1
|
Purcell‐Wiltz A, Zamuner FT, Caraballo K, De Jesus L, Miranda Y, Ortiz D, Negrón AG, Ortiz AC, Baez A, Romaguera J, Jiménez I, Ortiz A, Acevedo J, Viera L, Sidransky D, Guerrero‐Preston R. Evaluation of self-collected nasal, urine, and saliva samples for molecular detection of SARS-CoV-2 using an EUA approved RT-PCR assay and a laboratory developed LAMP SARS-CoV-2 test. Immun Inflamm Dis 2024; 12:e1285. [PMID: 38888444 PMCID: PMC11184932 DOI: 10.1002/iid3.1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 06/20/2024] Open
Abstract
As the SARS-CoV-2 virus spread throughout the world, millions of positive cases of COVID-19 were registered and, even though there are millions of people already vaccinated against SARS-CoV-2, a large part of the global population remains vulnerable to contracting the virus. Massive nasopharyngeal sample collection in Puerto Rico at the beginning of the pandemic was limited by the scarcity of trained personnel and testing sites. To increase SARS-CoV-2 molecular testing availability, we evaluated the diagnostic accuracy of self-collected nasal, saliva, and urine samples using the TaqPath reverse transcription polymerase chain reaction (RT-PCR) COVID-19 kit to detect SARS-CoV-2. We also created a colorimetric loop-mediated isothermal amplification (LAMP) laboratory developed test (LDT) to detect SARS-CoV-2, as another strategy to increase the availability of molecular testing in community-based laboratories. Automated RNA extraction was performed in the KingFisher Flex instrument, followed by PCR quantification of SARS-CoV-2 on the 7500 Fast Dx RT-PCR using the TaqPath RT-PCR COVID-19 molecular test. Data was interpreted by the COVID-19 Interpretive Software from Applied Biosystems and statistically analyzed with Cohen's kappa coefficient (k). Cohen's kappa coefficient (k) for paired nasal and saliva samples showed moderate agreement (0.52). Saliva samples exhibited a higher viral load. We also observed 90% concordance between LifeGene-Biomarks' SARS-CoV-2 Rapid Colorimetric LAMP LDT and the TaqPath RT-PCR COVID-19 test. Our results suggest that self-collected saliva is superior to nasal and urine samples for COVID-19 testing. The results also suggest that the colorimetric LAMP LDT is a rapid alternative to RT-PCR tests for the detection of SARS-CoV-2. This test can be easily implemented in clinics, hospitals, the workplace, and at home; optimizing the surveillance and collection process, which helps mitigate global public health and socioeconomic upheaval caused by airborne pandemics.
Collapse
Affiliation(s)
- Ana Purcell‐Wiltz
- Biomarker Discovery and Validation Laboratory, LifeGene‐BiomarksToa BajaPuerto Rico
- Internal Medicine DepartmentSan Juan Bautista School of MedicineCaguasPuerto Rico
| | - Fernando Tadeu Zamuner
- Otolaryngology Department, Head and Neck Cancer Research DivisionJohns Hopkins University, School of MedicineBaltimoreMarylandUSA
| | - Karem Caraballo
- Biomarker Discovery and Validation Laboratory, LifeGene‐BiomarksToa BajaPuerto Rico
| | - Lorena De Jesus
- Biomarker Discovery and Validation Laboratory, LifeGene‐BiomarksToa BajaPuerto Rico
| | - Yaima Miranda
- Biomarker Discovery and Validation Laboratory, LifeGene‐BiomarksToa BajaPuerto Rico
| | - Denise Ortiz
- Biomarker Discovery and Validation Laboratory, LifeGene‐BiomarksToa BajaPuerto Rico
| | - Amanda García Negrón
- Biomarker Discovery and Validation Laboratory, LifeGene‐BiomarksToa BajaPuerto Rico
| | - Andrea Cortés Ortiz
- Biomarker Discovery and Validation Laboratory, LifeGene‐BiomarksToa BajaPuerto Rico
- Internal Medicine DepartmentSan Juan Bautista School of MedicineCaguasPuerto Rico
| | - Adriana Baez
- Otolaryngology DepartmentUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | - Josefina Romaguera
- Obstetrics and Gynecology DepartmentUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | - Ivonne Jiménez
- Internal Medicine DepartmentUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | - Alberto Ortiz
- Internal Medicine DepartmentUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | - Jorge Acevedo
- Internal Medicine DepartmentUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | - Liliana Viera
