1
|
Feng D, Wang J, Li D, Wu R, Wei W, Zhang C. Senescence-associated secretory phenotype constructed detrimental and beneficial subtypes and prognostic index for prostate cancer patients undergoing radical prostatectomy. Discov Oncol 2023; 14:155. [PMID: 37624511 PMCID: PMC10457268 DOI: 10.1007/s12672-023-00777-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Cellular senescence is growing in popularity in cancer. A dual function is played by the senescence-associated secretory phenotype (SASP) that senescent cells produce in the development of pro-inflammatory niches, tissue regeneration or destruction, senescence propagation, and malignant transformation. In this study, we conducted thorough bioinformatic analysis and meta-analysis to discover detrimental and beneficial subtypes and prognostic index for prostate cancer (PCa) patients using the experimentally confirmed SASP genes. METHODS We identified differentially expressed and prognosis-related SASP genes and used them to construct two molecular subtypes and risk score. Another two external cohorts were used to confirm the prognostic effect of the above subtypes and risk score and meta-analysis was further conducted. Additionally, functional analysis, tumor stemness and heterogeneity and tumor microenvironment were also evaluated. We completed analyses using software R 3.6.3 and its suitable packages. Meta-analysis was performed by software Stata 14.0. RESULTS Through multivariate Cox regression analysis and consensus clustering analysis, we used VGF, IGFBP3 and ANG to establish detrimental and beneficial subtypes in the TCGA cohort, which was validated through other two independent cohorts. Meta-analysis showed that detrimental SASP group had significantly higher risk of biochemical recurrence (BCR) than beneficial SASP group (HR: 2.48). Moreover, we also constructed and validated risk score based on these genes to better guide clinical practice. DNA repair, MYC target, oxidative phosphorylation, proteasome and ribosome were highly enriched in detrimental SASP group. Detrimental SASP group had significantly higher levels of B cells, CD8+ T cells, homologous recombination deficiency, loss of heterozygosity, microsatellite instability, purity, tumor mutation burden, mRNAsi, differentially methylated probes and epigenetically regulated RNA expression than beneficial SASP group. The top mutation genes between detrimental and beneficial SASP groups were SPOP, FOXA1, KMT2C, APC, BSN, DNAH17, MYH6, EPPK1, ZNF536 and ZC3H13 with statistical significance. CONCLUSIONS From perspective of SASP, we found detrimental and beneficial tumor subtypes which were closely associated with BCR-free survival for PCa patients, which might be important for the furture research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
2
|
Vanli N, Sheng J, Li S, Xu Z, Hu GF. Ribonuclease 4 is associated with aggressiveness and progression of prostate cancer. Commun Biol 2022; 5:625. [PMID: 35752711 PMCID: PMC9233706 DOI: 10.1038/s42003-022-03597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Prostate specific antigen screening has resulted in a decrease in prostate cancer-related deaths. However, it also has led to over-treatment affecting the quality of life of many patients. New biomarkers are needed to distinguish prostate cancer from benign prostate hyperplasia (BPH) and to predict aggressiveness of the disease. Here, we report that ribonuclease 4 (RNASE4) serves as such a biomarker as well as a therapeutic target. RNASE4 protein level in the plasma is elevated in prostate cancer patients and is positively correlated with disease stage, grade, and Gleason score. Plasma RNASE4 level can be used to predict biopsy outcome and to enhance diagnosis accuracy. RNASE4 protein in prostate cancer tissues is enhanced and can differentiate prostate cancer and BPH. RNASE4 stimulates prostate cancer cell proliferation, induces tumor angiogenesis, and activates receptor tyrosine kinase AXL as well as AKT and S6K. An RNASE4-specific monoclonal antibody inhibits the growth of xenograft human prostate cancer cell tumors in athymic mice.
Collapse
Affiliation(s)
- Nil Vanli
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Jinghao Sheng
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuping Li
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Fu Hu
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
3
|
Angiogenin (ANG)-Ribonuclease Inhibitor (RNH1) System in Protein Synthesis and Disease. Int J Mol Sci 2021; 22:ijms22031287. [PMID: 33525475 PMCID: PMC7866052 DOI: 10.3390/ijms22031287] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Protein synthesis is a highly complex process executed by well-organized translation machinery. Ribosomes, tRNAs and mRNAs are the principal components of this machinery whereas RNA binding proteins and ribosome interacting partners act as accessory factors. Angiogenin (ANG)-Ribonuclease inhibitor (RNH1) system is one such accessory part of the translation machinery that came into focus afresh due to its unconventional role in the translation. ANG is conventionally known for its ability to induce blood vessel formation and RNH1 as a "sentry" to protect RNAs from extracellular RNases. However, recent studies suggest them to be important in translation regulation. During cell homeostasis, ANG in the nucleus promotes rRNA transcription. While under stress, ANG translocates to the cytosol and cleaves tRNA into fragments which inhibit ribosome biogenesis and protein synthesis. RNH1, which intimately interacts with ANG to inhibit its ribonucleolytic activity, can also bind to the 40S ribosomes and control translation by yet to be known mechanisms. Here, we review recent advancement in the knowledge of translation regulation by the ANG-RNH1 system. We also gather information about this system in cell homeostasis as well as in pathological conditions such as cancer and ribosomopathies. Additionally, we discuss the future research directions and therapeutic potential of this system.
Collapse
|
4
|
Li S, Goncalves KA, Lyu B, Yuan L, Hu GF. Chemosensitization of prostate cancer stem cells in mice by angiogenin and plexin-B2 inhibitors. Commun Biol 2020; 3:26. [PMID: 31942000 PMCID: PMC6962460 DOI: 10.1038/s42003-020-0750-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are an obstacle in cancer therapy and are a major cause of drug resistance, cancer recurrence, and metastasis. Available treatments, targeting proliferating cancer cells, are not effective in eliminating quiescent CSCs. Identification of CSC regulators will help design therapeutic strategies to sensitize drug-resistant CSCs for chemo-eradication. Here, we show that angiogenin and plexin-B2 regulate the stemness of prostate CSCs, and that inhibitors of angiogenin/plexin-B2 sensitize prostate CSCs to chemotherapy. Prostate CSCs capable of self-renewal, differentiation, and tumor initiation with a single cell inoculation were identified and shown to be regulated by angiogenin/plexin-B2 that promotes quiescence and self-renewal through 5S ribosomal RNA processing and generation of the bioactive 3′-end fragments of 5S ribosomal RNA, which suppress protein translation and restrict cell cycling. Monoclonal antibodies of angiogenin and plexin-B2 decrease the stemness of prostate CSCs and sensitize them to chemotherapeutic agents in vitro and in vivo. Shuping Li et al. show that angiogenin and its receptor plexin-B2 regulate the stemness of prostate cancer stem cells. Monoclonal antibodies of angiogenin and plexin-B2 sensitize prostate cancer stem cells to chemotherapy, highlighting the targeting potential of this regulation.
Collapse
Affiliation(s)
- Shuping Li
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Kevin A Goncalves
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Baiqing Lyu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Liang Yuan
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Guo-Fu Hu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
5
|
Ferguson R, Holloway DE, Chandrasekhar A, Acharya KR, Subramanian V. The catalytic activity and secretion of zebrafish RNases are essential for their in vivo function in motor neurons and vasculature. Sci Rep 2019; 9:1107. [PMID: 30710110 PMCID: PMC6358602 DOI: 10.1038/s41598-018-37140-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Angiogenin (hANG), a member of the Ribonuclease A superfamily has angiogenic, neurotrophic and neuroprotective activities. Mutations in hANG have been found in patients with Amyotrophic lateral sclerosis (ALS). The zebrafish (Danio rerio) rnasel-1, 2 and 3 are orthologues of hANG and of these only Rnasel-1 and Rnasel-2 have been shown to be angiogenic. Herein we show that NCI-65828, a potent and specific small molecule inhibitor of hANG inhibits Rnasel-1 to a similar extent. Treatment of early zebrafish embryos with NCI-65828, or with terrein, a fungal metabolite which prevents the secretion of hANG, resulted in spinal neuron aberrations as well defects in trunk vasculature. Our detailed expression analysis and inhibitor studies suggest that Rnasel-1 plays important roles in neuronal migration and pathfinding as well as in angiogenesis in zebrafish. Our studies suggest the usefulness of the zebrafish as a model to dissect the molecular consequences of the ANG ALS variants.
Collapse
Affiliation(s)
- Ross Ferguson
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Daniel E Holloway
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Anand Chandrasekhar
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
6
|
Zhao J, Yang Q, Yang J, Wang J, Fan L, Wang L. Basic Fibroblast Growth Factor Affects the Expression of Angiogenin and Cell Proliferation in A375 Human Melanoma Cells. TUMORI JOURNAL 2018; 97:95-103. [DOI: 10.1177/030089161109700117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aims and background Human malignant melanoma is a very aggressive and highly angiogenesis-dependent tumor. Basic fibroblast growth factor and angiogenin are the potentially important angiogenic factors for melanoma progression and metastasis. Many studies have mainly focused on how they induce angiogenesis. In the present study, we investigated the effects of basic fibroblast growth factor on the expression of angiogenin and melanoma cell growth. Methods and study design Angiogenin mRNA and protein expression were investigated by means of semi-quantitative reverse transcriptase polymerase chain reaction assay and western blotting. We analyzed cell proliferation using MTT, flow cytometry and soft agar assay. Immunofluorescence staining was applied to investigate co-localization and nuclear translocation. Results We found that basic fibroblast growth factor negatively affected the expression of angiogenin in A375 cells. The result showed that down-regulation of basic fibroblast growth factor induced decreased cell proliferation of A375 cells, and in basic fibroblast growth factor up-regulated cells, cell proliferation was increased. We demonstrated that basic fibroblast growth factor protein was co-localized with angiogenin and that it underwent nuclear translocation in A375 cells. Conclusion These findings suggest that there is a cooperation mechanism between basic fibroblast growth factor and angiogenin in A375 cells, and the cooperation mechanism affects the progress of tumor cell proliferation and angiogenesis. Free full text available at www.tumorionline.it
Collapse
Affiliation(s)
- Jia Zhao
- Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, PR China
| | - Qiong Yang
- Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, PR China
| | - Jianli Yang
- Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, PR China
| | - Ji Wang
- Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, PR China
| | - Lingling Fan
- Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, PR China
| | - Li Wang
- Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, PR China
| |
Collapse
|
7
|
Chatzileontiadou DSM, Tsika AC, Diamantopoulou Z, Delbé J, Badet J, Courty J, Skamnaki VT, Parmenopoulou V, Komiotis D, Hayes JM, Spyroulias GA, Leonidas DD. Evidence for Novel Action at the Cell-Binding Site of Human Angiogenin Revealed by Heteronuclear NMR Spectroscopy, in silico and in vivo Studies. ChemMedChem 2018; 13:259-269. [PMID: 29314771 DOI: 10.1002/cmdc.201700688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Indexed: 12/11/2022]
Abstract
A member of the ribonuclease A superfamily, human angiogenin (hAng) is a potent angiogenic factor. Heteronuclear NMR spectroscopy combined with induced-fit docking revealed a dual binding mode for the most antiangiogenic compound of a series of ribofuranosyl pyrimidine nucleosides that strongly inhibit hAng's angiogenic activity in vivo. While modeling suggests the potential for simultaneous binding of the inhibitors at the active and cell-binding sites, NMR studies indicate greater affinity for the cell-binding site than for the active site. Additionally, molecular dynamics simulations at 100 ns confirmed the stability of binding at the cell-binding site with the predicted protein-ligand interactions, in excellent agreement with the NMR data. This is the first time that a nucleoside inhibitor is reported to completely inhibit the angiogenic activity of hAng in vivo by exerting dual inhibitory activity on hAng, blocking both the entrance of hAng into the cell and its ribonucleolytic activity.
