1
|
Glorieux C, Buc Calderon P. Targeting catalase in cancer. Redox Biol 2024; 77:103404. [PMID: 39447253 PMCID: PMC11539659 DOI: 10.1016/j.redox.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Healthy cells have developed a sophisticated network of antioxidant molecules to prevent the toxic accumulation of reactive oxygen species (ROS) generated by diverse environmental stresses. On the opposite, cancer cells often exhibit high levels of ROS and an altered levels of antioxidant molecules compared to normal cells. Among them, the antioxidant enzyme catalase plays an essential role in cell defense against oxidative stress through the dismutation of hydrogen peroxide into water and molecular oxygen, and its expression is often decreased in cancer cells. The elevation of ROS in cancer cells provides them proliferative advantages, and leads to metabolic reprogramming, immune escape and metastasis. In this context, catalase is of critical importance to control these cellular processes in cancer through various mechanisms. In this review, we will discuss the major progresses and challenges in understanding the role of catalase in cancer for this last decade. This review also aims to provide important updates regarding the regulation of catalase expression, subcellular localization and discuss about the potential role of microbial catalases in tumor environment. Finally, we will describe the different catalase-based therapies and address the advantages, disadvantages, and limitations associated with modulating catalase therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060, Guangzhou, China.
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, 1100000, Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000, Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
2
|
Xu K, Cui Y, Guan B, Qin L, Feng D, Abuduwayiti A, Wu Y, Li H, Cheng H, Li Z. Nanozymes with biomimetically designed properties for cancer treatment. NANOSCALE 2024; 16:7786-7824. [PMID: 38568434 DOI: 10.1039/d4nr00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanozymes, as a type of nanomaterials with enzymatic catalytic activity, have demonstrated tremendous potential in cancer treatment owing to their unique biomedical properties. However, the heterogeneity of tumors and the complex tumor microenvironment pose significant challenges to the in vivo catalytic efficacy of traditional nanozymes. Drawing inspiration from natural enzymes, scientists are now using biomimetic design to build nanozymes from the ground up. This approach aims to replicate the key characteristics of natural enzymes, including active structures, catalytic processes, and the ability to adapt to the tumor environment. This achieves selective optimization of nanozyme catalytic performance and therapeutic effects. This review takes a deep dive into the use of these biomimetically designed nanozymes in cancer treatment. It explores a range of biomimetic design strategies, from structural and process mimicry to advanced functional biomimicry. A significant focus is on tweaking the nanozyme structures to boost their catalytic performance, integrating them into complex enzyme networks similar to those in biological systems, and adjusting functions like altering tumor metabolism, reshaping the tumor environment, and enhancing drug delivery. The review also covers the applications of specially designed nanozymes in pan-cancer treatment, from catalytic therapy to improved traditional methods like chemotherapy, radiotherapy, and sonodynamic therapy, specifically analyzing the anti-tumor mechanisms of different therapeutic combination systems. Through rational design, these biomimetically designed nanozymes not only deepen the understanding of the regulatory mechanisms of nanozyme structure and performance but also adapt profoundly to tumor physiology, optimizing therapeutic effects and paving new pathways for innovative cancer treatment.
