1
|
Ren A, Sun J, Yin W, Westerberg LS, Miller H, Lee P, Candotti F, Guan F, Lei J, Gong Q, Chen Y, Liu C. Signaling networks in B cell development and related therapeutic strategies. J Leukoc Biol 2021; 111:877-891. [PMID: 34528729 DOI: 10.1002/jlb.2ru0221-088rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
B cells are essential for Ab production during humoral immune responses. From decades of B cell research, there is now a detailed understanding of B cell subsets, development, functions, and most importantly, signaling pathways. The complicated pathways in B cells and their interactions with each other are stage-dependent, varying with surface marker expression during B cell development. With the increasing understanding of B cell development and signaling pathways, the mechanisms underlying B cell related diseases are being unraveled as well, making it possible to provide more precise and effective treatments. In this review, we describe several essential and recently discovered signaling pathways in B cell development and take a look at newly developed therapeutic strategies targeted at B cell signaling.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Liao H, Zheng Q, Jin Y, Chozom T, Zhu Y, Liu L, Jiang N. The prognostic significance of hematogones and CD34+ myeloblasts in bone marrow for adult B-cell lymphoblastic leukemia without minimal residual disease. Sci Rep 2019; 9:19722. [PMID: 31871314 PMCID: PMC6928064 DOI: 10.1038/s41598-019-56126-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
This study was aimed to dissect the prognostic significances of hematogones and CD34+ myeloblasts in bone marrow for adult B-cell acute lymphoblastic leukemia(ALL) without minimal residual disease(MRD) after the induction chemotherapy cycle. A total of 113 ALL patients who have received standardized chemotherapy cycle were analyzed. Cases that were not remission after induction chemotherapy or have received stem cell transplantation were excluded. Flow cytometry was used to quantify the levels of hematogones and CD34+ myeloblasts in bone marrow aspirations, and the patients were grouped according to the levels of these two precursor cell types. The long-term relapse-free survival(RFS) and recovery of peripheral blood cells of each group after induction chemotherapy were compared. The results indicated that, after induction chemotherapy, patients with hematogones ≥0.1% have a significantly longer remission period than patients with hematogones <0.1% (p = 0.001). Meanwhile, the level of hematogones was positively associated with the recovery of both hemoglobin and platelet in peripheral blood, while CD34+ myeloblasts level is irrelevant to the recovery of Hb and PLT in peripheral blood, level of hematogones and long-term prognosis. This study confirmed hematogones level after induction chemotherapy can be used as a prognostic factor for ALL without MRD. It is more applicable for evaluation prognosis than CD34+ myeloblasts.
Collapse
Affiliation(s)
- Hongyan Liao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China
| | - Qin Zheng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China
| | - Yongmei Jin
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China
| | - Tashi Chozom
- Tibet Autonomous Region People's Hospital, Lhasa, China
| | - Ying Zhu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China
| | - Li Liu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China
| | - Nenggang Jiang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China.
| |
Collapse
|
3
|
Li B, Jia S, Yue T, Yang L, Huang C, Verkhratsky A, Peng L. Biphasic Regulation of Caveolin-1 Gene Expression by Fluoxetine in Astrocytes: Opposite Effects of PI3K/AKT and MAPK/ERK Signaling Pathways on c-fos. Front Cell Neurosci 2017; 11:335. [PMID: 29163047 PMCID: PMC5671492 DOI: 10.3389/fncel.2017.00335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Previously, we reported that fluoxetine acts on 5-HT2B receptor and induces epidermal growth factor receptor (EGFR) transactivation in astrocytes. Recently, we have found that chronic treatment with fluoxetine regulates Caveolin-1 (Cav-1)/PTEN/PI3K/AKT/glycogen synthase kinase 3β (GSK-3β) signaling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. At low concentrations fluoxetine down-regulates Cav-1 gene expression, decreases membrane content of PTEN, increases PI3K activity and increases phosphorylation of GSK-3β and increases its activity; at high concentrations fluoxetine acts on PTEN/PI3K/AKT/GSK-3β in an inverse fashion. Here, we present the data indicating that acute treatment with fluoxetine at lower concentrations down-regulates c-Fos gene expression via PI3K/AKT signaling pathway; in contrast at higher concentrations fluoxetine up-regulates c-Fos gene expression via MAPK/extracellular-regulated kinase (ERK) signaling pathway. However, acute treatment with fluoxetine has no effect on Cav-1 protein content. Similarly, chronic effects of fluoxetine on Cav-1 gene expression are suppressed by inhibitor of PI3K at lower concentrations, but by inhibitor of MAPK at higher concentrations, indicating that the mechanism underlying bi-phasic regulation of Cav-1 gene expression by fluoxetine is opposing effects of PI3K/AKT and MAPK/ERK signal pathways on c-Fos gene expression. The effects of fluoxetine on Cav-1 gene expression at both lower and higher concentrations are abolished by AG1478, an inhibitor of EGFR, indicating the involvement of 5-HT2B receptor induced EGFR transactivation as we reported previously. However, PP1, an inhibitor of Src only abolished the effect by lower concentrations, suggesting the relevance of Src with PI3K/AKT signal pathway during activation of EGFR.