Collapse
Affiliation(s)
- Demetra S M Chatzileontiadou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.,Current address: Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Australia
| | | | - Zoi Diamantopoulou
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France.,Current address: Cancer Research (UK) Manchester Institute, Manchester, UK
| | - Jean Delbé
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France
| | - Josette Badet
- INSERM U1139, Université Paris Descartes, 4 avenue de l'Observatoire, 75006, Paris, France
| | - José Courty
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Vanessa Parmenopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Dimitri Komiotis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Joseph M Hayes
- Centre for Materials Science and School of Physical Sciences & Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| |
Collapse
|
8
|
Bradshaw WJ, Rehman S, Pham TTK, Thiyagarajan N, Lee RL, Subramanian V, Acharya KR. Structural insights into human angiogenin variants implicated in Parkinson's disease and Amyotrophic Lateral Sclerosis. Sci Rep 2017; 7:41996. [PMID: 28176817 PMCID: PMC5296752 DOI: 10.1038/srep41996] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in Angiogenin (ANG), a member of the Ribonuclease A superfamily (also known as RNase 5) are known to be associated with Amyotrophic Lateral Sclerosis (ALS, motor neurone disease) (sporadic and familial) and Parkinson’s Disease (PD). In our previous studies we have shown that ANG is expressed in neurons during neuro-ectodermal differentiation, and that it has both neurotrophic and neuroprotective functions. In addition, in an extensive study on selective ANG-ALS variants we correlated the structural changes to the effects on neuronal survival and the ability to induce stress granules in neuronal cell lines. Furthermore, we have established that ANG-ALS variants which affect the structure of the catalytic site and either decrease or increase the RNase activity affect neuronal survival. Neuronal cell lines expressing the ANG-ALS variants also lack the ability to form stress granules. Here, we report a detailed experimental structural study on eleven new ANG-PD/ALS variants which will have implications in understanding the molecular basis underlying their role in PD and ALS.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Saima Rehman
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Tram T K Pham
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Nethaji Thiyagarajan
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Rebecca L Lee
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
9
|
Sub-chronic 90-day toxicity of neamine in SD rats and its anti-liver cancer activity in vitro and in vivo. Toxicol Appl Pharmacol 2017; 315:50-59. [PMID: 27940282 DOI: 10.1016/j.taap.2016.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 11/21/2022]
Abstract
Neamine, an inhibitor of angiogenin (ANG), is a new investigative anticancer drug currently in preclinical stage. Here we report the 90-day sub-chronic toxicity of neamine in SD rats and its anti-liver cancer activity in vitro and in vivo. Neamine has a No Observed Adverse Effect Level (NOAEL) of 12 and 16mg·kg-1·d-1 for female and male rats, respectively. No mortality was found. The adverse effects included increased organ coefficients of spleen and kidney, increased BUN in both female and male rats at high dose, increased CR and decreased organ coefficients of heart and liver in male rats at high dose. All of which, except the kidney coefficient and BUN in males, returned to normal levels after 28-day recovery. Histopathological examination revealed vacuolar degeneration of glomerulus, degeneration of renal tubules and cast in the kidneys, which were also recovered except in males of high-dosing group. These results indicate that kidney is the most susceptible organ for neamine toxicity. Tissue microarray analysis validated that ANG is up-regulated in hepatocellular carcinoma accompanied by increased nuclear translocation, suggesting that ANG is a possible target for drug development in liver cancer treatment. Neamine blocked nuclear translocation of ANG in HUVEC and HepG2 cells, and inhibited ANG-stimulated cell proliferation without affecting basal level cell proliferation. Neamine also inhibited progression of HepG2 xenografts in athymic mice accompanied by decreased angiogenesis and cancer cell proliferation. These results suggest that neamine is a specific ANG inhibitor with low toxicity and high anti-liver cancer efficacy.
Collapse
|
10
|
Tsika AC, Chatzileontiadou DSM, Leonidas DD, Spyroulias GA. NMR study of Met-1 human Angiogenin: (1)H, (13)C, (15)N backbone and side-chain resonance assignment. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:379-383. [PMID: 27624767 DOI: 10.1007/s12104-016-9704-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Here, we report the high yield expression and preliminary structural analysis via solution hetero-nuclear NMR spectroscopy of the recombinant Met-1 human Angiogenin. The analysis reveals a well folded as well as, a monomeric polypeptide. Τhe sequence-specific assignment of its (1)H, (15)N and (13)C resonances at high percentage was obtained. Also, using TALOS+ its secondary structure elements were determined.
Collapse
Affiliation(s)
| | | | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | | |
Collapse
|
11
|
Vanli N, Guo-Fu HU. Mechanism and Function of Angiogenin in Prostate Cancer. ZHONGGUO SHENG WU HUA XUE YU FEN ZI SHENG WU XUE BAO = CHINESE JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 31:1261-1266. [PMID: 27175049 DOI: 10.13865/j.cnki.cjbmb.2015.12.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angiogenin (ANG), the fifth member of the vertebrate-specific ribonuclease (RNase) A superfamily, is a secreted angiogenic ribonuclease strongly up-regulated in human prostate cancers. ANG is translocated to the nucleus in both prostate cancer epithelial cells and endothelial cells to exert its role in prostate cancer progression by mediating tumor angiogenesis, cancer cell survival and proliferation through rRNA biogenesis. ANG-stimulated rRNA is required not only for prostate intraepithelial neoplasia (PIN) formation, but also for androgen-independent growth of prostate cancer cells. Targeting ANG by various antagonists that inhibit its nuclear translocation, function and/or activity has proven to inhibit prostate cancer growth in animal models. Furthermore, the role of ANG in androgen independence has been firmly established, suggesting a strong rationale for therapeutically targeting ANG in the treatment of castration resistant prostate cancer.
Collapse
Affiliation(s)
- Nil Vanli
- Molecular Oncology Research Institute, Tufts Medical Center Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - H U Guo-Fu
- Molecular Oncology Research Institute, Tufts Medical Center Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
12
|
A Higher Angiogenin Expression is Associated With a Nonnuclear Maspin Location in Laryngeal Carcinoma. Clin Exp Otorhinolaryngol 2015; 8:268-74. [PMID: 26330923 PMCID: PMC4553359 DOI: 10.3342/ceo.2015.8.3.268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/14/2014] [Accepted: 03/23/2014] [Indexed: 12/13/2022] Open
Abstract
Objectives In numerous malignancies, angiogenin (ANG) and Maspin are important proangiogenic and antiangiogenic regulators, respectively. The aim of this study was to identify potential relationships between the biological roles of these two proteins in laryngeal squamous cell carcinoma (LSCC). Methods Immunohistochemical staining for ANG and Maspin was performed on specimens from 76 consecutive LSCC patients treated with surgery alone, considering the subcellular pattern of Maspin expression. Univariate and multivariate statistical models were used for prognostic purposes. Results On univariate analysis, a different level of ANG expression was seen for patients stratified by subcellular Maspin expression pattern: the mean ANG expression was higher in cases with a nonnuclear MASPIN expression than in those with a nuclear pattern (P=0.002). Disease-free survival (DFS; in months) differed significantly when patients were stratified by N stage (P=0.01). Patients whose Maspin expression was nonnuclear (i.e., it was cytoplasmic or there was none) had a significantly higher recurrence rate (P<0.001), and shorter DFS (P=0.01) than those with a nuclear Maspin pattern. The mean ANG expression was significantly higher in cases with loco-regional recurrent disease (P=0.007); and patients with an ANG expression ≥5.0% had a significantly shorter DFS than those with an ANG expression <5.0% (P=0.007). On multivariate analysis, ANG expression ≥5.0% was a significant, independent, negative prognostic factor in terms of DFS (P=0.041). Conclusion Our results support the hypothesis that a higher ANG expression is associated with a nonnuclear Maspin expression pattern in patients with LSCC. Further studies are needed to clarify the relationship between the ANG and Maspin pathways, and their potential diagnostic and therapeutic role in LSCC.
Collapse
|
13
|
Yeo KJ, Hwang E, Min KM, Jee JG, Lee CK, Hwang KY, Jeon YH, Chang SI, Cheong HK. The dual binding site of angiogenin and its inhibition mechanism: the crystal structure of the rat angiogenin-heparin complex. Chem Commun (Camb) 2015; 50:12966-9. [PMID: 25219815 DOI: 10.1039/c4cc05175k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The heparin complex of rat angiogenin revealed that a heparin strand is fitted into a positively charged groove formed by the dual binding site of rat angiogenin, suggesting that cell adhesion to angiogenin is facilitated by its interaction with substrates on the cell surface and can be inhibited by heparin.
