1
|
Cao L, Wang Y, Liu J, Bai X, Chi X. Long non-coding RNA TPT1-AS1 inhibits ferroptosis in ovarian cancer by regulating GPX4 via CREB1 regulation. Am J Reprod Immunol 2024; 92:e13864. [PMID: 39141012 DOI: 10.1111/aji.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play crucial roles in cellular processes, with dysregulation implicated in various diseases, including cancers. The lncRNA TPT1-AS1 (TPT1 Antisense RNA 1) promotes tumor progression in several cancers, including ovarian cancer (OC), but its influence on ferroptosis and interaction with other proteins remains underexplored. METHODS In this study, we employed a multi-faceted approach to investigate the functional significance of TPT1-AS1 in OC. We assessed TPT1-AS1 expression in OC specimens and cell lines using RT-qPCR, in situ hybridization (ISH), and fluorescence in situ hybridization (FISH) assays. Functional assays included evaluating the impact of TPT1-AS1 knockdown on OC cell proliferation, migration, invasiveness, and cell cycle progression. Further, we explored and validated the interaction of TPT1-AS1 with other proteins using bioinformatics. Finally, we investigated TPT1-AS1 involvement in erastin-induced ferroptosis using Iron Assay, Malondialdehyde (MDA) assay, and reactive oxygen species (ROS) detection. RESULTS Our findings revealed that TPT1-AS1 overexpression in OC correlated with an unfavorable prognosis. TPT1-AS1 knockdown suppressed cell proliferation, migration, and invasiveness. Additionally, TPT1-AS1 inhibited erastin-induced ferroptosis, and in vivo experiments confirmed its oncogenic impact on tumor development. Mechanistically, TPT1-AS1 was found to regulate Glutathione Peroxidase 4 (GPX4) transcription via CREB1 (cAMP response element-binding protein 1) and interact with RNA-binding protein (RBP) KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) to regulate CREB1. CONCLUSION TPT1-AS1 promotes OC progression by inhibiting ferroptosis and upregulating CREB1, forming a regulatory axis with KHDRBS3. These findings highlight the regulatory network involving lncRNAs, RBPs, and transcription factors in cancer progression.
Collapse
Affiliation(s)
- Lei Cao
- Department of Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yan Wang
- Department of Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Juanni Liu
- Department of Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xiaoying Bai
- Department of Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xiaohong Chi
- Department of Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| |
Collapse
|
2
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
3
|
Tang X, Niu Y, Jian J, Guo Y, Wang Y, Zhu Y, Liu B. Potential applications of ferroptosis inducers and regulatory molecules in hematological malignancy therapy. Crit Rev Oncol Hematol 2024; 193:104203. [PMID: 37979734 DOI: 10.1016/j.critrevonc.2023.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Ferroptosis, a novel form of iron-dependent cell death, has emerged as a potential avenue for promoting tumor cell death by causing cell membrane rupture and the accumulation of lipid peroxides (LPO) in the cell. Since its discovery in 2012, extensive research has been conducted to explore the mechanism of ferroptosis inducers, including erastin, sulfasalazine, and sorafenib. These compounds inhibit system XC-, while Ras-selective lethal small molecule 3 (RSL3) and FION2 specifically target GPX4 to promote ferroptosis. Therefore, targeting ferroptosis presents a promising therapeutic approach for malignant tumors. While the study of ferroptosis in solid tumors has made significant progress, there is limited information available on its role in hematological tumors. This review aims to summarize the molecular mechanisms of ferroptosis inducers and discuss their clinical applications in hematological malignancies. Furthermore, the identification of non-coding RNAs (ncRNAs) and genes that regulate key molecules in the ferroptosis pathway could provide new targets and establish a molecular theoretical foundation for exploring novel ferroptosis inducers in hematological malignancies.
Collapse
Affiliation(s)
- Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yujie Niu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Jinli Jian
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yuancheng Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China; Department of Hematology, The First Affiliated Hospital, Lanzhou University, Lanzhou 730099, China.