Collapse
Affiliation(s)
- Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Shu Jia
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Tingting Yue
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Li Yang
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Chen Huang
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Alexej Verkhratsky
- Faculty of Life Science, The University of Manchester, Manchester, United Kingdom.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Chinn IK, Sanders RP, Stray-Pedersen A, Coban-Akdemir ZH, Kim VHD, Dadi H, Roifman CM, Quigg T, Lupski JR, Orange JS, Hanson IC. Novel Combined Immune Deficiency and Radiation Sensitivity Blended Phenotype in an Adult with Biallelic Variations in ZAP70 and RNF168. Front Immunol 2017; 8:576. [PMID: 28603521 PMCID: PMC5445153 DOI: 10.3389/fimmu.2017.00576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
With the advent of high-throughput genomic sequencing techniques, novel genetic etiologies are being uncovered for previously unexplained Mendelian phenotypes, and the underlying genetic architecture of disease is being unraveled. Although most of these “mendelizing” disease traits represent phenotypes caused by single-gene defects, a percentage of patients have blended phenotypes caused by pathogenic variants in multiple genes. We describe an adult patient with susceptibility to bacterial, herpesviral, and fungal infections. Immunologic defects included CD8+ T cell lymphopenia, decreased T cell proliferative responses to mitogens, hypogammaglobulinemia, and radiation sensitivity. Whole-exome sequencing revealed compound heterozygous variants in ZAP70. Biallelic mutations in ZAP70 are known to produce a spectrum of immune deficiency that includes the T cell abnormalities observed in this patient. Analyses for variants in genes associated with radiation sensitivity identified the presence of a homozygous RNF168 variant of unknown significance. RNF168 deficiency causes radiosensitivity, immunodeficiency, dysmorphic features, and learning difficulties syndrome and may account for the radiation sensitivity. Thus, the patient was found to have a novel blended phenotype associated with multilocus genomic variation: i.e., separate and distinct genetic defects. These findings further illustrate the clinical utility of applying genomic testing in patients with primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, TX, USA.,Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
| | - Robert P Sanders
- Texas Transplant Institute, Methodist Hospital, San Antonio, TX, USA
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep H Coban-Akdemir
- Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vy Hong-Diep Kim
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Harjit Dadi
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Canadian Centre for Primary Immunodeficiency, The Jeffrey Model Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Canadian Centre for Primary Immunodeficiency, The Jeffrey Model Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Troy Quigg
- Texas Transplant Institute, Methodist Hospital, San Antonio, TX, USA
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, TX, USA.,Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
| | - I Celine Hanson
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
5
|
Ibrutinib inhibits pre-BCR + B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood 2016; 129:1155-1165. [PMID: 28031181 DOI: 10.1182/blood-2016-06-722900] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Targeting B-cell receptor (BCR) signaling is a successful therapeutic strategy in mature B-cell malignancies. Precursor BCR (pre-BCR) signaling, which is critical during normal B lymphopoiesis, also plays an important role in pre-BCR+ B cell acute lymphoblastic leukemia (B-ALL). Here, we investigated the activity and mechanism of action of the BTK inhibitor ibrutinib in preclinical models of B-ALL. Pre-BCR+ ALL cells were exquisitely sensitive to ibrutinib at therapeutically relevant drug concentrations. In pre-BCR+ ALL, ibrutinib thwarted autonomous and induced pre-BCR signaling, resulting in deactivation of PI3K/Akt signaling. Ibrutinib modulated the expression of pre-BCR regulators (PTPN6, CD22, CD72, and PKCβ) and substantially reduced BCL6 levels. Ibrutinib inhibited ALL cell migration toward CXCL12 and beneath marrow stromal cells and reduced CD44 expression. CRISPR-Cas9 gene editing revealed that both BTK and B lymphocyte kinase (BLK) are relevant targets of ibrutinib in pre-BCR+ ALL. Consequently, in mouse xenograft models of pre-BCR+ ALL, ibrutinib treatment significantly prolonged survival. Combination treatment of ibrutinib with dexamethasone or vincristine demonstrated synergistic activity against pre-BCR+ ALL. These data corroborate ibrutinib as a promising targeted agent for pre-BCR+ ALL and highlight the importance of ibrutinib effects on alternative kinase targets.