Collapse
Affiliation(s)
- Kwon Joo Yeo
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang, Chungbuk 363-883, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rucksaken R, Pairojkul C, Pinlaor P, Khuntikeo N, Roytrakul S, Selmi C, Pinlaor S. Plasma autoantibodies against heat shock protein 70, enolase 1 and ribonuclease/angiogenin inhibitor 1 as potential biomarkers for cholangiocarcinoma. PLoS One 2014; 9:e103259. [PMID: 25058392 PMCID: PMC4109983 DOI: 10.1371/journal.pone.0103259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/30/2014] [Indexed: 12/29/2022] Open
Abstract
The diagnosis of cholangiocarcinoma (CCA) is often challenging, leading to poor prognosis. CCA arises via chronic inflammation which may be associated with autoantibodies production. This study aims to identify IgG antibodies directed at self-proteins and tumor-associated antigens. Proteins derived from immortalized cholangiocyte cell line (MMNK1) and CCA cell lines (M055, M214 and M139) were separated using 2-dimensional electrophoresis and incubated with pooled plasma of patients with CCA and non-neoplastic controls by immunoblotting. Twenty five immunoreactive spots against all cell lines-derived proteins were observed on stained gels and studied by LC-MS/MS. Among these, heat shock protein 70 (HSP70), enolase 1 (ENO1) and ribonuclease/angiogenin inhibitor 1 (RNH1) obtained the highest matching scores and were thus selected for further validation. Western blot revealed immunoreactivity against HSP70 and RNH1 in the majority of CCA cases and weakly in healthy individuals. Further, ELISA showed that plasma HSP70 autoantibody level in CCA was significantly capable to discriminate CCA from healthy individuals with an area under the receiver operating characteristic curve of 0.9158 (cut-off 0.2630, 93.55% sensitivity and 73.91% specificity). Plasma levels of IgG autoantibodies against HSP70 were correlated with progression from healthy individuals to cholangitis to CCA (r = 0.679, P<0.001). In addition, circulating ENO1 and RNH1 autoantibodies levels were also significantly higher in cholangitis and CCA compared to healthy controls (P<0.05). Moreover, the combinations of HSP70, ENO1 or RNH1 autoantibodies positivity rates improved specificity to over 78%. In conclusion, plasma IgG autoantibodies against HSP70, ENO1 and RNH1 may represent new diagnostic markers for CCA.
Collapse
Affiliation(s)
- Rucksak Rucksaken
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- BIOMETRA Department, University of Milan, Italy
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
15
|
Angiogenin expression during early human placental development; association with blood vessel formation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:781632. [PMID: 25093183 PMCID: PMC4100457 DOI: 10.1155/2014/781632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/19/2014] [Indexed: 02/02/2023]
Abstract
The placenta is a transient organ essential for fetal development. During human placental development, chorionic villi grow in coordination with a large capillary network resulting from both vasculogenesis and angiogenesis. Angiogenin is one of the most potent inducers of neovascularisation in experimental models in vivo. We and others have previously mapped angiogenin expression in the human term placenta. Here, we explored angiogenin involvement in early human placental development. We studied, angiogenin expression by in situ hybridisation and/or by RT-PCR in tissues and primary cultured trophoblastic cells and angiogenin cellular distribution by coimmunolabelling with cell markers: CD31 (PECAM-1), vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), Tie-2, von Willebrand factor, CD34, erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Extravillous and villous cytotrophoblasts, isolated and differentiated in vitro, expressed and secreted angiogenin. Angiogenin was detected in villous trophoblastic layers, and structured and nascent fetal vessels. In decidua, it was expressed by glandular epithelial cells, vascular cells and macrophages. The observed pattern of angiogenin expression is compatible with a role in blood vessel formation and in cross-talk between trophoblasts and endothelial cells. In view of angiogenin properties, we suggest that angiogenin may participate in placental vasculogenesis and organogenesis.
Collapse
|
16
|
Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:333-54. [PMID: 24139944 DOI: 10.1016/j.pbiomolbio.2013.10.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022]
Abstract
Angiogenesis: a process of generation of new blood vessels has been proved to be necessary for sustained tumor growth and cancer progression. Inhibiting angiogenesis pathway has long been remained a significant hope for the development of novel, effective and target orientated antitumor agents arresting the tumor proliferation and metastasis. The process of neoangiogenesis as a biological process is regulated by several pro- and anti-angiogenic factors, especially vascular endothelial growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor 1 and transforming growth factor. Every endothelial cell destined for vessel formation is equipped with receptors for these angiogenic peptides. Moreover, numerous other angiogenic cytokines such as platelet derived growth factor (PGDF), placenta growth factor (PGF), nerve growth factor (NGF), stem-cell factor (SCF), and interleukins-2, 4, 6 etc. These molecular players performs critical role in regulating the angiogenic switch. Couple of decade's research in molecular aspects of tumor biology has unraveled numerous structural and functional mysteries of these angiogenic peptides. In present article, a detailed update on the functional and structural peculiarities of the various angiogenic peptides is described focusing on structural opportunities made available that has potential to be used to modulate function of these angiogenic peptides in developing therapeutic agents targeting neoplastic angiogenesis. The data may be useful in the mainstream of developing novel anticancer agents targeting tumor angiogenesis. We also discuss major therapeutic agents that are currently used in angiogenesis associated therapies as well as those are subject of active research or are in clinical trials.
Collapse
|
17
|
Li S, Hu MG, Sun Y, Yoshioka N, Ibaragi S, Sheng J, Sun G, Kishimoto K, Hu GF. Angiogenin mediates androgen-stimulated prostate cancer growth and enables castration resistance. Mol Cancer Res 2013; 11:1203-14. [PMID: 23851444 DOI: 10.1158/1541-7786.mcr-13-0072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The androgen receptor (AR) is a critical effector of prostate cancer development and progression. Androgen-dependent prostate cancer is reliant on the function of AR for growth and progression. Most castration-resistant prostate cancer (CRPC) remains dependent on AR signaling for survival and growth. Ribosomal RNA (rRNA) is essential for both androgen-dependent and castration-resistant growth of prostate cancer cells. During androgen-dependent growth of prostate cells, androgen-AR signaling leads to the accumulation of rRNA. However, the mechanism by which AR regulates rRNA transcription is unknown. Here, investigation revealed that angiogenin (ANG), a member of the secreted ribonuclease superfamily, is upregulated in prostate cancer and mediates androgen-stimulated rRNA transcription in prostate cancer cells. Upon androgen stimulation, ANG undergoes nuclear translocation in androgen-dependent prostate cancer cells, where it binds to the rDNA promoter and stimulates rRNA transcription. ANG antagonists inhibit androgen-induced rRNA transcription and cell proliferation in androgen-dependent prostate cancer cells. Interestingly, ANG also mediates androgen-independent rRNA transcription through a mechanism that involves its constitutive nuclear translocation in androgen-insensitive prostate cancer cells, resulting in a constant rRNA overproduction and thereby stimulating cell proliferation. Critically, ANG overexpression in androgen-dependent prostate cancer cells enables castration-resistant growth of otherwise androgen-dependent cells. Thus, ANG-stimulated rRNA transcription is not only an essential component for androgen-dependent growth of prostate cancer but also contributes to the transition of prostate cancer from androgen-dependent to castration-resistant growth status. IMPLICATIONS The ability of angiogenin to regulate rRNA transcription and prostate cancer growth makes it a viable target for therapy.
Collapse
Affiliation(s)
- Shuping Li
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Thiyagarajan N, Acharya KR. Crystal structure of human angiogenin with an engineered loop exhibits conformational flexibility at the functional regions of the molecule. FEBS Open Bio 2012; 3:65-70. [PMID: 23772376 PMCID: PMC3668512 DOI: 10.1016/j.fob.2012.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 11/18/2022] Open
Abstract
Human angiogenin (ANG) is an angiogenic molecule and a ribonucleolytic enzyme with significant amino acid sequence identity to pancreatic RNase A, plays a critical role in the establishment and growth of tumours. An association between ANG and cancer has been observed in more than 25 clinical studies to date. In addition, ANG has now been shown to be implicated in Amyotrophic Lateral Sclerosis (ALS) and Parkinson's Disease (PD). Structural and biochemical studies so far have showed several distinguishing features of ANG molecule compared to RNase A and provided details of the putative cell binding site, active site, nuclear translocation sequence and the roles of residues in binding and cleaving RNA. A key finding elucidated from the structural study on ANG is the presence of a 'blocked' C-terminus (part of the active site apparatus) compared with RNase A. Here we report the crystal structure of ANG with an 'engineered-loop' from eosinophil derived neurotoxin (a homologue of ANG) which has resulted with local perturbations (conformational flexibility) at the cell binding site and at the C-terminus of the molecule. This experimental observation will now provide a new avenue to design compounds (potent inhibitors) through a structure guided drug design route.
Collapse
Affiliation(s)
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
19
|
Iyer S, Holloway DE, Acharya KR. Crystal structures of murine angiogenin-2 and -3-probing 'structure--function' relationships amongst angiogenin homologues. FEBS J 2012; 280:302-18. [PMID: 23170778 PMCID: PMC3572582 DOI: 10.1111/febs.12071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 11/26/2022]
Abstract
Angiogenin (Ang) is a potent inducer of neovascularization. Point mutations in human Ang have been linked to cancer progression and two neurodegenerative diseases: amyotrophic lateral sclerosis and Parkinson's disease. Intensive structural and functional analyses of Ang have been paramount in assigning functions to this novel homologue of bovine pancreatic RNase A. However, inhibitor-binding studies with crystalline Ang (for designing potential anti-cancer drugs) have been hampered as a result of the inaccessibility of the active site. Experiments with the murine homologues of Ang have not only overcome the obvious practical limitations encountered when studying the role of a human protein in healthy individuals, but also the crystal structures of murine angiogenins (mAng and mAng-4) have revealed themselves to have greater potential for the visualization of small-molecule inhibitor binding at the active site. In the present study, we report the crystal structures of two more murine Ang paralogues, mAng-2 and mAng-3, at 1.6 and 1.8 Å resolution, respectively. These constitute the first crystal structures of an Ang with a zinc ion bound at the active site and provide some insight into the possible mode of inhibition of the ribonucleolytic activity of the enzyme by these divalent cations. Both structures show that the residues forming the putative P1, B1 and B2 subsites occupy positions similar to their counterparts in human Ang and are likely to have conserved roles. However, a less obtrusive conformation of the C-terminal segment in mAng-3 and the presence of a sulfate ion in the B1 subsite of mAng-2 suggest that these proteins have the potential to be used for inhibitor-binding studies. We also discuss the biological relevance of the structural similarities and differences between the different Ang homologues.