| |
Collapse
|
4
|
Song X, Zhang W, Yu N, Zhong X. PAQR3 facilitates the ferroptosis of diffuse large B-cell lymphoma via the regulation of LDLR-mediated PI3K/AKT pathway. Hematol Oncol 2024; 42:e3219. [PMID: 37690092 DOI: 10.1002/hon.3219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
Progesterone and adiponectin receptor 3 (PAQR3) has been found to regulate tumor progression by mediating cell ferroptosis. However, whether PAQR3 mediates ferroptosis in diffuse large B-cell lymphoma (DLBCL) needs further investigation. The mRNA and protein levels of PAQR3 and low-density lipoprotein receptor (LDLR) were assessed by qRT-PCR and WB assays. Cell proliferation was detected by MTT assay and EdU assay. Shrunken mitochondria was counted under transmission electron microscope. Cell ferroptosis was evaluated by measuring the levels of malondialdehyde, reactive oxygen species, glutathione, Fe2+ , and the protein expression of ferroptosis-related markers. PAQR3 and LDLR interaction was confirmed by RIP assay and pull-down assay. Our study showed that PAQR3 was underexpressed, while LDLR was overexpressed in DLBCL tissues and cells. Functionally, PAQR3 overexpression or LDLR knockdown restrained DLBCL cell proliferation and enhanced ferroptosis. Mechanistically, PAQR3 reduced LDLR expression by inhibiting its mRNA stability. Meanwhile, LDLR overexpression reversed PAQR3-mediated the promoting on DLBCL cell ferroptosis, and LY294002 (PI3K/AKT inhibitor) eliminated the inhibiting effects of LDLR overexpression on DLBCL cell ferroptosis. Additionally, excessive PAQR3 reduced DLBCL tumor growth by enhancing tumor cell ferroptosis through LDLR-mediated PI3K/AKT pathway. In conclusion, our data suggested that PAQR3 restrained DLBCL progression by aggravating ferroptosis, which was achieved by inhibiting LDLR expression to repress PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xiangxiang Song
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang City, China
| | - Weiming Zhang
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang City, China
| | - Nasha Yu
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang City, China
| | - Xing Zhong
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang City, China
| |
Collapse
|
5
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
6
|
Chen Z, Zheng S, Han J, Fu L, Fu J, Zhang Z, Hong P, Feng W. Molecular mechanisms of ferroptosis and its roles in leukemia. Front Oncol 2023; 13:1308869. [PMID: 38125948 PMCID: PMC10731040 DOI: 10.3389/fonc.2023.1308869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Cell death is a complex process required to maintain homeostasis and occurs when cells are damage or reach end of life. As research progresses, it is apparent that necrosis and apoptosis do not fully explain the whole phenomenon of cell death. Therefore, new death modalities such as autophagic cell death, and ferroptosis have been proposed. In recent years, ferroptosis, a new type of non-apoptotic cell death characterized by iron-dependent lipid peroxidation and reactive oxygen species (ROS) accumulation, has been receiving increasing attention. Ferroptosis can be involved in the pathological processes of many disorders, such as ischemia-reperfusion injury, nervous system diseases, and blood diseases. However, the specific mechanisms by which ferroptosis participates in the occurrence and development of leukemia still need to be more fully and deeply studied. In this review, we present the research progress on the mechanism of ferroptosis and its role in leukemia, to provide new theoretical basis and strategies for the diagnosis and treatment of clinical hematological diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weiying Feng
- Department of Hematology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
7
|
Wang Y, Iha H. The Novel Link between Gene Expression Profiles of Adult T-Cell Leukemia/Lymphoma Patients' Peripheral Blood Lymphocytes and Ferroptosis Susceptibility. Genes (Basel) 2023; 14:2005. [PMID: 38002949 PMCID: PMC10671613 DOI: 10.3390/genes14112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Ferroptosis, a regulated cell death dependent on iron, has garnered attention as a potential broad-spectrum anticancer approach in leukemia research. However, there has been limited ferroptosis research on ATL, an aggressive T-cell malignancy caused by HTLV-1 infection. Our study employs bioinformatic analysis, utilizing dataset GSE33615, to identify 46 ferroptosis-related DEGs and 26 autophagy-related DEGs in ATL cells. These DEGs are associated with various cellular responses, chemical stress, and iron-related pathways. Autophagy-related DEGs are linked to autophagy, apoptosis, NOD-like receptor signaling, TNF signaling, and the insulin resistance pathway. PPI network analysis revealed 10 hub genes and related biomolecules. Moreover, we predicted crucial miRNAs, transcription factors, and potential pharmacological compounds. We also screened the top 20 medications based on upregulated DEGs. In summary, our study establishes an innovative link between ATL treatment and ferroptosis, offering promising avenues for novel therapeutic strategies in ATL.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan
| |
Collapse
|
8
|
