and other petroleum products.
Collapse
Affiliation(s)
- Mace G Barron
- Gulf Ecology Division, U.S. EPA, Gulf Breeze, FL 32561, USA.
| | - Robyn N Conmy
- Land Remediation and Pollution Control Division, U.S. EPA, Cincinnati, OH 45268, USA
| | | | - Peter Meyer
- Hydrosphere Research, Alachua, FL 32615, USA
| | - Gregory J Wilson
- Office of Emergency Management, U.S. EPA, Washington, DC 20460, USA
| | | | | |
Collapse
|
23
|
Bejarano AC, Gardiner WW, Barron MG, Word JQ. Relative sensitivity of Arctic species to physically and chemically dispersed oil determined from three hydrocarbon measures of aquatic toxicity. MARINE POLLUTION BULLETIN 2017; 122:316-322. [PMID: 28684107 PMCID: PMC6033333 DOI: 10.1016/j.marpolbul.2017.06.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 05/05/2023]
Abstract
The risks to Arctic species from oil releases is a global concern, but their sensitivity to chemically dispersed oil has not been assessed using a curated and standardized dataset from spiked declining tests. Species sensitivity to dispersed oil was determined by their position within species sensitivity distributions (SSDs) using three measures of hydrocarbon toxicity: total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbon (PAHs), and naphthalenes. Comparisons of SSDs with Arctic/sub-Arctic versus non-Arctic species, and across SSDs of compositionally similar oils, showed that Arctic and non-Arctic species have comparable sensitivities even with the variability introduced by combining data across studies and oils. Regardless of hydrocarbon measure, hazard concentrations across SSDs were protective of sensitive Arctic species. While the sensitivities of Arctic species to oil exposures resemble those of commonly tested species, PAH-based toxicity data are needed for a greater species diversity including sensitive Arctic species.
Collapse
Affiliation(s)
- Adriana C Bejarano
- Research Planning, Inc., 1121 Park St., Columbia, SC 29201, United States.
| | - William W Gardiner
- U.S. Army Corps of Engineers, 4735 East Marginal Way, Seattle, WA 98134, United States
| | - Mace G Barron
- USEPA, Gulf Ecology Division, 1 Sabine Island Drive, Gulf Breeze, FL 32561, United States
| | - Jack Q Word
- Port Gamble Environmental Sciences, 152 Sunset Lane, Sequim, WA 98382, United States
| |
Collapse
|
24
|
Brown KE, King CK, Kotzakoulakis K, George SC, Harrison PL. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil. MARINE POLLUTION BULLETIN 2016; 110:343-353. [PMID: 27389459 DOI: 10.1016/j.marpolbul.2016.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region.
Collapse
Affiliation(s)
- Kathryn E Brown
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; Human Impacts and Remediation, Antarctic Conservation and Management Program, Australian Antarctic Division, Kingston, TAS 7050, Australia.
| | - Catherine K King
- Human Impacts and Remediation, Antarctic Conservation and Management Program, Australian Antarctic Division, Kingston, TAS 7050, Australia
| | | | - Simon C George
- Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| | - Peter L Harrison
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
25
|
Redman AD, Parkerton TF. Guidance for improving comparability and relevance of oil toxicity tests. MARINE POLLUTION BULLETIN 2015; 98:156-70. [PMID: 26162510 DOI: 10.1016/j.marpolbul.2015.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/22/2015] [Accepted: 06/28/2015] [Indexed: 05/25/2023]
Abstract
The complex nature and limited aqueous solubility of petroleum substances pose challenges for consistently characterizing exposures in aquatic life hazard assessments. This paper reviews important considerations for the design, conduct and interpretation of laboratory toxicity tests with physically and chemically dispersed oils based on an understanding of the behavior and toxicity of the hydrocarbons that comprise these substances. Guiding principles are provided that emphasize the critical need to understand and, when possible, characterize dissolved hydrocarbon exposures that dictate observed toxicity in these tests. These principles provide a consistent framework for interpreting toxicity studies performed using different substances and test methods by allowing varying dissolved exposures to be expressed in terms of a common metric based on toxic units (TUs). The use of passive sampling methods is also advocated since such analyses provide an analytical surrogate for TUs. The proposed guidance is translated into a series of questions that can be used in evaluating existing data and in guiding design of future studies. Application of these questions to a number of recent publications indicates such considerations are often ignored, thus perpetuating the difficulty of interpreting and comparing results between studies and limiting data use in objective hazard assessment. Greater attention to these principles will increase the comparability and utility of oil toxicity data in decision-making.