Collapse
Affiliation(s)
- Ke Xu
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Yujie Cui
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Bin Guan
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200081, China
| | - Dihao Feng
- School of Art, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Abudumijiti Abuduwayiti
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Yimu Wu
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Hao Li
- Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, Fujian, China
| | - Hongfei Cheng
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
3
|
Li N, Zhang G, Zhan J, Yu D. pH-responsive iron-loaded carbonaceous nanoparticles for chemodynamic therapy based on the Fenton reaction. J Mater Chem B 2024; 12:3959-3969. [PMID: 38477096 DOI: 10.1039/d3tb02875e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The Fenton reaction-based chemodynamic therapy is a form of cancer therapy, and its efficacy can be significantly improved by promoting catalytic reactions involving iron ions. A system with high catalytic capacity and low biological toxicity that effectively inhibits tumor progression is required for optimal treatment. In this study, iron-loaded carbonaceous nanoparticles (CNPs@Fe) with Fenton catalytic activity were fabricated and applied for the chemodynamic therapy of cancer. The carbonaceous nanoparticles derived from glucose via a caramelization reaction demonstrated high biocompatibility. Besides, aromatic structures in the carbonaceous nanoparticles helped accelerate electron transfer to enhance the catalytic decomposition of H2O2, resulting in the formation of highly reactive hydroxyl radicals (˙OH). At pH 6.0 (representing weak acidity in the tumor microenvironment), the Fenton catalytic activity of CNPs@Fe in the decomposition of H2O2 was 15.3 times higher than that of Fe2+ and 28.3 times higher than that of Fe3O4via a chromogenic reaction. The reasons for the enhancement were revealed by analyzing the chemical composition of carbonaceous nanoparticles using high-resolution mass spectra. The developed Fenton agent also demonstrated significant therapeutic effectiveness and minimal side effects in in vitro and in vivo anticancer studies. This work proposes a novel approach to promote the generation of reactive oxygen species (ROS) for the chemodynamic therapy of cancer.
Collapse
Affiliation(s)
- Nianlu Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan, 250100, China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan, 250100, China
| |
Collapse
|
4
|
Qiao W, Chen J, Zhou H, Hu C, Dalangood S, Li H, Yang D, Yang Y, Gui J. A Single-Atom Manganese Nanozyme Mn-N/C Promotes Anti-Tumor Immune Response via Eliciting Type I Interferon Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305979. [PMID: 38308189 PMCID: PMC11005736 DOI: 10.1002/advs.202305979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Tumor microenvironment (TME)-induced nanocatalytic therapy is a promising strategy for cancer treatment, but the low catalytic efficiency limits its therapeutic efficacy. Single-atom catalysts (SACs) are a new type of nanozyme with incredible catalytic efficiency. Here, a single-atom manganese (Mn)-N/C nanozyme is constructed. Mn-N/C catalyzes the conversion of cellular H2O2 to ∙OH through a Fenton-like reaction and enables the sufficient generation of reactive oxygen species (ROS), which induces immunogenic cell death (ICD) of tumor cells and significantly promotes CD8+T anti-tumor immunity. Moreover, RNA sequencing analysis reveals that Mn-N/C treatment activates type I interferon (IFN) signaling, which is critical for Mn-N/C-mediated anti-tumor immune response. Mechanistically, the release of cytosolic DNA and Mn2+ triggered by Mn-N/C collectively activates the cGAS-STING pathway, subsequently stimulating type I IFN induction. A highly efficient single-atom nanozyme, Mn-N/C, which enhances anti-tumor immune response and exhibits synergistic therapeutic effects when combined with the anti-PD-L1 blockade, is proposed.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Cegui Hu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Sumiya Dalangood
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Dandan Yang
- Evergrande Center for Immunologic DiseasesAnn Romney Center for Neurologic DiseasesHarvard Medical School and Mass General BrighamBostonMA02115USA
| | - Yu Yang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
5
|
Xu W, Zhao Y, Zhang C, Huo M, Wang L, Wu X, Zhang Y, Li Q, Gai Y. Bimetallic nanoplatform for synergistic sonodynamic-calcium overload therapy utilizing self-supplied hydrogen peroxide and relieved hypoxia. Biomater Sci 2024; 12:1171-1184. [PMID: 38205509 DOI: 10.1039/d3bm01430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Sonodynamic therapy (SDT) has emerged as a potential alternative to traditional cancer treatments as it offers deep cellular penetration and reduced invasivity. Sonosensitizers generate reactive oxygen species (ROS) under ultrasound activation, focusing the ultrasound energy on malignant sites located deep in tissues and causing cell apoptosis and necrosis. However, due to tumor hypoxia and the limited levels of intracellular endogenous hydrogen peroxide (H2O2 is a fundamental species for supplying oxygen via catalase activity), SDT efficacy is still insufficient. In this study, a bimetallic and multifunctional system (Fe3O4-TAPP@PVP-CaO2) was prepared by using ferrosoferric oxide (Fe3O4) as a carrier loaded with 5,10,15,20-tetrakis(4-aminophenyl), porphyrin (TAPP), that was then coated with polyvinyl pyrrolidone (PVP) and calcium peroxide (CaO2). The CaO2 layer elevated the levels of H2O2 and Ca2+ in the tumor microenvironment when exposed to intracellular acidity, providing essential elements for oxygen generation. Intracellular hypoxia was alleviated via the catalase-like activity of Fe3O4 inducing calcium overload. Under ultrasonic irradiation, SDT generated toxic reactive oxygen species (ROS, singlet oxygen) and activated calcium influx through acoustic cavitation. Meanwhile, calcium overload therapy efficiently induced cell apoptosis at the moment of uncontrollable cellular accumulation of Ca2+. In addition, we modified the PVP on the surface to make it more stable. This study presents a bimetallic nanoplatform that can efficiently induce cancer cell death by synergistic sonodynamic-calcium overload therapy via modulation of O2/ROS/Ca2+ species, indicating its potential for multi-modality cancer therapy.
