1
|
DiGuilio A, Cheng B, Zhong F, Jha R, Wan Y, Anghel S, Hu H, Shishkova E, Ji Z, Coon JJ, Keenan RJ. The prolyl isomerase FKBP11 is a secretory translocon accessory factor. Mol Biol Cell 2024; 35:ar135. [PMID: 39259761 PMCID: PMC11617091 DOI: 10.1091/mbc.e24-07-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Eukaryotic cells encode thousands of secretory and membrane proteins, many of which are cotranslationally translocated into the endoplasmic reticulum (ER). Nascent polypeptides entering the ER encounter a network of molecular chaperones and enzymes that facilitate their folding. A rate-limiting step for some proteins is the trans-to-cis isomerization of the peptide bond between proline and the residue preceding it. The human ER contains six prolyl isomerases, but the function, organization, and substrate range of these proteins is not clear. Here we show that the metazoan-specific, prolyl isomerase FKBP11 binds to ribosome-translocon complexes (RTCs) in the ER membrane, dependent on its single transmembrane domain and a conserved, positively charged region at its cytosolic C-terminus. High-throughput mRNA sequencing shows selective engagement with ribosomes synthesizing secretory and membrane proteins with long translocated segments, and functional analysis shows reduced stability of two such proteins, EpCAM and PTTG1IP, in cells depleted of FKBP11. We propose that FKBP11 is a translocon accessory factor that acts on a broad range of soluble secretory and transmembrane proteins during their synthesis at the ER.
Collapse
Affiliation(s)
- Amanda DiGuilio
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Ben Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Frank Zhong
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Roshan Jha
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Yu Wan
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60628
| | - S. Andrei Anghel
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Hong Hu
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Zhe Ji
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60628
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706
- Morgridge Institute for Research, Madison, WI 53515
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53506
| | - Robert J. Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Sailliet N, Dupuy A, Brinas F, Renaudin K, Colas L, Kerleau C, Nguyen TVH, Fourgeux C, Poschmann J, Gosset C, Giral M, Degauque N, Mai HL, Danger R, Brouard S. Regulatory B Cells Expressing Granzyme B from Tolerant Renal Transplant Patients: Highly Differentiated B Cells with a Unique Pathway with a Specific Regulatory Profile and Strong Interactions with Immune System Cells. Cells 2024; 13:1287. [PMID: 39120317 PMCID: PMC11311295 DOI: 10.3390/cells13151287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
The aim of our study was to determine whether granzyme B-expressing regulatory B cells (GZMB+ B cells) are enriched in the blood of transplant patients with renal graft tolerance. To achieve this goal, we analysed two single-cell RNA sequencing (scRNAseq) datasets: (1) peripheral blood mononuclear cells (PBMCs), including GZMB+ B cells from renal transplant patients, i.e., patients with stable graft function on conventional immunosuppressive treatment (STA, n = 3), drug-free tolerant patients (TOL, n = 3), and patients with antibody-mediated rejection (ABMR, n = 3), and (2) ex-vivo-induced GZMB+ B cells from these groups. In the patient PBMCs, we first showed that natural GZMB+ B cells were enriched in genes specific to Natural Killer (NK) cells (such as NKG7 and KLRD1) and regulatory B cells (such as GZMB, IL10, and CCL4). We performed a pseudotemporal trajectory analysis of natural GZMB+ B cells and showed that they were highly differentiated B cells with a trajectory that is very different from that of conventional memory B cells and linked to the transcription factor KLF13. By specifically analysing GZMB+ natural B cells in TOLs, we found that these cells had a very specific transcriptomic profile associated with a reduction in the expression of HLA molecules, apoptosis, and the inflammatory response (in general) in the blood and that this signature was conserved after ex vivo induction, with the induction of genes associated with migration processes, such as CCR7, CCL3, or CCL4. An analysis of receptor/ligand interactions between these GZMB+/- natural B cells and all of the immune cells present in PBMCs also demonstrated that GZMB+ B cells were the B cells that carried the most ligands and had the most interactions with other immune cells, particularly in tolerant patients. Finally, we showed that these GZMB+ B cells were able to infiltrate the graft under inflammatory conditions, thus suggesting that they can act in locations where immune events occur.