Collapse
Affiliation(s)
- Aaron D Redman
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ 08801, USA.
| | - Thomas F Parkerton
- ExxonMobil Biomedical Sciences, Inc., 22777 Springwood Village Parkway, Spring, TX 77339, USA
| |
Collapse
|
26
|
Dussauze M, Pichavant-Rafini K, Le Floch S, Lemaire P, Theron M. Acute toxicity of chemically and mechanically dispersed crude oil to juvenile sea bass (Dicentrarchus labrax): Absence of synergistic effects between oil and dispersants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1543-1551. [PMID: 25677812 DOI: 10.1002/etc.2931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/08/2014] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
The goal of the present experiment was to assess the relative acute toxicities of mechanically and chemically dispersed oil (crude Arabian Light) in controlled conditions. Juvenile sea bass (Dicentrarchus labrax) were exposed to 4 commercial formulations of dispersants (Corexit EC9500A, Dasic Slickgone NS, Finasol OSR 52, Inipol IP 90), to mechanically dispersed oil, and to the corresponding chemical dispersions. Acute toxicity was evaluated at 24 h, 48 h, 72 h, and 96 h through the determination of 10%, 50%, and 90% lethal concentrations calculated from measured total petroleum hydrocarbon (TPH) concentrations; Kaplan-Meyer mortality analyses were based on nominal concentrations. Animals were exposed to the dissolved fraction of the oil and to the oil droplets (ranging from 14.0 μm to 42.3 μm for the chemical dispersions). Kaplan-Meyer analyses demonstrated an increased mortality in the case of chemical dispersions. This difference can be attributed mainly to differences in TPH, because the chemical lethal concentrations were not reduced compared with mechanical lethal concentrations (except after 24 h of exposure). The ratios of lethal concentrations of mechanical dispersions to the different chemical dispersions were calculated to allow direct comparisons of the relative toxicities of the dispersions. The results ranged from 0.27 to 3.59, with a mean ratio close to 1 (0.92). These results demonstrate an absence of synergistic effect between oil and chemical dispersants in an operational context.
Collapse
Affiliation(s)
- Matthieu Dussauze
- Optimization of Physiologic Regulation (ORPHY) Laboratory, University of Western Brittany, Brest, France
- Center of Documentation, Research, and Experimentation on Accidental Water Pollutions (CEDRE), Brest, France
| | - Karine Pichavant-Rafini
- Optimization of Physiologic Regulation (ORPHY) Laboratory, University of Western Brittany, Brest, France
| | - Stéphane Le Floch
- Center of Documentation, Research, and Experimentation on Accidental Water Pollutions (CEDRE), Brest, France
| | | | - Michaël Theron
- Optimization of Physiologic Regulation (ORPHY) Laboratory, University of Western Brittany, Brest, France
| |
Collapse
|
27
|
Garner KL, Suh S, Lenihan HS, Keller AA. Species sensitivity distributions for engineered nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5753-5759. [PMID: 25875138 DOI: 10.1021/acs.est.5b00081] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Engineered nanomaterials (ENMs) are a relatively new strain of materials for which little is understood about their impacts. A species sensitivity distribution (SSDs) is a cumulative probability distribution of a chemical's toxicity measurements obtained from single-species bioassays of various species that can be used to estimate the ecotoxicological impacts of a chemical. The recent increase in the availability of acute toxicity data for ENMs enabled the construction of 10 ENM-specific SSDs, with which we analyzed (1) the range of toxic concentrations, (2) whether ENMs cause greater hazard to an ecosystem than the ionic or bulk form, and (3) the key parameters that affect variability in toxicity. The resulting estimates for hazardous concentrations at which 5% of species will be harmed ranged from <1 ug/L for PVP-coated n-Ag to >3.5 mg/L for CNTs. The results indicated that size, formulation, and the presence of a coating can alter toxicity, and thereby corresponding SSDs. Few statistical differences were observed between SSDs of an ENM and its ionic counterpart. However, we did find a significant correlation between the solubility of ENMs and corresponding SSD. Uncertainty in SSD values can be reduced through greater consideration of ENM characteristics and physiochemical transformations in the environment.