Collapse
Affiliation(s)
- Shalini Iyer
- Department of Biology and Biochemistry, University of BathUK
| | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of BathUK
- Correspondence K. Ravi Acharya, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK Fax: +44 (0) 1225 386 779 Tel: +44 (0) 1225 386 238 E-mail:
| |
Collapse
|
20
|
Li S, Hu GF. Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 2012; 227:2822-6. [PMID: 22021078 PMCID: PMC3271170 DOI: 10.1002/jcp.23051] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Angiogenin (ANG), also known as ribonuclease (RNASE) 5, is a member of the vertebrate-specific, secreted RNASE superfamily. ANG was originally identified as a tumor angiogenic factor, but its biological activity has been extended from inducing angiogenesis to stimulating cell proliferation and more recently, to promoting cell survival. Under growth conditions, ANG is translocated to nucleus where it accumulates in nucleolus and stimulates ribosomal RNA (rRNA) transcription, thus facilitating cell growth and proliferation. Under stress conditions, ANG is accumulated in cytoplasmic compartments and modulates the production of tiRNA, a novel class of small RNA that is derived from tRNA and is induced by stress. tiRNA suppress global protein translation by inhibiting both cap-dependent and -independent translation including that mediated by weak IRESes. However, strong IRES-mediated translation, a mechanism often used by genes involved in pro-survival and anti-apoptosis, is not affected. Thus, ANG-mediated tiRNA reprogram protein translation, save anabolic energy, and promote cell survival. This recently uncovered function of ANG presents a novel mechanism of action in regulating cell growth and survival.
Collapse
Affiliation(s)
- Shuping Li
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Fu Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
- Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| |
Collapse
|
21
|
Jones ML, Ewing CM, Isaacsa WB, Getzenberg RH. Prostate cancer-derived angiogenin stimulates the invasion of prostate fibroblasts. J Cell Mol Med 2012; 16:193-201. [PMID: 21352472 PMCID: PMC3823105 DOI: 10.1111/j.1582-4934.2011.01283.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prostate fibroblasts promote prostate cancer progression by secreting factors that enhance tumour growth and induce the migration and invasion of prostate cancer cells. Considering the role of fibroblasts in cancer progression, we hypothesized that prostate cancer cells recruit these cells to their vicinity, where they are most directly available to influence cancer cell behaviour. To test this hypothesis, we performed modified Boyden chamber assays assessing the migration and collagen I invasion of normal primary prostate fibroblasts (PrSCs) and prostate cancer-associated fibroblasts (PCAFs) in response to media conditioned by the metastatic prostate cancer cell lines PC-3, LNCaP and DU145. During 4-hr incubations, PrSCs and PCAFs migrated and invaded in response to the conditioned media. To identify candidate proteins in the conditioned media that produced these effects, we performed cytokine antibody arrays and detected angiogenin in all three media. Angiogenin-blocked PC-3-conditioned medium, obtained using an anti-angiogenin polyclonal antibody or angiogenin siRNA, significantly reduced PC-3-induced PrSC and PCAF collagen I invasion. Furthermore, angiogenin alone at 1, 2 and 5 ng/ml significantly stimulated PCAF collagen I invasion. These results suggest that PC-3-derived angiogenin stimulates the invasion of normal prostate fibroblasts and PCAFs and is sufficient for invasion of the latter. Because prostate fibroblasts play key roles in prostate cancer progression, targeting their invasion using an anti-angiogenin-based therapy may be a strategy for preventing or treating advanced prostate cancer.
Collapse
Affiliation(s)
- Michelle L Jones
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
22
|
Weng C, Dong H, Chen G, Zhai Y, Bai R, Hu H, Lu L, Xu Z. miR-409-3p inhibits HT1080 cell proliferation, vascularization and metastasis by targeting angiogenin. Cancer Lett 2012; 323:171-9. [PMID: 22531314 DOI: 10.1016/j.canlet.2012.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/21/2012] [Accepted: 04/15/2012] [Indexed: 01/19/2023]
Abstract
Although the expression of angiogenin (ANG), an angiogenic and tumorigenic factor, is elevated in various types of cancers, its regulation mechanism remains unclear. In the present study, in silico search predicted that miR-409-3p targeted to the 3' untranslated region (3'UTR) of the ANG mRNA. Overexpression of miR-409-3p in fibrosarcoma HT1080 cells resulted in decreased steady-state level of ANG transcript and ANG production which were achieved through direct binding of this miRNA to the ANG 3'UTR. The suppressions of miR-409-3p to rRNA transcription, cell proliferation and vasculogenic mimicry could be partially restored by overexpression of ANG with a mutated binding site of miR-409-3p within the ANG 3'UTR. Ectopic expression of miR-409-3p in transplanted HT1080 cells led to the retardation of tumor growth, vascularization and lung metastasis in mouse tumor xenografts. In these xenografts tissues, the expression of miR-409-3p displayed an inverse correlation with ANG, which was also detected in human fibrosarcoma samples. In addition, the suppression effects of miR-409-3p on cell proliferation and angiogenesis in vitro were also found in human umbilical vein endothelial cells. Taken together, these data demonstrate that miR-409-3p inhibits tumor growth, vascularization and metastasis through down-regulating ANG expression.
Collapse
Affiliation(s)
- Chunhua Weng
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Eidem TM, Roux CM, Dunman PM. RNA decay: a novel therapeutic target in bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:443-54. [PMID: 22374855 DOI: 10.1002/wrna.1110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The need for novel antibiotics is greater now than perhaps any time since the pre-antibiotic era. Indeed, the recent collapse of most pharmaceutical antibacterial groups, combined with the emergence of hypervirulent and pan-antibiotic-resistant bacteria have, in effect, created a 'perfect storm' that has severely compromised infection treatment options and led to dramatic increases in the incidence and severity of bacterial infections. To put simply, it is imperative that we develop new classes of antibiotics for the therapeutic intervention of bacterial infections. In that regard, RNA degradation is an essential biological process that has not been exploited for antibiotic development. Herein we discuss the factors that govern bacterial RNA degradation, highlight members of this machinery that represent attractive antimicrobial drug development targets and describe the use of high-throughput screening as a means of developing antimicrobials that target these enzymes. Such agents would represent first-in-class antibiotics that would be less apt to inactivation by currently encountered enzymatic antibiotic-resistance determinants.
Collapse
Affiliation(s)
- Tess M Eidem
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
24
|
Li S, Ibaragi S, Hu GF. Angiogenin as a molecular target for the treatment of prostate cancer. CURRENT CANCER THERAPY REVIEWS 2011; 7:83-90. [PMID: 21743803 DOI: 10.2174/1573394711107020083] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiogenin (ANG), a 14 kDa angiogenic ribonuclease, is upregulated in human prostate cancers, especially in hormone refractory diseases, and is the highest upregulated gene in Akt-driven prostate intraepithelial neoplasia (PIN) in mice. ANG has been shown to undergo nuclear translocation in both prostate cancer cells and cancer-associated endothelial cells where it binds to the promoter region of ribosomal DNA (rDNA) and stimulates ribosomal RNA (rRNA) transcription. ANG thus plays an essential role in prostate cancer progression by stimulating both cancer cell proliferation and tumor angiogenesis. A variety of ANG antagonists, including its antisense oligonucleotide, siRNA, soluble binding proteins, monoclonal antibody, enzymatic inhibitors, and nuclear translocation blockers, have all been shown to inhibit prostate cancer in various animal models. Accumulating evidence indicates that ANG is a molecular target for prostate cancer drug development.
Collapse
Affiliation(s)
- Shuping Li
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Chen L, Hu GF. Angiogenin-mediated ribosomal RNA transcription as a molecular target for treatment of head and neck squamous cell carcinoma. Oral Oncol 2010; 46:648-53. [PMID: 20656548 PMCID: PMC2932836 DOI: 10.1016/j.oraloncology.2010.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is the eighth most common disease, affecting approximately 640,000 patients worldwide each year. Despite recent advances in surgery, radiotherapy, and chemotherapy, the overall cure for patients with HNSCC has remained at less than 50% for many decades. Patients with recurrent and metastatic disease have a median survival of only 6-10 months. Systemic chemotherapy is the only treatment option for those patients. New treatment options are thus desperately needed to supplement, complement, or replace currently available therapies. New agents that target molecular and cellular pathways of the disease pathogenesis of HNSCC are promising candidates. One class of these new agents is angiogenesis inhibitors that have been proven effective in the treatment of advanced colorectal, breast, and non-small cell lung cancers. Similar to other solid tumors, angiogenesis plays an important role in the pathogenesis of HNSCC. A number of angiogenic factors including vascular endothelial growth factor (VEGF) and angiogenin (ANG) have been shown to be significantly upregulated in HNSCC. Among them, ANG is unique in which it is a ribonuclease that regulates ribosomal RNA (rRNA) transcription. ANG-stimulated rRNA transcription has been shown to be a general requirement for angiogenesis induced by other angiogenic factors. ANG inhibitors have been demonstrated to inhibit angiogenesis and tumor growth induced not only by ANG but also by other angiogenic factors. As the role of ANG in HNSCC is being unveiled, the therapeutic potential of ANG inhibitors in HNSCC is expected.
Collapse
Affiliation(s)
- Lili Chen
- Department of Stomatology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guo-fu Hu
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
26
|
Dickson KA, Kang DK, Kwon YS, Kim JC, Leland PA, Kim BM, Chang SI, Raines RT. Ribonuclease inhibitor regulates neovascularization by human angiogenin. Biochemistry 2009; 48:3804-6. [PMID: 19354288 DOI: 10.1021/bi9005094] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human angiogenin (ANG) is a homologue of bovine pancreatic ribonuclease (RNase A) that induces neovascularization. ANG is the only human angiogenic factor that possesses ribonucleolytic activity. To stimulate blood vessel growth, ANG must be transported to the nucleus and must retain its catalytic activity. Like other mammalian homologues of RNase A, ANG forms a femtomolar complex with the cytosolic ribonuclease inhibitor protein (RI). To determine whether RI affects ANG-induced angiogenesis, we created G85R/G86R ANG, which possesses 10(6)-fold lower affinity for RI but retains wild-type ribonucleolytic activity. The neovascularization of rabbit corneas by G85R/G86R ANG was more pronounced and more rapid than by wild-type ANG. These findings provide the first direct evidence that RI serves to regulate the biological activity of ANG in vivo.