Collapse
Affiliation(s)
- Nicolas Sailliet
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Amandine Dupuy
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - François Brinas
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Karine Renaudin
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
- CHU Nantes, Service d’Anatomie et Cytologie Pathologiques, 44000 Nantes, France
| | - Luc Colas
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Clarisse Kerleau
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Thi-Van-Ha Nguyen
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Cynthia Fourgeux
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Jérémie Poschmann
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Clément Gosset
- Service de Néphrologie et Transplantation rénale—CHU Pasteur2, 06000 Nice, France;
| | - Magali Giral
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
- Centre d’Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, 44000 Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes Université, 44000 Nantes, France
| | - Nicolas Degauque
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Hoa Le Mai
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
- Centre d’Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, 44000 Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes Université, 44000 Nantes, France
| |
Collapse
|
3
|
Esquivel AR, Hill SE, Blair LJ. DnaJs are enriched in tau regulators. Int J Biol Macromol 2023; 253:127486. [PMID: 37852393 PMCID: PMC10842427 DOI: 10.1016/j.ijbiomac.2023.127486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The aberrant accumulation of tau protein is implicated as a pathogenic factor in many neurodegenerative diseases. Tau seeding may underlie its predictable spread in these diseases. Molecular chaperones can modulate tau pathology, but their effects have mainly been studied in isolation. This study employed a semi-high throughput assay to identify molecular chaperones influencing tau seeding using Tau RD P301S FRET Biosensor cells, which express a portion of tau containing the frontotemporal dementia-related P301S tau mutation fused to a FRET biosensor. Approximately fifty chaperones from five major families were screened using live cell imaging to monitor FRET-positive tau seeding. Among the tested chaperones, five exhibited significant effects on tau in the primary screen. Notably, three of these were from the DnaJ family. In subsequent studies, overexpression of DnaJA2, DnaJB1, and DnaJB6b resulted in significant reductions in tau levels. Knockdown experiments by shRNA revealed an inverse correlation between DnaJB1 and DnaJB6b with tau levels. DnaJB6b overexpression, specifically, reduced total tau levels in a cellular model with a pre-existing pool of tau, partially through enhanced proteasomal degradation. Further, DnaJB6b interacted with tau complexes. These findings highlight the potent chaperone activity within the DnaJ family, particularly DnaJB6b, towards tau.
Collapse
Affiliation(s)
- Abigail R Esquivel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Shannon E Hill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Laura J Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA; Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
4
|
Sorini C, Tripathi KP, Wu S, Higdon SM, Wang J, Cheng L, Banerjee S, Reinhardt A, Kreslavsky T, Thorell A, Engstrand L, Du J, Villablanca EJ. Metagenomic and single-cell RNA-Seq survey of the Helicobacter pylori-infected stomach in asymptomatic individuals. JCI Insight 2023; 8:161042. [PMID: 36810249 PMCID: PMC9977493 DOI: 10.1172/jci.insight.161042] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/11/2023] [Indexed: 02/23/2023] Open
Abstract
Helicobacter pylori colonization of the gastric niche can persist for years in asymptomatic individuals. To deeply characterize the host-microbiota environment in H. pylori-infected (HPI) stomachs, we collected human gastric tissues and performed metagenomic sequencing, single-cell RNA-Seq (scRNA-Seq), flow cytometry, and fluorescent microscopy. HPI asymptomatic individuals had dramatic changes in the composition of gastric microbiome and immune cells compared with noninfected individuals. Metagenomic analysis uncovered pathway alterations related to metabolism and immune response. scRNA-Seq and flow cytometry data revealed that, in contrast to murine stomachs, ILC2s are virtually absent in the human gastric mucosa, whereas ILC3s are the dominant population. Specifically, proportion of NKp44+ ILC3s out of total ILCs were highly increased in the gastric mucosa of asymptomatic HPI individuals, and correlated with the abundance of selected microbial taxa. In addition, CD11c+ myeloid cells and activated CD4+ T cells and B cells were expanded in HPI individuals. B cells of HPI individuals acquired an activated phenotype and progressed into a highly proliferating germinal-center stage and plasmablast maturation, which correlated with the presence of tertiary lymphoid structures within the gastric lamina propria. Our study provides a comprehensive atlas of the gastric mucosa-associated microbiome and immune cell landscape when comparing asymptomatic HPI and uninfected individuals.