Guo Q, Liu XL, Zhai K, Chen C, Ke XX, Zhang J, Xu G. The Emerging Roles and Mechanisms of PAQR3 in Human Cancer: Pathophysiology and Therapeutic Implications. Int J Gen Med 2023; 16:4321-4328. [PMID: 37767187 PMCID: PMC10521929 DOI: 10.2147/ijgm.s422523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer was one of the common causes of death in the world, and it was increasing year by year. At present, Progestin and AdipoQ receptor family member 3 (PAQR3) was widely studied in cancer. It has been found that PAQR3 was down regulated in various cancers, such as the gastric cancer, osteosarcoma, glioma, hepatocellular carcinoma, acute lymphoblastic leukemia, laryngeal squamous cell carcinoma, esophageal cancer, breast cancer, non-small cell lung cancer, and colorectal cancer. The decreased expression of PAQR3 was associated with short overall survival and disease-free survival in patients with gastric cancer, hepatocellular carcinoma, laryngeal squamous cell carcinoma, esophageal cancer, breast cancer, and non-small cell lung cancer. PAQR3 could inhibit cancer progression by using the Ras/Raf/MEK/ERK, PI3/AKT, EMT and other mechanisms, and was negatively regulated by the miR-543, miR-15b-5p and miR-15b. The roles and signaling mechanisms of PAQR3, and the relationship between the expression of PAQR3 and prognosis in cancer progression are reviewed in this article, and provides new tumor marker and idea to guide cancer treatment.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Xiao-Li Liu
- Department of Ultrasound, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| | - Kui Zhai
- Department of Thoracic Surgery, Xingyi People’s Hospital, Xinyi, Guizhou, People’s Republic of China
| | - Cheng Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Xi-Xian Ke
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Gang Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
9
|
Chen Z, Wang W, Abdul Razak SR, Han T, Ahmad NH, Li X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis 2023; 14:460. [PMID: 37488128 PMCID: PMC10366218 DOI: 10.1038/s41419-023-05930-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/24/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Ferroptosis is a recently discovered essential type of cell death that is mainly characterized by iron overload and lipid peroxidation. Emerging evidence suggests that ferroptosis is a double-edged sword in human cancer. However, the precise underlying molecular mechanisms and their differential roles in tumorigenesis are unclear. Therefore, in this review, we summarize and briefly present the key pathways of ferroptosis, paying special attention to the regulation of ferroptosis as well as its dual role as an oncogenic and as a tumor suppressor event in various human cancers. Moreover, multiple pharmacological ferroptosis activators are summarized, and the prospect of targeting ferroptosis in cancer therapy is further elucidated.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Pulau Pinang, Malaysia
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Weilong Wang
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Pulau Pinang, Malaysia
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Siti Razila Abdul Razak
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Tao Han
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Pulau Pinang, Malaysia.
| | - Xiumin Li
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, China.
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China.
| |
Collapse
|
10
|
Lyu T, Li X, Song Y. Ferroptosis in acute leukemia. Chin Med J (Engl) 2023; 136:886-898. [PMID: 37010259 PMCID: PMC10278762 DOI: 10.1097/cm9.0000000000002642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Indexed: 04/04/2023] Open
Abstract
ABSTRACT Ferroptosis is an iron-dependent cell death pathway that is different from apoptosis, pyroptosis, and necrosis. The main characteristics of ferroptosis are the Fenton reaction mediated by intracellular free divalent iron ions, lipid peroxidation of cell membrane lipids, and inhibition of the anti-lipid peroxidation activity of intracellular glutathione peroxidase 4 (GPX4). Recent studies have shown that ferroptosis can be involved in the pathological processes of many disorders, such as ischemia-reperfusion injury, nervous system diseases, and blood diseases. However, the specific mechanisms by which ferroptosis participates in the occurrence and development of acute leukemia still need to be more fully and deeply studied. This article reviews the characteristics of ferroptosis and the regulatory mechanisms promoting or inhibiting ferroptosis. More importantly, it further discusses the role of ferroptosis in acute leukemia and predicts a change in treatment strategy brought about by increased knowledge of the role of ferroptosis in acute leukemia.
Collapse
Affiliation(s)
- Tianxin Lyu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Xudong Li
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
11
|
Akiyama H, Carter BZ, Andreeff M, Ishizawa J. Molecular Mechanisms of Ferroptosis and Updates of Ferroptosis Studies in Cancers and Leukemia. Cells 2023; 12:1128. [PMID: 37190037 PMCID: PMC10136912 DOI: 10.3390/cells12081128] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Ferroptosis is a mode of cell death regulated by iron-dependent lipid peroxidation. Growing evidence suggests ferroptosis induction as a novel anti-cancer modality that could potentially overcome therapy resistance in cancers. The molecular mechanisms involved in the regulation of ferroptosis are complex and highly dependent on context. Therefore, a comprehensive understanding of its execution and protection machinery in each tumor type is necessary for the implementation of this unique cell death mode to target individual cancers. Since most of the current evidence for ferroptosis regulation mechanisms is based on solid cancer studies, the knowledge of ferroptosis with regard to leukemia is largely lacking. In this review, we summarize the current understanding of ferroptosis-regulating mechanisms with respect to the metabolism of phospholipids and iron as well as major anti-oxidative pathways that protect cells from ferroptosis. We also highlight the diverse impact of p53, a master regulator of cell death and cellular metabolic processes, on the regulation of ferroptosis. Lastly, we discuss recent ferroptosis studies in leukemia and provide a future perspective for the development of promising anti-leukemia therapies implementing ferroptosis induction.