Collapse
Affiliation(s)
- Kimberly A Dickson
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Angiogenin is involved in lung adenocarcinoma cell proliferation and angiogenesis. Lung Cancer 2009; 66:28-36. [PMID: 19423182 DOI: 10.1016/j.lungcan.2008.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/28/2008] [Accepted: 12/15/2008] [Indexed: 11/20/2022]
Abstract
Angiogenin, a basic heparin-binding protein, has been shown to play a key role in tumor growth and angiogenesis. It was found in the present study that 67 out of 100 lung adenocarcinomas exhibited angiogenin nuclear expression, and this nuclear expression correlated with vascular and pleural invasion as well as positive lymph node metastasis. To down-regulate angiogenin expression, we constructed an adenoviral-vector based short hairpin RNA system. ELISA, real-time qPCR and immunocytochemical staining demonstrated that adenoviral-vector based siRNA decreased angiogenin mRNA level and protein secretion, and inhibited angiogenin nuclear expression in A549 cells, resulting in marked inhibition on ribosomal RNA transcription, in vitro cell proliferation, soft agar colony formation, and xenograft tumor proliferation and angiogenesis. Experiments with neomycin further confirmed that angiogenin nuclear expression played an important role in tumor growth. Based on these data, we concluded that angiogenin nuclear expression played a dual role in the growth of lung adenocarcinoma with respect to cancer cell proliferation and angiogenesis.
Collapse
|
28
|
Ibaragi S, Yoshioka N, Li S, Hu MG, Hirukawa S, Sadow PM, Hu GF. Neamine inhibits prostate cancer growth by suppressing angiogenin-mediated rRNA transcription. Clin Cancer Res 2009; 15:1981-8. [PMID: 19276260 DOI: 10.1158/1078-0432.ccr-08-2593] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Angiogenin (ANG) undergoes nuclear translocation and stimulates rRNA transcription in both prostate cancer cells and endothelial cells. The purpose of this study is to assess the antitumor activity of neamine, a nontoxic degradation product of neomycin that blocks nuclear translocation of ANG. EXPERIMENTAL DESIGN The anti-prostate cancer activity of neamine was first evaluated in a xenograft animal model. It was then examined in the murine prostate-restricted AKT transgenic mice that develop prostate intraepithelial neoplasia (PIN) owing to AKT transgene overexpression. RESULTS Neamine inhibits xenograft growth of PC-3 human prostate cancer cells in athymic mice. It blocks nuclear translocation of ANG and inhibits rRNA transcription, cell proliferation, and angiogenesis. Neamine also prevents AKT-induced PIN formation as well as reverses fully developed PIN in murine prostate-restricted AKT mice, accompanied by a decrease in rRNA synthesis, cell proliferation, and angiogenesis and an increase in prostate epithelial cell apoptosis. CONCLUSION We confirmed that ANG is a molecular target for cancer drug development and that blocking nuclear translocation of ANG is an effective means to inhibit its activity. Our results also suggested that neamine is a lead compound for further preclinical evaluation.
Collapse
Affiliation(s)
- Soichiro Ibaragi
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang H, Gao X, Weng C, Xu Z. Interaction between angiogenin and fibulin 1: evidence and implication. Acta Biochim Biophys Sin (Shanghai) 2008; 40:375-80. [PMID: 18465022 DOI: 10.1111/j.1745-7270.2008.00420.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Angiogenin is an angiogenic factor involved in tumorigenesis. However, the mechanism of angiogenin's action remains elusive. In the present study, we identified fibulin 1, an extracellular matrix and plasma glycoprotein, as an angiogenin-interacting molecule by yeast two-hybrid screening. This interaction was further confirmed by two different approaches. First, fibulin 1 was co-immunoprecipitated with angiogenin by anti-angiogenin monoclonal antibody in vitro, suggesting angiogenin binds with fibulin 1 directly. Then fluorescence resonance energy transfer analysis showed that fibulin 1 interacted with angiogenin in COS-7 cells, showing that the binding could occur in a cellular context. As fibulin 1 plays an important role in cell proliferation, migration, adhesion, and stabilizes new-forming blood vessel wall, the interaction between fibulin 1 and angiogenin might underline one possible mechanism of angiogenin in angiogenesis and/or tumorigenesis.
Collapse
Affiliation(s)
- Hui Zhang
- Research Center for Environmental Genomics, and Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou.
| | | | | | | |
Collapse
|
30
|
Osorio DS, Antunes A, Ramos MJ. Structural and functional implications of positive selection at the primate angiogenin gene. BMC Evol Biol 2007; 7:167. [PMID: 17883850 PMCID: PMC2194721 DOI: 10.1186/1471-2148-7-167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 09/20/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Angiogenesis, the formation of new blood vessels, is a primordial process in development and its dysregulation has a central role in the pathogenesis of many diseases. Angiogenin (ANG), a peculiar member of the RNase A superfamily, is a potent inducer of angiogenesis involved in many different types of cancer, amyotrophic lateral sclerosis and also with a possible role in the innate immune defense. The evolutionary path of this family has been a highly dynamic one, where positive selection has played a strong role. In this work we used a combined gene and protein level approach to determine the main sites under diversifying selection on the primate ANG gene and analyze its structural and functional implications. RESULTS We obtained evidence for positive selection in the primate ANG gene. Site specific analysis pointed out 15 sites under positive selection, most of which also exhibited drastic changes in amino acid properties. The mapping of these sites in the ANG 3D-structure described five clusters, four of which were located in functional regions: two in the active site region, one in the nucleolar location signal and one in the cell-binding site. Eight of the 15 sites under selection in the primate ANG gene were highly or moderately conserved in the RNase A family, suggesting a directed event and not a simple consequence of local structural or functional permissiveness. Moreover, 11 sites were exposed to the surface of the protein indicating that they may influence the interactions performed by ANG. CONCLUSION Using a maximum likelihood gene level analysis we identified 15 sites under positive selection in the primate ANG genes, that were further corroborated through a protein level analysis of radical changes in amino acid properties. These sites mapped onto the main functional regions of the ANG protein. The fact that evidence for positive selection is present in all ANG regions required for angiogenesis may be a good indication that angiogenesis is the process under selection. However, other possibilities to be considered arise from the possible involvement of ANG in innate immunity and the potential influence or co-evolution with its interacting proteins and ligands.
Collapse
Affiliation(s)
- Daniel S Osorio
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
- INSERM UMR S 787-Groupe Myologie, Faculté de Médecine – Pitié-Salpétrière, UPMC Paris VI, 105 bd. de l'Hôpital, 75634, Paris Cedex 13, France
| | - Agostinho Antunes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
- CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal
| | - Maria J Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
31
|
Kawada M, Inoue H, Arakawa M, Takamoto K, Masuda T, Ikeda D. Highly tumorigenic human androgen receptor-positive prostate cancer cells overexpress angiogenin. Cancer Sci 2007; 98:350-6. [PMID: 17270024 PMCID: PMC11159170 DOI: 10.1111/j.1349-7006.2007.00407.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have recently established a highly tumorigenic cell line, LNCaP-CR, derived from human androgen-dependent prostate cancer LNCaP cells. In the present study, we examined the genes responsible for the high tumorigenicity of LNCaP-CR cells. The cDNA microarray analysis and protein array of secreted factors indicated angiogenin (ANG), an angiogenic factor, as a candidate gene. Reverse transcription-polymerase chain reaction and immunoassay confirmed that LNCaP-CR cells expressed high levels of ANG but not vascular endothelial growth factor (VEGF), compared with the parental LNCaP cells. We also proved that another tumorigenic androgen receptor-positive prostate cancer cell line, 22Rv1, secretes higher levels of ANG than VEGF. To assess the contribution of ANG to the highly tumorigenic phenotype, we transfected the ANG gene into LNCaP cells in order to overexpress ANG, and also transfected ANG small interfering RNA-expressing constructs into LNCaP-CR cells to downregulate ANG. Overexpression of ANG in LNCaP cells did not affect their growth in vitro, but it significantly enhanced tumorigenicity and angiogenesis in vivo. In contrast, knockdown of ANG expression in LNCaP-CR cells also did not affect the growth in vitro, but it led to a significant decrease in tumorigenicity and angiogenesis. Taken together, ANG is one of the genes responsible for the high tumorigenicity of LNCaP-CR cells. Thus, our results support the idea that ANG is an attractive target for cancer therapy and show that LNCaP-CR cells are useful for studying ANG action and experimental therapeutic approaches targeting ANG.
Collapse
Affiliation(s)
- Manabu Kawada
- Drug Development Unit, Numazu Bio-Medical Research Institute, Microbial Chemistry Research Center, 18-24 Miyamoto, Numazu-shi, Shizuoka 410-0301, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Crabtree B, Holloway DE, Baker MD, Acharya KR, Subramanian V. Biological and structural features of murine angiogenin-4, an angiogenic protein. Biochemistry 2007; 46:2431-43. [PMID: 17279775 DOI: 10.1021/bi062158n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Murine angiogenin-4 (mAng-4) is a member of the pancreatic ribonuclease superfamily that is expressed in some endodermally derived organs. We now show that mAng-4 is angiogenic using a thoracic aorta assay never before applied to the angiogenins. mAng-4, human angiogenin (hAng), and murine angiogenin-1 (mAng-1) stimulate the proliferation of IGR1 melanoma cells but do not stimulate the proliferation or migration of bovine corneal endothelial cells or primary mouse embryonic fibroblasts. In addition, we report the 3-D structure of mAng-4 at 2.02-A resolution. The structure shows that the residues forming the putative B1, P1, and B2 RNA-binding subsites occupy positions similar to their hAng counterparts. The B1 subsite is obstructed by Glu115 and Ile118. The obstruction is stabilized by a novel salt bridge between the C-terminal carboxyl group and the side chain of Arg99. Through mutational studies, we identify residues critical to the angiogenic function of mAng-4. The effect of H12A and H112A mutations in the catalytic site indicates that ribonucleolytic activity is essential to angiogenesis. The consequences of a nearby E115A mutation are consistent with a significant role for Glu115 in the attenuation of enzymatic activity but also suggest that sufficient suppression of catalysis is necessary for angiogenesis. The effect of an R32A mutation in the putative nuclear localization sequence indicates that this residue is crucial for angiogenesis. In the putative cell-binding segment, the replacement of Lys59 with Asn (its counterpart at position 61 of hAng) does not abrogate enzymatic activity but abolishes angiogenic activity, the reason for which is unclear.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aorta, Thoracic/growth & development
- Base Sequence
- Catalysis
- Cattle
- Cell Line
- Crystallography, X-Ray
- DNA Primers
- Electrophoresis, Polyacrylamide Gel
- Female
- Mice
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Neovascularization, Physiologic
- Nuclear Localization Signals
- Protein Binding
- Protein Conformation
- Ribonuclease, Pancreatic/chemistry
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Benedict Crabtree
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Abstract
Prostate cancer is the second leading cause of cancer mortality in American men and the single most diagnosed cancer in men. Despite advances in early detection and conventional treatment strategies, prostate cancer progresses and becomes resistant to treatment. Because tumor growth and establishment of metastases are dependent on angiogenesis, interest in the development of anti-angiogenesis therapies has grown. Preclinical studies and early clinical evaluation show promise in the adjunctive use of anti-angiogenesis to overcome the limitations of current therapeutic approaches. In this review, we outline the basic science principles of angiogenesis and their application in the development of anticancer therapies.