Collapse
Affiliation(s)
- Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Shengru Wu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Shawn M Higdon
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jing Wang
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Sanghita Banerjee
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Annika Reinhardt
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Taras Kreslavsky
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | | | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
5
|
Herrema H, Guan D, Choi JW, Feng X, Salazar Hernandez MA, Faruk F, Auen T, Boudett E, Tao R, Chun H, Ozcan U. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab 2022; 34:1004-1022.e8. [PMID: 35793654 DOI: 10.1016/j.cmet.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/21/2021] [Accepted: 06/11/2022] [Indexed: 12/12/2022]
Abstract
Chronic endoplasmic reticulum (ER) stress and sustained activation of unfolded protein response (UPR) signaling contribute to the development of type 2 diabetes in obesity. UPR signaling is a complex signaling pathway, which is still being explored in many different cellular processes. Here, we demonstrate that FK506-binding protein 11 (FKBP11), which is transcriptionally regulated by XBP1s, is severely reduced in the livers of obese mice. Restoring hepatic FKBP11 expression in obese mice initiates an atypical UPR signaling pathway marked by rewiring of PERK signaling toward NRF2, away from the eIF2α-ATF4 axis of the UPR. This alteration in UPR signaling establishes glucose homeostasis without changing hepatic ER stress, food consumption, or body weight. We conclude that ER stress during obesity can be beneficially rewired to promote glucose homeostasis. These findings may uncover possible new avenues in the development of novel approaches to treat diseases marked by ER stress.
Collapse
Affiliation(s)
- Hilde Herrema
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Jae Won Choi
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Xudong Feng
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | | | - Farhana Faruk
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Thomas Auen
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Eliza Boudett
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Hyonho Chun
- Department of Mathematics and Statistics, Boston University, Boston, MA 02130, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|
6
|
Preisendörfer S, Ishikawa Y, Hennen E, Winklmeier S, Schupp JC, Knüppel L, Fernandez IE, Binzenhöfer L, Flatley A, Juan-Guardela BM, Ruppert C, Guenther A, Frankenberger M, Hatz RA, Kneidinger N, Behr J, Feederle R, Schepers A, Hilgendorff A, Kaminski N, Meinl E, Bächinger HP, Eickelberg O, Staab-Weijnitz CA. FK506-Binding Protein 11 Is a Novel Plasma Cell-Specific Antibody Folding Catalyst with Increased Expression in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:1341. [PMID: 35456020 PMCID: PMC9027113 DOI: 10.3390/cells11081341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Antibodies are central effectors of the adaptive immune response, widespread used therapeutics, but also potentially disease-causing biomolecules. Antibody folding catalysts in the plasma cell are incompletely defined. Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease with increasingly recognized autoimmune features. We found elevated expression of FK506-binding protein 11 (FKBP11) in IPF lungs where FKBP11 specifically localized to antibody-producing plasma cells. Suggesting a general role in plasma cells, plasma cell-specific FKBP11 expression was equally observed in lymphatic tissues, and in vitro B cell to plasma cell differentiation was accompanied by induction of FKBP11 expression. Recombinant human FKBP11 was able to refold IgG antibody in vitro and inhibited by FK506, strongly supporting a function as antibody peptidyl-prolyl cis-trans isomerase. Induction of ER stress in cell lines demonstrated induction of FKBP11 in the context of the unfolded protein response in an X-box-binding protein 1 (XBP1)-dependent manner. While deficiency of FKBP11 increased susceptibility to ER stress-mediated cell death in an alveolar epithelial cell line, FKBP11 knockdown in an antibody-producing hybridoma cell line neither induced cell death nor decreased expression or secretion of IgG antibody. Similarly, antibody secretion by the same hybridoma cell line was not affected by knockdown of the established antibody peptidyl-prolyl isomerase cyclophilin B. The results are consistent with FKBP11 as a novel XBP1-regulated antibody peptidyl-prolyl cis-trans isomerase and indicate significant redundancy in the ER-resident folding machinery of antibody-producing hybridoma cells.