- Department of SurgeryUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | - David Sidransky
- Otolaryngology Department, Head and Neck Cancer Research DivisionJohns Hopkins University, School of MedicineBaltimoreMarylandUSA
| | | |
Collapse
|
2
|
Hilti D, Wehrli F, Berchtold S, Bigler S, Bodmer T, Seth-Smith HMB, Roloff T, Kohler P, Kahlert CR, Kaiser L, Egli A, Risch L, Risch M, Wohlwend N. S-Gene Target Failure as an Effective Tool for Tracking the Emergence of Dominant SARS-CoV-2 Variants in Switzerland and Liechtenstein, Including Alpha, Delta, and Omicron BA.1, BA.2, and BA.4/BA.5. Microorganisms 2024; 12:321. [PMID: 38399725 PMCID: PMC10892681 DOI: 10.3390/microorganisms12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
During the SARS-CoV-2 pandemic, the Dr. Risch medical group employed the multiplex TaqPathTM COVID-19 CE-IVD RT-PCR Kit for large-scale routine diagnostic testing in Switzerland and the principality of Liechtenstein. The TaqPath Kit is a widely used multiplex assay targeting three genes (i.e., ORF1AB, N, S). With emergence of the B.1.1.7 (Alpha) variant, a diagnostic flaw became apparent as the amplification of the S-gene target was absent in these samples due to a deletion (ΔH69/V70) in the Alpha variant genome. This S-gene target failure (SGTF) was the earliest indication of a new variant emerging and was also observed in subsequent variants such as Omicron BA.1 and BA4/BA.5. The Delta variant and Omicron BA.2 did not present with SGTF. From September 2020 to November 2022, we investigated the applicability of the SGTF as a surrogate marker for emerging variants such as B.1.1.7, B.1.617.2 (Delta), and Omicron BA.1, BA.2, and BA.4/BA.5 in samples with cycle threshold (Ct) values < 30. Next to true SGTF-positive and SGTF-negative samples, there were also samples presenting with delayed-type S-gene amplification (higher Ct value for S-gene than ORF1ab gene). Among these, a difference of 3.8 Ct values between the S- and ORF1ab genes was found to best distinguish between "true" SGTF and the cycle threshold variability of the assay. Samples above the cutoff were subsequently termed partial SGTF (pSGTF). Variant confirmation was performed by whole-genome sequencing (Oxford Nanopore Technology, Oxford, UK) or mutation-specific PCR (TIB MOLBIOL). In total, 17,724 (7.4%) samples among 240,896 positives were variant-confirmed, resulting in an overall sensitivity and specificity of 93.2% [92.7%, 93.7%] and 99.3% [99.2%, 99.5%], respectively. Sensitivity was increased to 98.2% [97.9% to 98.4%] and specificity lowered to 98.9% [98.6% to 99.1%] when samples with pSGTF were included. Furthermore, weekly logistic growth rates (α) and sigmoid's midpoint (t0) were calculated based on SGTF data and did not significantly differ from calculations based on comprehensive data from GISAID. The SGTF therefore allowed for a valid real-time estimate for the introduction of all dominant variants in Switzerland and Liechtenstein.
Collapse
Affiliation(s)
- Dominique Hilti
- Laboratory Dr. Risch, 9470 Buchs, Switzerland (L.R.); (N.W.)
- Institute of Laboratory Medicine, Private University in the Principality of Liechtenstein (UFL), 9495 Triesen, Liechtenstein
| | - Faina Wehrli
- Laboratory Dr. Risch, 9470 Buchs, Switzerland (L.R.); (N.W.)
| | | | - Susanna Bigler
- Laboratory Dr. Risch, 9470 Buchs, Switzerland (L.R.); (N.W.)
| | - Thomas Bodmer
- Laboratory Dr. Risch, 9470 Buchs, Switzerland (L.R.); (N.W.)
| | | | - Tim Roloff
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Philipp Kohler
- Zentrallabor, Kantonsspital Graubünden, 7000 Chur, Switzerland
| | - Christian R. Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Lorenz Risch
- Laboratory Dr. Risch, 9470 Buchs, Switzerland (L.R.); (N.W.)
- Institute of Laboratory Medicine, Private University in the Principality of Liechtenstein (UFL), 9495 Triesen, Liechtenstein
| | - Martin Risch
- Laboratory Dr. Risch, 9470 Buchs, Switzerland (L.R.); (N.W.)
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Nadia Wohlwend
- Laboratory Dr. Risch, 9470 Buchs, Switzerland (L.R.); (N.W.)
| |
Collapse
|