Collapse
Affiliation(s)
- Juan Antonio Jiménez
- Urology Research Laboratory, Departments of Urology, Microbiology and Immunology, Walther Oncology Center, Indiana University Medical Center, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
34
|
Yoshioka N, Wang L, Kishimoto K, Tsuji T, Hu GF. A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proc Natl Acad Sci U S A 2006; 103:14519-24. [PMID: 16971483 PMCID: PMC1599992 DOI: 10.1073/pnas.0606708103] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human angiogenin is progressively up-regulated in the prostate epithelial cells during the development of prostate cancer from prostate intraepithelial neoplasia (PIN) to invasive adenocarcinoma. Mouse angiogenin is the most up-regulated gene in AKT-induced PIN in prostate-restricted AKT transgenic mice. These results prompted us to study the role that angiogenin plays in prostate cancer. Here, we report that, in addition to its well established role in mediating angiogenesis, angiogenin also directly stimulates prostate cancer cell proliferation. Angiogenin undergoes nuclear translocation in PC-3 human prostate cancer cells grown both in vitro and in mice. Thus, knocking down angiogenin expression in PC-3 human prostate adenocarcinoma cells inhibits ribosomal RNA transcription, in vitro cell proliferation, colony formation in soft agar, and xenograft growth in athymic mice. Blockade of nuclear translocation of angiogenin by the aminoglycoside antibiotic neomycin inhibited PC-3 cell tumor growth in athymic mice and was accompanied by a decrease in both cancer cell proliferation and angiogenesis. These results suggest that angiogenin has a dual effect, angiogenesis and cancer cell proliferation, in prostate cancer and may serve as a molecular target for drug development. Blocking nuclear translocation of angiogenin could have a combined benefit of antiangiogenesis and chemotherapy in treating prostate cancer.
Collapse
Affiliation(s)
- Norie Yoshioka
- Center for Biochemical and Biophysical Sciences and Medicine, Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Li Wang
- Center for Biochemical and Biophysical Sciences and Medicine, Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Koji Kishimoto
- Center for Biochemical and Biophysical Sciences and Medicine, Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Takanori Tsuji
- Center for Biochemical and Biophysical Sciences and Medicine, Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Guo-fu Hu
- Center for Biochemical and Biophysical Sciences and Medicine, Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Tello-Montoliu A, Patel JV, Lip GYH. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 2006; 4:1864-74. [PMID: 16961595 DOI: 10.1111/j.1538-7836.2006.01995.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Angiogenin is a member of the ribonuclease (RNase) superfamily: enzymes of innate substrate specificity, but divergent functional capacities. Angiogenin is a normal constituent of the circulation and contained in a vasculature that rarely undergoes proliferation, but in some physiological and pathological conditions its levels increase in blood, promoting neovascularization. Hence, angiogenesis is a common pathophysiological attribute of angiogenin. In malignant disease, the most studied pathological state in regard to angionenin, abnormally high levels are seen, which may be of prognostic significance. Angiogenin has also been studied in other non-malignant pathological states. The aim of this review article is to provide an overview of the biochemistry and physiology of angiogenin, specifically in relation to the human pathological states where angiogenin has been implicated and finally, its potential clinical applications.
Collapse
Affiliation(s)
- A Tello-Montoliu
- Haemostasis, Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, UK
| | | | | |
Collapse
|
36
|
Desai P, Jiménez JA, Kao C, Gardner TA. Future innovations in treating advanced prostate cancer. Urol Clin North Am 2006; 33:247-72, viii. [PMID: 16631463 DOI: 10.1016/j.ucl.2005.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many novel techniques for the treatment of prostate cancer are being aggressively investigated because prostate cancer is prevalent in the population and the current treatments for advanced prostate cancer are woefully inadequate. Although the current treatment options prolong life, most patients will eventually experience local recurrence or develop advanced disease. A greater understanding of the molecular events underlying cancer has enabled investigators to explore gene therapy approaches that are targeted against these molecular events. This article discusses antiangiogenic therapy, immune based therapy, and gene therapy. Any of these experimental modalities could be developed to replace hormone ablation therapy which causes unpleasant side effects, decreases the quality of life of the patient, and only temporarily controls the disease.
Collapse
Affiliation(s)
- Pratik Desai
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
37
|
Kishikawa H, Wang K, Adelstein SJ, Kassis AI. Inhibitory and stimulatory bystander effects are differentially induced by Iodine-125 and Iodine-123. Radiat Res 2006; 165:688-94. [PMID: 16802869 DOI: 10.1667/rr3567.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The bystander effect, originating from cells irradiated in vitro, describes responses of surrounding cells not targeted by the radiation. Previously we demonstrated that the subcutaneous injection into nude mice of human adenocarcinoma LS174T cells lethally irradiated by Auger electrons from the decay of DNA-incorporated (125)I inhibits growth of co-injected LS174T cells (inhibitory bystander effect; Proc. Natl. Acad. Sci. USA 99, 13765-13770, 2002). We have repeated these studies using cells exposed to lethal doses of (123)I, an Auger electron emitter whose emission spectrum is identical to that of (125)I, and report herein that the decay of (123)I within tumor cell DNA stimulates the proliferation of neighboring unlabeled tumor cells growing subcutaneously in nude mice (stimulatory bystander effect). Similar inhibitory bystander effects ((125)I) and stimulatory bystander effects ((123)I) are obtained in vitro. Moreover, supernatants from cultures with (125)I-labeled cells are positive for tissue inhibitors of metalloproteinases (TIMP1 and TIMP2), and those from cultures with (123)I-labeled cells are positive for angiogenin. These findings call for the re-evaluation of current dosimetric approaches for the estimation of dose-response relationships in individuals after radiopharmaceutical administration or radiocontamination and demonstrate a need to adjust all "calculated" dose estimates by a dose modification factor (DMF), a radionuclide-specific constant that factors in hitherto not-so-well recognized biophysical processes.
Collapse
Affiliation(s)
- Hiroko Kishikawa
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
38
|
Song J, Wang J, Yang J, Jiang C, Shen W, Wang L. Influence of angiogenin on the growth of A375 human melanoma cells and the expression of basic fibroblast growth factor. Melanoma Res 2006; 16:119-26. [PMID: 16567967 DOI: 10.1097/01.cmr.0000215029.62199.4c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Angiogenin was isolated as a tumor angiogenic factor solely on the basis of its angiogenic activity. Its expression is essential for melanoma progression and metastasis. Many studies have mainly focused on how it induces angiogenesis, which allows further melanoma growth and metastasis. Here, we investigated the effects of angiogenin on melanoma cell growth and studied its influence on the expression and function of the basic fibroblast growth factor. We transfected the angiogenin gene in the sense and antisense orientation into A375 cells, and obtained stable angiogenin under-expressing and over-expressing transfectants. We found that in the angiogenin antisense transfectants, the cell proliferation was decreased and the basic fibroblast growth factor-induced cell proliferation was inhibited, but the expression of basic fibroblast growth factor was increased. In contrast, in the angiogenin sense transfectants, the cell proliferation was increased, and the basic fibroblast growth factor-induced cell proliferation was also increased. The expression of basic fibroblast growth factor, however, was decreased. In conclusion, we demonstrated that, besides its angiogenic activity, angiogenin also directly contributes to A375 cell proliferation and is required for the basic fibroblast growth factor to induce cell proliferation. We also demonstrated that the endogenous angiogenin expression levels affect the expression of basic fibroblast growth factor in A375 cells. By targeting angiogenin, therefore, one may find a potential therapeutic approach to human malignant melanoma.
Collapse
Affiliation(s)
- Jinna Song
- Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Katona TM, Neubauer BL, Iversen PW, Zhang S, Baldridge LA, Cheng L. Elevated expression of angiogenin in prostate cancer and its precursors. Clin Cancer Res 2006; 11:8358-63. [PMID: 16322296 DOI: 10.1158/1078-0432.ccr-05-0962] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Angiogenin is a polypeptide involved in the formation and establishment of new blood vessels necessary for growth and metastasis of numerous malignant neoplasms, including prostatic adenocarcinoma. Antiangiogenin therapy inhibits the establishment, growth, and metastasis of prostatic adenocarcinoma in animal studies. In this study, we have investigated the expression of angiogenin in prostatic adenocarcinoma, high-grade prostatic intraepithelial neoplasia, and adjacent benign prostatic epithelium in a large cohort of prostatectomy specimens. METHODS We have studied the expression of angiogenin by immunohistochemistry in prostatic adenocarcinoma, high-grade prostatic intraepithelial neoplasia, and adjacent benign prostatic tissue in 107 human total prostatectomy specimens. RESULTS The percentage of cells staining positively for angiogenin in benign prostatic glandular epithelium (mean = 17%) was significantly less than for high-grade prostatic intraepithelial neoplasia (mean = 58%, P < 0.001) and prostatic adenocarcinoma (mean = 60%, P < 0.001). Compared with adjacent benign prostatic epithelium, the staining intensity was significantly greater in high-grade prostatic intraepithelial neoplasia (P < 0.001) and prostatic adenocarcinoma (P < 0.001). Furthermore, staining intensity has significantly stronger in prostatic adenocarcinoma versus high-grade prostatic intraepithelial neoplasia (P = 0.0023). However, there was no correlation of angiogenin expression with various clinical and pathologic variables examined, including age at surgery, Gleason scores, pathologic stage, tumor extent, angiolymphatic invasion, extraprostatic extension, seminal vesical invasion, lymph node metastasis, surgical margin status, presence of prostatic intraepithelial neoplasia, and perineural invasion. CONCLUSION Angiogenin expression in prostatic tissue increases as prostatic epithelial cells evolve from a benign to an invasive phenotype. The increasing expression of prostatic adenocarcinoma in the progression from benign prostate to high-grade prostatic intraepithelial neoplasia and ultimately to prostatic adenocarcinoma are consistent with previous studies showing the influential role that angiogenin plays in the growth, invasion, and metastasis of prostatic adenocarcinoma and many other malignant tumors.