Collapse
Affiliation(s)
- Stefan Preisendörfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Larissa Knüppel
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Isis E. Fernandez
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Leonhard Binzenhöfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Brenda M. Juan-Guardela
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Marion Frankenberger
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Rudolf A. Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany;
- Asklepios Fachkliniken München-Gauting, 82131 Gauting, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Jürgen Behr
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Oliver Eickelberg
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| |
Collapse
|
7
|
Alberts E, Wall I, Calado DP, Grigoriadis A. Immune Crosstalk Between Lymph Nodes and Breast Carcinomas, With a Focus on B Cells. Front Mol Biosci 2021; 8:673051. [PMID: 34124156 PMCID: PMC8194071 DOI: 10.3389/fmolb.2021.673051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Lymph nodes (LNs) are highly organized secondary lymphoid organs, and reflective of immune responses to infection, injuries, or the presence of cancer. Extensive molecular and morphological analyses of immune and stromal features in tumors and LNs of breast cancer patients have revealed novel patterns indicative of disease progression. Within LNs, there are dynamic structures called germinal centers (GCs), that act as the immunological hubs for B cell development and generation of affinity matured memory B and antibody-producing plasma cells. Acting as a bridge between systemic and local immunity, associations are observed between the frequency of GCs within cancer-free LNs, the levels of stromal tumor infiltrating lymphocytes, and cancer progression. Scattered throughout the tumor microenvironment (TME) or aggregated in clusters forming tertiary lymphoid structures (TLS), the occurrence of tumor infiltrating B cells (TIL-Bs) has been linked mostly to superior disease trajectories in solid cancers. Recent TIL-Bs profiling studies have revealed a plethora of different TIL-B populations, their functional roles, and whether they are derived from GC reactions in the LN, and/or locally from GC-like structures within the TME remains to be investigated. However, parallels between the immunogenic nature of LNs as a pre-metastatic niche, TIL-B populations within the TME, and the presence of TLS will help to decipher local and widespread TIL-Bs responses and their influence on cancer progression to the lymphatics. Therapies that enhance TIL-Bs responses in the LN GC and/or in GC-like structures in the TME are thus emerging management strategies for breast and other cancer patients.
Collapse
Affiliation(s)
- Elena Alberts
- Faculty of Life Sciences and Medicine, Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Isobelle Wall
- Faculty of Life Sciences and Medicine, Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Dinis Pedro Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anita Grigoriadis
- Faculty of Life Sciences and Medicine, Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Grasseau A, Boudigou M, Michée-Cospolite M, Delaloy C, Mignen O, Jamin C, Cornec D, Pers JO, Le Pottier L, Hillion S. The diversity of the plasmablast signature across species and experimental conditions: A meta-analysis. Immunology 2021; 164:120-134. [PMID: 34041745 DOI: 10.1111/imm.13344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Antibody-secreting cells (ASC) are divided into two principal subsets, including the long-lived plasma cell (PC) subset residing in the bone marrow and the short-lived subset, also called plasmablast (PB). PB are described as a proliferating subset circulating through the blood and ending its differentiation in tissues. Due to their inherent heterogeneity, the molecular signature of PB is not fully established. The purpose of this study was to decipher a specific PB signature in humans and mice through a comprehensive meta-analysis of different data sets exploring the PB differentiation in both species and across different experimental conditions. The present study used recent analyses using whole RNA sequencing in prdm1-GFP transgenic mice to define a reliable and accurate PB signature. Next, we performed similar analysis using current data sets obtained from human PB and PC. The PB-specific signature is composed of 155 and 113 genes in mouse and human being, respectively. Although only nine genes are shared between the human and mice PB signature, the loss of B-cell identity such as the down-regulation of PAX5, MS4A1, (CD20) CD22 and IL-4R is a conserved feature across species and across the different experimental conditions. Additionally, we observed that the IRF8 and IRF4 transcription factors have a specific dynamic range of expression in human PB. We thus demonstrated that IRF4/IRF8 intranuclear staining was useful to define PB in vivo and in vitro and able to discriminate between atypical PB populations and transient states.