Collapse
|
6
|
Erasmus MF, Matlawska-Wasowska K, Kinjyo I, Mahajan A, Winter SS, Xu L, Horowitz M, Lidke DS, Wilson BS. Dynamic pre-BCR homodimers fine-tune autonomous survival signals in B cell precursor acute lymphoblastic leukemia. Sci Signal 2016; 9:ra116. [PMID: 27899526 DOI: 10.1126/scisignal.aaf3949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The pre-B cell receptor (pre-BCR) is an immature form of the BCR critical for early B lymphocyte development. It is composed of the membrane-bound immunoglobulin (Ig) heavy chain, surrogate light chain components, and the signaling subunits Igα and Igβ. We developed monovalent quantum dot (QD)-labeled probes specific for Igβ to study the behavior of pre-BCRs engaged in autonomous, ligand-independent signaling in live B cells. Single-particle tracking revealed that QD-labeled pre-BCRs engaged in transient, but frequent, homotypic interactions. Receptor motion was correlated at short separation distances, consistent with the formation of dimers and higher-order oligomers. Repeated encounters between diffusing pre-BCRs appeared to reflect transient co-confinement in plasma membrane domains. In human B cell precursor acute lymphoblastic leukemia (BCP-ALL) cells, we showed that frequent, short-lived, homotypic pre-BCR interactions stimulated survival signals, including expression of BCL6, which encodes a transcriptional repressor. These survival signals were blocked by inhibitory monovalent antigen-binding antibody fragments (Fabs) specific for the surrogate light chain components of the pre-BCR or by inhibitors of the tyrosine kinases Lyn and Syk. For comparison, we evaluated pre-BCR aggregation mediated by dimeric galectin-1, which has binding sites for carbohydrate and for the surrogate light chain λ5 component. Galectin-1 binding resulted in the formation of large, highly immobile pre-BCR aggregates, which was partially relieved by the addition of lactose to prevent the cross-linking of galectin-BCR complexes to other glycosylated membrane components. Analysis of the pre-BCR and its signaling partners suggested that they could be potential targets for combination therapy in BCP-ALL.
Collapse
Affiliation(s)
- M Frank Erasmus
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Ksenia Matlawska-Wasowska
- UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Ichiko Kinjyo
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Avanika Mahajan
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Stuart S Winter
- UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Li Xu
- Sea Lane Biotechnologies, 2450 Bayshore Parkway, Mountain View, CA 94043, USA
| | - Michael Horowitz
- Sea Lane Biotechnologies, 2450 Bayshore Parkway, Mountain View, CA 94043, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA. .,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Non-genomic oestrogen receptor signal in B lymphocytes: An approach towards therapeutic interventions for infection, autoimmunity and cancer. Int J Biochem Cell Biol 2016; 76:115-8. [PMID: 27189345 DOI: 10.1016/j.biocel.2016.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 11/21/2022]
Abstract
The non-genomic membrane bound oestrogen receptor (mER) regulates intracellular signals through receptor-ligand interactions. The mER, along with G-protein coupled oestrogen receptor GPR 30 (GPER), induces diverse cell signalling pathways in murine lymphocytes. The mER isoform ER-alpha46 has recently been demonstrated in human B and T lymphocytes as an analogue receptor for chemokine CCL18, the signalling events of which are not clearly understood. Ligand-induced mER and GPER signalling events are shared with BCR, CD19 mediated intracellular signalling through phospholipase C, PIP2/IP3/PI3 mediated activation of Akt, MAP kinase, and mTOR. Oestrogen has the ability to induce CD40-mediated activation of B cells. The complete signalling pathways of mER, GPR30 and their interaction with other signals are targeted areas for novel drug development in B cells during infection, autoimmunity and cancer. Therefore, an in depth investigation is critical for determining shared signal outputs during B cell activation. Here, we focus on the mode of action of membrane bound ER in B cells as therapeutic checkpoints.