Collapse
Affiliation(s)
| | | | | | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.A.); (B.Z.C.); (M.A.)
| |
Collapse
|
12
|
Gao M, Fan K, Chen Y, Zhang G, Chen J, Zhang Y. Understanding the mechanistic regulation of ferroptosis in cancer: gene matters. J Genet Genomics 2022; 49:913-926. [PMID: 35697272 DOI: 10.1016/j.jgg.2022.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 12/28/2022]
Abstract
Ferroptosis has emerged as a crucial regulated cell death involved in a variety of physiological processes or pathological diseases, such as tumor suppression. Though initially being found from anti-cancer drug screening and considered not essential as apoptosis for growth and development, numerous studies have demonstrated that ferroptosis is tightly regulated by key genetic pathways and/or genes, including several tumor suppressors and oncogenes. In this review, we will first introduce the basic concepts of ferroptosis, characterized by the features of non-apoptotic, iron-dependent and overwhelmed accumulation of lipid peroxides, and the underlying regulated circuits are considered to be pro-ferroptotic pathways. Then we discuss several established lipid peroxidation defending systems within cells, including SLC7A11/GPX4, FSP1/CoQ, GCH1/BH4, and mitochondria DHODH/CoQ, all of which serve as anti-ferroptoic pathways to prevent ferroptosis. Moreover, we provide a comprehensive summary of the genetic regulation of ferroptosis via targeting the above-mentioned pro-ferroptotic or anti-ferroptotic pathways. The regulation of pro- and anti-ferroptotic pathways gives rise to more specific responses to the tumor cells in a context-dependent manner, highlighting the unceasing study and deeper understanding of mechanistic regulation of ferroptosis for the purpose of applying ferroptosis induction in cancer therapy.
Collapse
Affiliation(s)
- Min Gao
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Kexin Fan
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yuhan Chen
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Chen
- Department of Obstetrics, New Changan International Maternity Hospital, Xi'an, Shaanxi 710001, China; Shaanxi Stem Cell Engineering Application Technology Research Center, Shaanxi Jiuzhou Biomedical Technology Group Co., Ltd. Xi'an, Shaanxi 710065, China.
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
13
|
Xu JC, Tian XY, Han R, Huang QY, Zhou MY, Luo B, Chen XR. Erianin inhibits oral cancer cell growth, migration, and invasion via the Nrf2/HO-1/ GPX4 pathway. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.357743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Jin L, Tong L. PAQR3 inhibits proliferation and aggravates ferroptosis in acute lymphoblastic leukemia through modulation Nrf2 stability. Immun Inflamm Dis 2021; 9:827-839. [PMID: 33955706 PMCID: PMC8342237 DOI: 10.1002/iid3.437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/04/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is a usual hematological tumor, which was featured by malignant proliferation of lymphoid progenitor cells. Many important factors participate into the regulation of ALL, including proteins. PAQR3 (also named RKTG) has been proved to take part in many human cancers by acting as a tumor suppressor. PAQR3 has bee n shown to repress human leukemia cells proliferation and induce cell apoptosis, but its role and relevant regulatory mechanism on cell proliferation and ferroptosis in ALL needs more exploration. METHODS The genes expression was detected through quantitative reverse transcription polymerase chain reaction (mRNA) or western blot (protein). The cell proliferation was assessed through Cell Counting Kit-8 and 5-ethynyl-2-deoxyuridine assays. The levels of MDA, DCF, and intracellular free Fe in ALL cells were tested through the commercial kits. The cell apoptosis was determined through flow cytometry analysis. The binding ability of PAQR3 and nuclear factor erythroid 2-related factor 2 (Nrf2) was verified through pull down assay. RESULTS PAQR3 expression was firstly assessed in ALL patients and cell lines, and discovered to be downregulated. It was verified that PAQR3 suppressed ALL cells proliferation. Further experiments proved that PAQR3 aggravates ferroptosis in ALL. In addition, AQR3 bound with Nrf2, and modulated its expression through ubiquitination in ALL. Finally, through rescue assays, it was demonstrated that Nrf2 overexpression reversed the effects of PAQR3 on cell proliferation and ferroptosis. CONCLUSION Findings from our work uncovered that PAQR3 inhibited proliferation and aggravated ferroptosis in ALL through modulation Nrf2 stability. This study suggested that PAQR3 may serve as an effective biological marker for ALL treatment.
Collapse
Affiliation(s)
- Ling Jin
- Department of HematologyYixing People's HospitalYixing CityJiangsu ProvinceChina
| | - Laigen Tong
- Department of HematologyYixing People's HospitalYixing CityJiangsu ProvinceChina
| |
Collapse
|