Collapse
Affiliation(s)
| | | | | | - Céline Delaloy
- UMR U1236, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Université de Rennes 1, Rennes, France
| | | | - Christophe Jamin
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| | - Divi Cornec
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| | - Jacques-Olivier Pers
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| | | | - Sophie Hillion
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| |
Collapse
|
9
|
Global discovery of lupus genetic risk variant allelic enhancer activity. Nat Commun 2021; 12:1611. [PMID: 33712590 PMCID: PMC7955039 DOI: 10.1038/s41467-021-21854-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies of Systemic Lupus Erythematosus (SLE) nominate 3073 genetic variants at 91 risk loci. To systematically screen these variants for allelic transcriptional enhancer activity, we construct a massively parallel reporter assay (MPRA) library comprising 12,396 DNA oligonucleotides containing the genomic context around every allele of each SLE variant. Transfection into the Epstein-Barr virus-transformed B cell line GM12878 reveals 482 variants with enhancer activity, with 51 variants showing genotype-dependent (allelic) enhancer activity at 27 risk loci. Comparison of MPRA results in GM12878 and Jurkat T cell lines highlights shared and unique allelic transcriptional regulatory mechanisms at SLE risk loci. In-depth analysis of allelic transcription factor (TF) binding at and around allelic variants identifies one class of TFs whose DNA-binding motif tends to be directly altered by the risk variant and a second class of TFs that bind allelically without direct alteration of their motif by the variant. Collectively, our approach provides a blueprint for the discovery of allelic gene regulation at risk loci for any disease and offers insight into the transcriptional regulatory mechanisms underlying SLE. Thousands of genetic variants have been associated with lupus, but causal variants and mechanisms are unknown. Here, the authors combine a massively parallel reporter assay with genome-wide ChIP experiments to identify risk variants with allelic enhancer activity mediated through transcription factor binding.
Collapse
|
10
|
Holmes AB, Corinaldesi C, Shen Q, Kumar R, Compagno N, Wang Z, Nitzan M, Grunstein E, Pasqualucci L, Dalla-Favera R, Basso K. Single-cell analysis of germinal-center B cells informs on lymphoma cell of origin and outcome. J Exp Med 2021; 217:151908. [PMID: 32603407 PMCID: PMC7537389 DOI: 10.1084/jem.20200483] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
In response to T cell-dependent antigens, mature B cells are stimulated to form germinal centers (GCs), the sites of B cell affinity maturation and the cell of origin (COO) of most B cell lymphomas. To explore the dynamics of GC B cell development beyond the known dark zone and light zone compartments, we performed single-cell (sc) transcriptomic analysis on human GC B cells and identified multiple functionally linked subpopulations, including the distinct precursors of memory B cells and plasma cells. The gene expression signatures associated with these GC subpopulations were effective in providing a sc-COO for ∼80% of diffuse large B cell lymphomas (DLBCLs) and identified novel prognostic subgroups of DLBCL.
Collapse
Affiliation(s)
- Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Rahul Kumar
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Nicolo Compagno
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Zhong Wang
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | | | - Eli Grunstein
- Department of Otolaryngology Head and Neck Surgery, Columbia University, New York, NY
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY.,Department of Pathology and Cell Biology, Columbia University, New York, NY.,The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY.,Department of Pathology and Cell Biology, Columbia University, New York, NY.,Department of Microbiology and Immunology, Columbia University, New York, NY.,Department of Genetics and Development, Columbia University, New York, NY.,The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY.,Department of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
11
|
Cao M, Zhang J, Xu H, Lin Z, Chang H, Wang Y, Huang X, Chen X, Wang H, Song Y. Identification and Development of a Novel 4-Gene Immune-Related Signature to Predict Osteosarcoma Prognosis. Front Mol Biosci 2020; 7:608368. [PMID: 33425993 PMCID: PMC7785859 DOI: 10.3389/fmolb.2020.608368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is a malignant disease that develops rapidly and is associated with poor prognosis. Immunotherapy may provide new insights into clinical treatment strategies for OS. The purpose of this study was to identify immune-related genes that could predict OS prognosis. The gene expression profiles and clinical data of 84 OS patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. According to non-negative matrix factorization, two molecular subtypes of immune-related genes, C1 and C2, were acquired, and 597 differentially expressed genes between C1 and C2 were identified. Univariate Cox analysis was performed to get 14 genes associated with survival, and 4 genes (GJA5, APBB1IP, NPC2, and FKBP11) obtained through least absolute shrinkage and selection operator (LASSO)-Cox regression were used to construct a 4-gene signature as a prognostic risk model. The results showed that high FKBP11 expression was correlated with high risk (a risk factor), and that high GJA5, APBB1IP, or NPC2 expression was associated with low risk (protective factors). The testing cohort and entire TARGET cohort were used for internal verification, and the independent GSE21257 cohort was used for external validation. The study suggested that the model we constructed was reliable and performed well in predicting OS risk. The functional enrichment of the signature was studied through gene set enrichment analysis, and it was found that the risk score was related to the immune pathway. In summary, our comprehensive study found that the 4-gene signature could be used to predict OS prognosis, and new biomarkers of great significance for understanding the therapeutic targets of OS were identified.