Collapse
|
8
|
Niu B, Liu L, Su H, Xia X, He Q, Feng Y, Xue Y, Yan X. Role of extracellular signal‑regulated kinase 1/2 signal transduction pathway in insulin secretion by β‑TC6 cells. Mol Med Rep 2016; 13:4451-4. [PMID: 27035884 DOI: 10.3892/mmr.2016.5053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 02/29/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the role of the extracellular signal-regulated kinase (ERK)1/2 signal transduction pathway in glucose‑stimulated insulin secretion in β‑TC6 mouse pancreatic cells. Insulin production by β‑TC6 cells was stimulated with various concentrations of glucose, which was dose-dependently inhibited by mitogen‑activated protein kinase inhibitor PD98059, as indicated by a radioimmunoassay. Furthermore, glucose stimulation enhanced the phosphorylation of ERK1/2, which was dose-dependently inhibited by PD98059, as indicated by western blot analysis. These results indicated that the activation of the ERK1/2 signal transduction pathway may have an important role in glucose‑stimulated insulin secretion in β‑TC6 cells.
Collapse
Affiliation(s)
- Ben Niu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Lijuan Liu
- Department of Cadre Ward, WISCO General Hospital, Wuhan, Hubei 430080, P.R. China
| | - Heng Su
- Department of Endocrinology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Qiu He
- Department of Endocrinology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yuanming Xue
- Department of Endocrinology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Xinming Yan
- Institute of Basic and Clinical Medicine, Center of Clinical Molecular Biology of Yunnan, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
9
|
Cuajungco MP, Silva J, Habibi A, Valadez JA. The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch 2015; 468:177-92. [PMID: 26336837 DOI: 10.1007/s00424-015-1732-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022]
Abstract
The discovery of the TRPML subfamily of ion channels has created an exciting niche in the fields of membrane trafficking, signal transduction, autophagy, and metal homeostasis. The TRPML protein subfamily consists of three members, TRPML1, TRPML2, and TRPML3, which are encoded by MCOLN1, MCOLN2, and MCOLN3 genes, respectively. They are non-selective cation channels with six predicted transmembrane domains and intracellular amino- and carboxyl-terminus regions. They localize to the plasma membrane, endosomes, and lysosomes of cells. TRPML1 is associated with the human lysosomal storage disease known as mucolipidosis type IV (MLIV), but TRPML2 and TRPML3 have not been linked with a human disease. Although TRPML1 is expressed in many tissues, TRPML3 is expressed in a varied but limited set of tissues, while TRPML2 has a more limited expression pattern where it is mostly detected in lymphoid and myeloid tissues. This review focuses on TRPML2 because it appears to play an important, yet unrecognized role in the immune system. While the evidence has been mostly indirect, we present and discuss relevant data that strengthen the connection of TRPML2 with cellular immunity. We also discuss the functional redundancy between the TRPML proteins, and how such features could be exploited as a potential therapeutic strategy for MLIV disease. We present evidence that TRPML2 expression may complement certain phenotypic alterations in MLIV cells and briefly examine the challenges of functional complementation. In conclusion, the function of TRPML2 still remains obscure, but emerging data show that it may serve a critical role in immune cell development and inflammatory responses.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA. .,Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA.
| | - Joshua Silva
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Ania Habibi
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Jessica A Valadez
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| |
Collapse
|
10
|
Anbazhagan K, Duroux-Richard I, Jorgensen C, Apparailly F. Transcriptomic network support distinct roles of classical and non-classical monocytes in human. Int Rev Immunol 2014; 33:470-89. [PMID: 24730730 DOI: 10.3109/08830185.2014.902453] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Classical and non-classical monocytes are two well-defined subsets of monocytes displaying distinct roles. They differentially express numerous genes relevant to their primary role. Using five independent transcriptomic microarray datasets, we ruled out several inconsistent genes and identified common genes consistently overexpressed either in classical or non-classical monocytes. One hundred and eight genes were significantly increased in classical monocytes and are involved in bacterial defense, inflammation and atherosclerosis. Whereas the 74 genes overexpressed in non-classical monocytes are involved in cytoskeletal dynamics and invasive properties for enhanced motility and infiltration. These signatures unravel the biological functions of monocyte subsets. HIGHLIGHTS We compared five transcriptomic GEO datasets of human monocyte subsets. 108 genes in classical and 74 genes in non-classical monocytes are upregulated. Upregulated genes in classical monocytes support anti-bacterial and inflammatory responses. Upregulated genes in non-classical monocytes support patrolling and infiltration functions.
Collapse
|