Collapse
Affiliation(s)
- Terrence M Katona
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine and Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hirukawa S, Olson KA, Tsuji T, Hu GF. Neamine inhibits xenografic human tumor growth and angiogenesis in athymic mice. Clin Cancer Res 2006; 11:8745-52. [PMID: 16361562 DOI: 10.1158/1078-0432.ccr-05-1495] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We have previously shown that the aminoglycoside antibiotic neomycin blocks the nuclear translocation of angiogenin and inhibits its angiogenic activity. However, neomycin has not been considered as a favorable drug candidate for clinical development because of its known nephrotoxicity and ototoxicity. The aim of this study is to determine whether neamine, a nontoxic derivative of neomycin, possesses antitumor activity. EXPERIMENTAL DESIGN The effect of neamine on the nuclear translocation of angiogenin was examined by means of immunofluorescence and Western blotting. The antitumor activity of neamine was determined with three different animal models. RESULTS Neamine effectively blocked the nuclear translocation of angiogenin in endothelial cells and inhibited angiogenin-induced cell proliferation. It inhibited the establishment of human tumor xenografts in athymic mice in both ectopic and orthotopic tumor models. It also inhibited the progression of established human tumor transplants, whereas the structurally related antibiotic paromomycin had no effect. Immunohistochemical staining showed that both angiogenesis and cancer cell proliferation are inhibited by neamine. CONCLUSION These results suggest that the nontoxic aminoglycoside antibiotic neamine is an effective inhibitor of nuclear translocation of angiogenin and may serve as an inhibitor for angiogenin-induced angiogenesis and cancer progression.
Collapse
Affiliation(s)
- Saori Hirukawa
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
41
|
Holloway DE, Chavali GB, Hares MC, Subramanian V, Acharya KR. Structure of murine angiogenin: features of the substrate- and cell-binding regions and prospects for inhibitor-binding studies. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2005; 61:1568-78. [PMID: 16301790 PMCID: PMC1780170 DOI: 10.1107/s0907444905029616] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 09/18/2005] [Indexed: 11/10/2022]
Abstract
Angiogenin is an unusual member of the pancreatic ribonuclease superfamily that induces blood-vessel formation and is a promising anticancer target. The three-dimensional structure of murine angiogenin (mAng) has been determined by X-ray crystallography. Two structures are presented: one is a complex with sulfate ions (1.5 Angstroms resolution) and the other a complex with phosphate ions (1.6 Angstroms resolution). Residues forming the putative B(1), P(1) and B(2) subsites occupy positions similar to their hAng counterparts and are likely to play similar roles. The anions occupy the P(1) subsite, sulfate binding conventionally and phosphate adopting two orientations, one of which is novel. The B(1) subsite is obstructed by Glu116 and Phe119, with the latter assuming a less invasive position than its hAng counterpart. Hydrophobic interactions between the C-terminal segment and the main body of the protein are more extensive than in hAng and may underly the lower enzymatic activity of the murine protein. Elsewhere, the structure of the H3-B2 loop supports the view that hAng Asn61 interacts directly with cell-surface molecules and does not merely stabilize adjacent regions of the hAng structure. mAng crystals appear to offer small-molecule inhibitors a clear route to the active site and may even withstand a reorientation of the C-terminal segment that provides access to the cryptic B(1) subsite. These features represent considerable advantages over crystalline hAng and bAng.
Collapse
|
42
|
Hu H, Gao X, Sun Y, Zhou J, Yang M, Xu Z. Alpha-actinin-2, a cytoskeletal protein, binds to angiogenin. Biochem Biophys Res Commun 2005; 329:661-7. [PMID: 15737636 DOI: 10.1016/j.bbrc.2005.01.158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Indexed: 12/20/2022]
Abstract
Angiogenin is an angiogenic factor which is involved in tumorigenesis. However, no particular intracellular protein is known to interact directly with angiogenin. In the present study, we reported the identification of alpha-actinin-2, an actin-crosslinking protein, as a potential angiogenin-interacting partner by yeast two-hybrid screening. This interaction was confirmed by different approaches. First, angiogenin was pulled down together with His-tagged alpha-actinin-2 by Ni(2+)-agarose resins. Second, alpha-actinin-2 was coimmunoprecipitated with angiogenin by anti-angiogenin monoclonal antibody. Third, the in vivo interaction of these two proteins was revealed by fluorescence resonance energy transfer analysis. Since members of alpha-actinin family play pivotal roles in cell proliferation, migration, and invasion, the interaction between alpha-actinin-2 and angiogenin may underline one possible mechanism of angiogenin in angiogenesis. Our finding presents the first evidence of an interaction of a cytosolic protein with angiogenin, which might be a novel interference target for anti-angiogenesis and anti-tumor therapy.
Collapse
Affiliation(s)
- Huajun Hu
- Research Center for Environmental Genomics, Zhejiang University School of Medicine, Hangzhou 310031, China
| | | | | | | | | | | |
Collapse
|
43
|
Tsuji T, Sun Y, Kishimoto K, Olson KA, Liu S, Hirukawa S, Hu GF. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res 2005; 65:1352-60. [PMID: 15735021 DOI: 10.1158/0008-5472.can-04-2058] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenin is an angiogenic protein known to play a role in rRNA transcription in endothelial cells. Nuclear translocation of angiogenin in endothelial cells decreases as cell density increases and ceases when cells are confluent. Here we report that angiogenin is constantly translocated to the nucleus of HeLa cells in a cell density-independent manner. Down-regulation of angiogenin expression by antisense and RNA interference results in a decrease in rRNA transcription, ribosome biogenesis, proliferation, and tumorigenesis both in vitro and in vivo. Exogenous angiogenin rescues the cells from antisense and RNA interference inhibition. The results showed that angiogenin is constitutively translocated into the nucleus of HeLa cells where it stimulates rRNA transcription. Thus, besides its angiogenic activity, angiogenin also plays a role in cancer cell proliferation.
Collapse
MESH Headings
- Animals
- Cell Growth Processes/physiology
- Cell Nucleus/metabolism
- Cells, Cultured
- DNA, Antisense/genetics
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- HeLa Cells
- Humans
- Mice
- Mice, Nude
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA Interference
- RNA, Ribosomal/genetics
- Ribonuclease, Pancreatic/antagonists & inhibitors
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Ribonuclease, Pancreatic/physiology
- Ribosomes/genetics
- Ribosomes/metabolism
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Takanori Tsuji
- Center for Biochemical and Biophysical Sciences and Medicine, Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kishimoto K, Liu S, Tsuji T, Olson KA, Hu GF. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 2005; 24:445-56. [PMID: 15558023 DOI: 10.1038/sj.onc.1208223] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Angiogenin is an angiogenic protein that undergoes nuclear translocation in endothelial cells where it accumulates in the nucleolus and stimulates rRNA transcription, a rate-limiting step in ribosome biogenesis, protein translation, and cell growth. Here, we report that angiogenin is required for cell proliferation induced by various other angiogenic proteins including acidic and basic fibroblast growth factors (aFGF and bFGF), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF). Downregulation of angiogenin in endothelial cells by small interfering RNA (siRNA) and antisense results in a decrease in rRNA transcription, ribosome biogenesis, and cell proliferation induced by these angiogenic factors. Inhibitors of the nuclear translocation of angiogenin abolish the angiogenic activities of these factors. Stable angiogenin antisense transfection in HeLa cells reduces tumor angiogenesis in athymic mice despite the elevated expression level of bFGF and VEGF. Thus, nuclear angiogenin assumes an essential role in endothelial cell proliferation and is necessary for angiogenesis induced by other angiogenic factors. Angiogenin-stimulated rRNA transcription in endothelial cells may thus serve as a crossroad in the process of angiogenesis induced by various angiogenic factors.
Collapse
MESH Headings
- Angiogenesis Inducing Agents
- Base Sequence
- Cell Division/physiology
- Cells, Cultured
- DNA Primers
- Endothelium, Vascular/cytology
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/physiology
- Oligonucleotides, Antisense
- RNA, Small Interfering/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/physiology
- Transcription, Genetic
- Umbilical Veins
Collapse
Affiliation(s)
- Koji Kishimoto
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 930, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
45
|
Pavlov N, Hatzi E, Bassaglia Y, Frendo JL, Evain-Brion D, Badet J. Angiogenin distribution in human term placenta, and expression by cultured trophoblastic cells. Angiogenesis 2004; 6:317-30. [PMID: 15166501 PMCID: PMC1997312 DOI: 10.1023/b:agen.0000029412.95244.81] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human angiogenin is a 14-kDa secreted protein with angiogenic and ribonucleolytic activities. Angiogenin is associated with tumour development but is also present in normal biological fluids and tissues. To further address the physiological role of angiogenin, we studied its expression in situ and in vitro, using the human term placenta as a model of physiological angiogenesis. Angiogenin was immunodetected by light and transmission electron microscopy, and its cellular distribution was established by double immunolabelling with cell markers including von Willebrand factor, platelet/endothelial cell adhesion molecule-1 (PECAM-1), CD34, Tie-2, vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Angiogenin immunoreactivity was detected in villous and extravillous trophoblasts, the trophoblast basement membrane, the endothelial basal lamina, foetal blood vessels, foetal and maternal red blood cells, and amnionic cells. Its expression was confirmed by in situ hybridisation with a digoxygenin-labelled cDNA probe and reverse transcriptase-polymerase chain reaction amplification. Villous cytotrophoblasts, isolated and differentiated in vitro into a functional syncytiotrophoblast, expressed and secreted angiogenin. Given its known biological activities in vitro and its observed pattern of expression, these data suggest that, in human placenta, angiogenin has a role not only in angiogenesis but also in vascular and tissue homeostasis, maternal immune tolerance of the foetus, and host defences.