Collapse
Affiliation(s)
- Mingde Cao
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Junhui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hualiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhujian Lin
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hong Chang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuchen Wang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xusheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Wang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Yancheng Song
| |
Collapse
|
12
|
Wang X, Cui X, Zhu C, Li M, Zhao J, Shen Z, Shan X, Wang L, Wu H, Shen Y, Ni Y, Zhang D, Zhou G. FKBP11 protects intestinal epithelial cells against inflammation‑induced apoptosis via the JNK‑caspase pathway in Crohn's disease. Mol Med Rep 2018; 18:4428-4438. [PMID: 30221722 PMCID: PMC6172375 DOI: 10.3892/mmr.2018.9485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) has an important role in the pathogenesis of Crohn's disease (CD). FK506 binding protein 11 (FKBP11), a member of the peptidyl‑prolyl cis‑trans isomerase family, is involved in the unfolded protein response (UPR) and is closely associated with inflammation. Previous bioinformatics analysis revealed a potential association between FKBP11 and human CD. Thus, the present study aimed to investigate the potential significance of FKBP11 in IEC homeostasis and CD. In the present study, increased expression of FKBP11 was detected in the intestinal inflammatory tissues of patients with CD. Furthermore, the results of the present study revealed that overexpression of FKBP11 was accompanied by increased expression levels of the ER stress marker 78 kDa glucose‑regulated protein in the colon tissues of a 2, 4, 6‑trinitrobenzenesulphonic acid‑induced mouse colitis model. Using interferon‑γ (IFN‑γ)/tumor necrosis factor‑α (TNF‑α)‑stimulated IECs as an ER stress and apoptosis cell model, the associated of FKBP11 with ER stress and apoptosis levels was confirmed in IECs. Overexpression of FKBP11 was revealed to significantly attenuate the elevated expression of pro‑apoptotic proteins (Bcl2 associated X apoptosis regulator, caspase‑12 and active caspase‑3), suppress the phosphorylation of c‑Jun N‑terminal kinase (JNK), and decrease apoptosis of IFN‑γ/TNF‑α stimulated IECs. Knockdown of FKBP11 by transfection with small interfering RNA further validated the aforementioned results. In conclusion, these results suggest that the UPR protein FKBP11 may protect IECs against IFN‑γ/TNF‑α induced apoptosis by inhibiting the ER stress‑associated JNK/caspase apoptotic pathway in CD.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Fifth's People's Hospital of Suzhou, Suzhou, Jiangsu 215000, P.R. China
| | - Xiaopeng Cui
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chuanwu Zhu
- Department of Hepatology and Gastroenterology, The Fifth's People's Hospital of Suzhou, Suzhou, Jiangsu 215000, P.R. China
| | - Ming Li
- Department of Hepatology and Gastroenterology, The Fifth's People's Hospital of Suzhou, Suzhou, Jiangsu 215000, P.R. China
| | - Juan Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhongyi Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaohang Shan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liang Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Han Wu
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yanting Shen
- Clinical Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - You Ni
- Clinical Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Dongmei Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
13
|
Sex Differences in Correlation with Gene Expression Levels between Ifi200 Family Genes and Four Sets of Immune Disease-Relevant Genes. J Immunol Res 2018; 2018:1290814. [PMID: 30246031 PMCID: PMC6136564 DOI: 10.1155/2018/1290814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 01/04/2023] Open
Abstract
Background The HIN-200 family genes in humans have been linked to several autoimmune diseases—particularly to systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Recently, its human counterpart gene cluster, the Ifi200 family in mice, has been linked to spontaneous arthritis disease (SAD). However, many immune-mediated diseases (including RA and SLE) show gender difference. Understanding whether or not and how these genes play a role in sex difference in immune-mediated diseases is essential for diagnosis/treatment. Methods This study takes advantage of the whole genome gene expression profiles of recombinant inbred (RI) strain populations from female and male mice to analyze potential sex differences in a variety of genes in disease pathways. Expression levels and regulatory QTL of Ifi200 family genes between female and male mice were first examined in a large mouse population, including RI strains derived from C57BL/6J, DBA/2J (BXD), and classic inbred strains. Sex similarities and differences were then analyzed for correlations with gene expression levels between genes in the Ifi200 family and four selected gene sets: known immune Ifi200 pathway-related genes, lupus-relevant genes, osteoarthritis- (OA-) and RA-relevant genes, and sex hormone-related genes. Results The expression level of Ifi202b showed the most sex difference in correlation with known immune-related genes (the P value for Ifi202b is 0.0004). Ifi202b also showed gender difference in correlation with selected sex hormone genes, with a P value of 0.0243. When comparing coexpression levels between Ifi200 genes and lupus-relevant genes, Ifi203 and Ifi205 showed significant sex difference (P values: 0.0303 and 0.002, resp.). Furthermore, several key genes (e.g., Csf1r, Ifnb1, IL-20, IL-22, IL-24, Jhdm1d, Csf1r, Ifnb1, IL-20, IL-22, IL-24, and Tgfb2 that regulate sex differences in immune diseases) were discovered. Conclusions Different genes in the Ifi200 family play different roles in sex difference among dissimilar pathways of these four gene groups.