Collapse
Affiliation(s)
- Kendra L Garner
- UC Center on the Environmental Implications of Nanotechnology and Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Sangwon Suh
- UC Center on the Environmental Implications of Nanotechnology and Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Hunter S Lenihan
- UC Center on the Environmental Implications of Nanotechnology and Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Arturo A Keller
- UC Center on the Environmental Implications of Nanotechnology and Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
28
|
Bejarano AC, Mearns AJ. Improving environmental assessments by integrating Species Sensitivity Distributions into environmental modeling: examples with two hypothetical oil spills. MARINE POLLUTION BULLETIN 2015; 93:172-182. [PMID: 25736814 DOI: 10.1016/j.marpolbul.2015.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/14/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
A three dimensional (3D) trajectory model was used to simulate oil mass balance and environmental concentrations of two 795,000 L hypothetical oil spills modeled under physical and chemical dispersion scenarios. Species Sensitivity Distributions (SSD) for Total Hydrocarbon Concentrations (THCs) were developed, and Hazard Concentrations (HC) used as levels of concern. Potential consequences to entrained water column organisms were characterized by comparing model outputs with SSDs, and obtaining the proportion of species affected (PSA) and areas with oil concentrations exceeding HC5s (Area ⩾ HC5). Under the physically-dispersed oil scenario ⩽ 77% of the oil remains on the water surface and strands on shorelines, while with the chemically-dispersed oil scenario ⩽ 67% of the oil is entrained in the water column. For every 10% increase in chemical dispersion effectiveness, the average PSA and Area ⩾ HC5 increases (range: 0.01-0.06 and 0.50-2.9 km(2), respectively), while shoreline oiling decreases (⩽ 2919 L/km). Integrating SSDs into modeling may improve understanding of scales of potential impacts to water column organisms, while providing net environmental benefit comparison of oil spill response options.
Collapse
Affiliation(s)
| | - Alan J Mearns
- National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA
| |
Collapse
|
29
|
Bejarano AC, Barron MG. Development and practical application of petroleum and dispersant interspecies correlation models for aquatic species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4564-4572. [PMID: 24678991 DOI: 10.1021/es500649v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Assessing the acute toxicity of oil has generally relied on existing toxicological data for a relatively few standard test species, which has limited the ability to estimate the impacts of spilled oil on aquatic communities. Interspecies correlation estimation (ICE) models were developed for petroleum and dispersant products to facilitate the prediction of toxicity values to a broader range of species and to better understand taxonomic differences in species sensitivity. ICE models are log linear regressions that can be used to estimate toxicity to a diversity of taxa based on the known toxicity value for a surrogate tested species. ICE models have only previously been developed for nonpetroleum chemicals. Petroleum and dispersant ICE models were statistically significant for 93 and 16 unique surrogate-predicted species pairs, respectively. These models had adjusted coefficient of determinations (adj-R(2)), square errors (MSE) and positive slope ranging from 0.29 to 0.99, 0.0002 to 0.311, and 0.187 to 2.665, respectively. Based on model cross-validation, predicted toxicity values for most ICE models (>90%) were within 5-fold of the measured values, with no influence of taxonomic relatedness on prediction accuracy. A comparison between hazard concentrations (HC) derived from empirical and ICE-based species sensitivity distributions (SSDs) showed that HC values were within the same order of magnitude of each other. These results show that ICE-based SSDs provide a statistically valid approach to estimating toxicity to a range of petroleum and dispersant products with applicability to oil spill assessment.
Collapse
Affiliation(s)
- Adriana C Bejarano
- Research Planning, Inc., 1121 Park Street, Columbia, South Carolina 29201, United States
| | | |
Collapse
|
30
|
Bejarano AC, Clark JR, Coelho GM. Issues and challenges with oil toxicity data and implications for their use in decision making: a quantitative review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:732-742. [PMID: 24616123 DOI: 10.1002/etc.2501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Aquatic toxicity considerations are part of the net environmental benefit analysis and approval decision process on the use of dispersants in the event of an offshore oil spill. Substantial information is available on the acute toxicity of physically and chemically dispersed oil to a diverse subset of aquatic species generated under controlled laboratory conditions. However, most information has been generated following standard laboratory practices, which do not realistically represent oil spill conditions in the field. The goal of the present quantitative review is to evaluate the use of standard toxicity testing data to help inform decisions regarding dispersant use, recognizing some key issues with current practices, specifically, reporting toxicity metrics (nominal vs measured), exposure duration (standard durations vs short-term exposures), and exposure concentrations (constant vs spiked). Analytical chemistry data also were used to demonstrate the role of oil loading on acute toxicity and the influence of dispersants on chemical partitioning. The analyses presented here strongly suggest that decisions should be made, at a minimum, based on measured aqueous exposure concentrations and, ideally, using data from short-term exposure durations under spiked exposure concentrations. Available data sets are used to demonstrate how species sensitivity distribution curves can provide useful insights to the decision-making process on dispersant use. Finally, recommendations are provided, including the adoption of oil spill-appropriate toxicity testing practices.
Collapse
|