Collapse
Affiliation(s)
- Nadine Pavlov
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | | | - Yann Bassaglia
- Laboratoire de recherche sur la croissance cellulaire, la réparation et la régénération tissulaires
CNRS : FRE2412Université Paris XII Val de MarneFaculté des sciences
61 Av du général de Gaulle
94000 CRETEIL,FR
| | - Jean-Louis Frendo
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | - Danièle Evain-Brion
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | - Josette Badet
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
- * Correspondence should be adressed to: Josette Badet
| |
Collapse
|
46
|
Tonan K, Xu P, Jenkins JL, Russo A, Shapiro R, Ni F. Unexpected binding mode for 2'-phosphoadenosine-based nucleotide inhibitors in complex with human angiogenin revealed by heteronuclear NMR spectroscopy. Biochemistry 2003; 42:11137-49. [PMID: 14503864 DOI: 10.1021/bi030066h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human angiogenin (Ang) is a tumor-promoting RNase in the pancreatic RNase superfamily. Efforts to develop nucleotide-based inhibitors of Ang as potential anticancer drugs have been hampered by the lack of direct structural information on Ang-nucleotide complexes. Here, we have used heteronuclear NMR spectroscopy with (15)N- and (15)N/(13)C-labeled Ang to map the interactions of Ang with the phosphate ion, seven adenosine mononucleotides (the 2'-, 3'-, and 5'-monophosphates, the 2',5'- and 3',5'-diphosphates, the 5'-diphosphate, and the 2'-monophospho-5'-diphosphate), and the dinucleotide 2'-deoxyuridine 3'-pyrophosphate (P' --> 5') adenosine-2'-phosphate (dUppA-2'-p). The 2'-phosphate based derivatives, which bind more tightly than the corresponding 3'-phosphate isomers, induced characteristic large resonance perturbations of the backbone amide proton of Leu(115), the backbone (15)N of His(114), and the Gln(12) side-chain NH(2) group in the Ang active site. In contrast, adenosine derivatives with only 3'- or 5'-phosphates produced much less dramatic perturbations of Leu(115) and His(114) resonances, along with modest perturbations of additional residues both within and beyond the active site. Measurements of NOEs together with molecular docking analyses revealed the three-dimensional structures of the complexes of Ang with adenosine 2',5'-diphosphate and dUppA-2'-p; the binding modes of these inhibitors differ substantially from those predicted in earlier studies. Most notably, the 2'-phosphate rather than the 5'-phosphate occupies the P(1) catalytic subsite of Ang, and the side chain of His(114) has undergone a conformational transition that positions it outside P(1) and allows it to form stacking interactions with the adenine ring of the inhibitor. Strikingly, the 2'-deoxyuridine moiety of dUppA-2'-p makes only a few contacts with Ang, and these involve residues outside the B(1) subsite where the pyrimidine ring of substrates normally binds.
Collapse
Affiliation(s)
- Kenji Tonan
- Biomolecular NMR and Protein Research Group, Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Chavali GB, Papageorgiou AC, Olson KA, Fett JW, Hu GF, Shapiro R, Acharya KR. The crystal structure of human angiogenin in complex with an antitumor neutralizing antibody. Structure 2003; 11:875-85. [PMID: 12842050 DOI: 10.1016/s0969-2126(03)00131-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The murine monoclonal antibody 26-2F neutralizes the angiogenic and ribonucleolytic activities of human angiogenin (ANG) and is highly effective in preventing the establishment and metastatic dissemination of human tumors in athymic mice. Here we report a 2.0 A resolution crystal structure for the complex of ANG with the Fab fragment of 26-2F that reveals the detailed interactions between ANG and the complementarity-determining regions (CDRs) of the antibody. Surprisingly, Fab binding induces a dramatic conformational change in the cell binding region of ANG at the opposite end of the molecule from the combining site; crosslinking experiments indicate that this rearrangement also occurs in solution. The ANG-Fab complex structure should be invaluable for designing maximally humanized versions of 26-2F for potential clinical use.
Collapse
Affiliation(s)
- Gayatri B Chavali
- Department of Biology and Biochemistry, University of Bath, Claverton Down, BA2 7AY, Bath, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
48
|
Jenkins JL, Shapiro R. Identification of small-molecule inhibitors of human angiogenin and characterization of their binding interactions guided by computational docking. Biochemistry 2003; 42:6674-87. [PMID: 12779322 DOI: 10.1021/bi034164e] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Angiogenin (ANG) is a potent inducer of angiogenesis and an RNase A homologue whose ribonucleolytic activity is essential for its biological action. Recently, we reported the identification of small non-nucleotide inhibitors of the enzymatic activity of ANG by high-throughput screening (HTS) [Kao, R. Y. T., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 10066-10071]. Two of the inhibitors that were obtained, National Cancer Institute compound NSC-65828 [8-amino-5-(4'-hydroxybiphenyl-4-ylazo)naphthalene-2-sulfonate] and ChemBridge compound C-181431 [4,4'-dicarboxy-3,3'-bis(naphthylamido)diphenylmethanone], were judged to be suitable for further development, and one of these (NSC-65828) was shown to possess antitumor activity in mice. Here we have used computational docking as a guide for the identification of available NSC-65828 and C-181431 analogues that bind more tightly to ANG, and for the characterization of inhibitor binding modes. Numerous analogues were found to have greater avidity than the HTS compounds or any small nucleotide inhibitors; four were considered to be of interest as potential leads (K(i) = 5-25 microM). Two of these analogues bind more tightly to ANG than to RNase A, and are the first small molecules shown to exhibit this selectivity. The predicted binding orientations of the HTS compounds and the new lead inhibitors were evaluated by determining the effects of ANG active site mutations on inhibitory potency. The results with ANG variants R5A, H8A, N68A, and des(121-123) are highly consistent with the docking models. Affinity changes observed with Q12A and Q117G reveal aspects of active site function that are not apparent from the free ANG crystal structure or from the modeled complexes. These findings should prove to be useful in the design of more effective and specific ANG antagonists.
Collapse
Affiliation(s)
- Jeremy L Jenkins
- Center for Biochemical and Biophysical Sciences and Medicine and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02139, USA
| | | |
Collapse
|
49
|
Hasegawa Y, Erickson JR, Goddard GJ, Yu S, Liu S, Cheng KW, Eder A, Bandoh K, Aoki J, Jarosz R, Schrier AD, Lynch KR, Mills GB, Fang X. Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J Biol Chem 2003; 278:11962-9. [PMID: 12554733 DOI: 10.1074/jbc.m209168200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid mediator that acts through G protein-coupled receptors. Most cell lines in culture express one or more LPA receptors, making it difficult to assign a response to specific LPA receptors. Dissection of the signaling properties of LPA has been hampered by lack of LPA receptor subtype-specific agonists and antagonists. The present study characterizes an ester-linked thiophosphate derivative (1-oleoyl-2-O-methyl-rac-glycerophosphothionate, OMPT) of LPA. OMPT is a functional LPA analogue with potent mitogenic activity in fibroblasts. In contrast to LPA, OMPT does not couple to the pheromone response through the LPA(1) receptor in yeast cells. OMPT induces intracellular calcium increases efficiently in LPA(3) receptor-expressing Sf9 cells but poorly in LPA(2) receptor-expressing cells. Guanosine 5'-O-(3-[(35)S]thio)triphosphate binding assays in mammalian cells showed that LPA exhibits agonistic activity on all three LPA receptor subtypes, whereas OMPT has a potent agonistic effect only on the LPA(3) receptor. In transiently transfected HEK293 cells, OMPT stimulates mitogen-activated protein kinases through the LPA(3) but not the LPA(1) or LPA(2) receptors. Furthermore, OMPT-induced intracellular calcium mobilization in mammalian cells is efficiently inhibited by the LPA(1)/LPA(3) receptor-selective antagonist VPC12249. These results establish that OMPT is an LPA(3)-selective agonist. OMPT binding to the LPA(3) receptor in mammalian cells is sufficient to elicit multiple responses, including activation of G proteins, calcium mobilization, and activation of mitogen-activated protein kinases. Thus OMPT offers a powerful probe for the dissection of LPA signaling events in complex mammalian systems.
Collapse
|
50
|
Lioté F, Champy R, Moenner M, Boval-Boizard B, Badet J. Elevated angiogenin levels in synovial fluid from patients with inflammatory arthritis and secretion of angiogenin by cultured synovial fibroblasts. Clin Exp Immunol 2003; 132:163-8. [PMID: 12653852 PMCID: PMC1808677 DOI: 10.1046/j.1365-2249.2003.02117.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Angiogenesis is a key process in the pathogenesis of inflammatory arthritis. Angiogenin is one of the most potent inducers of neovascularization in experimental models in vivo. To look for evidence that angiogenin is involved in inflammatory joint disease, we examined plasma and synovial fluid (SF) samples from rheumatology patients and synovial fibroblast cell culture supernatants. Angiogenin levels were determined by radioimmunoassay and ELISA. Plasma angiogenin concentrations ranged from 96 to 478 ng/ml, with no significant difference between patients and normal controls. In SF, angiogenin concentrations were significantly higher in patients with acute or chronic synovitis (rheumatoid arthritis (RA): median, 104 ng/ml; range 13-748, n = 14; crystal-induced arthritis (CIA): median, 149 ng/ml; range, 37-616, n = 14, and other chronic inflammatory arthritis: median, 42 ng/ml; range, 15-205; n = 9) than in the 18 patients with osteoarthritis (OA) (median, 20 ng/ml; range 8-116) (P < 0.0001, anova). Angiogenin levels in SF from RA patients in remission with secondary OA were similar to those achieved in primary OA, and decreased in parallel with the resolution of acute gout. Angiogenin protein was released by cultured synovial fibroblasts from OA and RA patients, and reached 1.18 ng/106 cells/day. These data suggest that angiogenin may mediate local inflammation in arthritis via effects on angiogenesis and leucocyte regulation.
Collapse
MESH Headings
- Analysis of Variance
- Arthritis/metabolism
- Arthritis/pathology
- Arthritis, Infectious/metabolism
- Arthritis, Infectious/pathology
- Arthritis, Psoriatic/metabolism
- Arthritis, Psoriatic/pathology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Case-Control Studies
- Cells, Cultured
- Culture Media, Conditioned/chemistry
- Fibroblasts/metabolism
- Humans
- Leukocytes, Mononuclear/chemistry
- Leukocytes, Mononuclear/metabolism
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- Ribonuclease, Pancreatic/analysis
- Ribonuclease, Pancreatic/blood
- Ribonuclease, Pancreatic/genetics
- Statistics, Nonparametric
- Synovial Fluid/chemistry
- Synovial Fluid/cytology
Collapse
Affiliation(s)
- F Lioté
- Centre Viggo Petersen, Hôpital Lariboisière, Paris, France.
| | | | | | | | | |
Collapse
|