Collapse
|
14
|
Simoni L, Delgado V, Ruer-Laventie J, Bouis D, Soley A, Heyer V, Robert I, Gies V, Martin T, Korganow AS, Reina-San-Martin B, Soulas-Sprauel P. Trib1 Is Overexpressed in Systemic Lupus Erythematosus, While It Regulates Immunoglobulin Production in Murine B Cells. Front Immunol 2018; 9:373. [PMID: 29599769 PMCID: PMC5862796 DOI: 10.3389/fimmu.2018.00373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/09/2018] [Indexed: 01/28/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a severe and heterogeneous autoimmune disease
with a complex genetic etiology, characterized by the production of various
pathogenic autoantibodies, which participate in end-organ damages. The majority of
human SLE occurs in adults as a polygenic disease, and clinical flares interspersed
with silent phases of various lengths characterize the usual evolution of the disease
in time. Trying to understand the mechanism of the different phenotypic traits of the
disease, and considering the central role of B cells in SLE, we previously performed
a detailed wide analysis of gene expression variation in B cells from quiescent SLE
patients. This analysis pointed out an overexpression of TRIB1.
TRIB1 is a pseudokinase that has been implicated in the development of leukemia and
also metabolic disorders. It is hypothesized that Trib1 plays an adapter or scaffold
function in signaling pathways, notably in MAPK pathways. Therefore, we planned to
understand the functional significance of TRIB1 overexpression in B
cells in SLE. We produced a new knock-in model with B-cell-specific overexpression of
Trib1. We showed that overexpression of Trib1
specifically in B cells does not impact B cell development nor induce any development
of SLE symptoms in the mice. By contrast, Trib1 has a negative regulatory function on
the production of immunoglobulins, notably IgG1, but also on the production of
autoantibodies in an induced model. We observed a decrease of Erk activation in
BCR-stimulated Trib1 overexpressing B cells. Finally, we searched
for Trib1 partners in B cells by proteomic analysis in order to explore the
regulatory function of Trib1 in B cells. Interestingly, we find an interaction
between Trib1 and CD72, a negative regulator of B cells whose deficiency in mice
leads to the development of autoimmunity. In conclusion, the overexpression of
Trib1 could be one of the molecular pathways implicated in the
negative regulation of B cells during SLE.
Collapse
Affiliation(s)
- Léa Simoni
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Virginia Delgado
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Julie Ruer-Laventie
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Delphine Bouis
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Anne Soley
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,UFR Médecine, Université de Strasbourg, Strasbourg, France
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Vincent Gies
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,UFR Médecine, Université de Strasbourg, Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Thierry Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,UFR Médecine, Université de Strasbourg, Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne-Sophie Korganow
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,UFR Médecine, Université de Strasbourg, Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,UFR Médecine, Université de Strasbourg, Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,UFR Sciences pharmaceutiques, Université de Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
15
|
Abstract
Immune tolerance hinders the potentially destructive responses of lymphocytes to host tissues. Tolerance is regulated at the stage of immature B cell development (central tolerance) by clonal deletion, involving apoptosis, and by receptor editing, which reprogrammes the specificity of B cells through secondary recombination of antibody genes. Recent mechanistic studies have begun to elucidate how these divergent mechanisms are controlled. Single-cell antibody cloning has revealed defects of B cell central tolerance in human autoimmune diseases and in several human immunodeficiency diseases caused by single gene mutations, which indicates the relevance of B cell tolerance to disease and suggests possible genetic pathways that regulate tolerance.
Collapse
|
16
|
Wang T, He X, Liu X, Liu Y, Zhang W, Huang Q, Liu W, Xiong L, Tan R, Wang H, Zeng H. Weighted Gene Co-expression Network Analysis Identifies FKBP11 as a Key Regulator in Acute Aortic Dissection through a NF-kB Dependent Pathway. Front Physiol 2017; 8:1010. [PMID: 29255427 PMCID: PMC5723018 DOI: 10.3389/fphys.2017.01010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Acute aortic dissection (AAD) is a life-threatening disease. Despite the higher risk of mortality, currently there are no effective therapies that can ameliorate AAD development or progression. Identification of meaningful clusters of co-expressed genes or representative biomarkers for AAD may help to identify new pathomechanisms and foster development of new therapies. To this end, we performed a weighted gene co-expression network analysis (WGCNA) and calculated module-trait correlations based on a public microarray dataset (GSE 52093) and discovered 9 modules were found to be related to AAD. The module which has the strongest positive correlation with AAD was further analyzed and the top 10 hub genes SLC20A1, GINS2, CNN1, FAM198B, MAD2L2, UBE2T, FKBP11, SLMAP, CCDC34, and GALK1 were identified. Furthermore, we validated the data by qRT-PCR in an independent sample set originated from our study center. Overall, the qRT-PCR results were consistent with the results of the microarray analysis. Intriguingly, the highest change was found for FKBP11, a protein belongs to the FKBP family of peptidyl-prolyl cis/trans isomerases, which catalyze the folding of proline-containing polypeptides. In congruent with the gene expression analysis, FKBP11 expression was induced in cultured endothelial cells by angiotensin II treatment and endothelium of the dissected aorta. More importantly we show that FKBP11 provokes inflammation in endothelial cells by interacting with NF-kB p65 subunit, resulting in pro-inflammatory cytokines production. Accordingly, siRNA mediated knockdown of FKBP11 in cultured endothelial cells suppressed angiotensin II induced monocyte transmigration through the endothelial monolayer. Based on these data, we hypothesize that pro-inflammatory cytokines elicited by FKBP11 overexpression in the endothelium under AAD condition could facilitate transendothelial migration of the circulating monocytes into the aorta, where they differentiate into active macrophages and secrete MMPs and other extracellular matrix (ECM) degrading proteins, contributing to sustained inflammation and AAD. Taken together, our data identify important role of FKBP11 which can serve as biomarker and/or therapeutic target for AAD.
Collapse
Affiliation(s)
- Tao Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingwei He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xintian Liu
- Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, China
| | - Yujian Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjun Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luyang Xiong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Tan
- Divison of Cardiology, the Fifth Hospital of Wuhan, Wuhan, China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongjie Wang
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hesong Zeng
| |
Collapse
|
17
|
Schickel JN, Kuhny M, Baldo A, Bannock JM, Massad C, Wang H, Katz N, Oe T, Menard L, Soulas-Sprauel P, Strowig T, Flavell R, Meffre E. PTPN22 inhibition resets defective human central B cell tolerance. Sci Immunol 2016; 1. [PMID: 27917411 PMCID: PMC5127630 DOI: 10.1126/sciimmunol.aaf7153] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 1858T protein tyrosine phosphatase nonreceptor type 22 (PTPN22 T) allele is one of the main risk factors associated with many autoimmune diseases and correlates with a defective removal of developing autoreactive B cells in humans. To determine whether inhibiting PTPN22 favors the elimination of autoreactive B cells, we first demonstrated that the PTPN22 T allele interfered with the establishment of central B cell tolerance using NOD-scid-common γ chain knockout (NSG) mice engrafted with human hematopoietic stem cells expressing this allele. In contrast, the inhibition of either PTPN22 enzymatic activity or its expression by RNA interference restored defective central B cell tolerance in this model. Thus, PTPN22 blockade may represent a therapeutic strategy for the prevention or treatment of autoimmunity.
Collapse
Affiliation(s)
- Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Marcel Kuhny
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Alessia Baldo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jason M Bannock
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christopher Massad
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Haowei Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nathan Katz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Tyler Oe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Laurence Menard
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry/Laboratory of Excellence Medalis, Molecular and Cellular Biology Institute (IBMC), Strasbourg, France
| | - Till Strowig
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Richard Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|