Collapse
Affiliation(s)
- Wenqian Xu
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China.
| | - Yisheng Zhao
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| | - Chao Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, P.R. China
| | - Mengping Huo
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China.
| | - Lei Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China.
| | - Xuewu Wu
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Nephro-Urological Clinical Center, Lanzhou 730000, P.R. China
| | - Yang Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China.
| | - Qiao Li
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China.
| | - Yonghao Gai
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China.
| |
Collapse
|
6
|
Wang S, Hou Y. New Types of Magnetic Nanoparticles for Stimuli-Responsive Theranostic Nanoplatforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305459. [PMID: 37988692 PMCID: PMC10885654 DOI: 10.1002/advs.202305459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Indexed: 11/23/2023]
Abstract
Magnetic nanomaterials have played a crucial role in promoting the application of nanotechnology in the biomedical field. Although conventional magnetic nanomaterials such as iron oxide nanoparticles (NPs) are used as biosensors, drug delivery vehicles, diagnostic and treatment agents for several diseases, the persistent pursuit of high-performance technologies has prompted researchers to continuously develop new types of magnetic nanomaterials such as iron carbide NPs. Considering their potential application in biomedicine, magnetic NPs responsive to exogenous or endogenous stimuli are developed, thereby enhancing their applicability in more complex versatile scenarios. In this review, the synthesis and surface modification of magnetic NPs are focused, particularly iron carbide NPs. Subsequently, exogenous and endogenous stimuli-responsive magnetic NP-based theranostic platforms are introduced, particularly focusing on nanozyme-based technologies and magnetic NP-mediated immunotherapy, which are emerging stimuli-responsive treatments. Finally, the challenges and perspectives of magnetic NPs to accelerate future research in this field are discussed.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
7
|
Huang J, Liao D, Han Y, Chen Y, Raza S, Lu C, Liu J, Lan Q. Current status of porous coordination networks (PCNs) derived porphyrin spacers for cancer therapy. Expert Opin Drug Deliv 2023; 20:1209-1229. [PMID: 37776531 DOI: 10.1080/17425247.2023.2260309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Porous coordination networks (PCNs) have been widely used in large number of applications such as light harvesting, catalysis, and biomedical applications. Inserting porphyrins into PCNs scaffolds can alleviate the solubility and chemical stability problems associated with porphyrin ligands and add functionality to PCNs. The discovery that some PCNs materials have photosensitizer and acoustic sensitizer properties has attracted significant attention in the field of biomedicine, particularly in cancer therapy. This article describes the latest applications of the porphyrin ligand-based family of PCNs in cancer chemodynamic therapy (CDT), photodynamic therapy (PDT), sonodynamic therapy (SDT), photothermal therapy (PTT), and combination therapies and offers some observations and reflections on them. AREAS COVERED This article discusses the use of the PCN family of MOFs in cancer treatment, specifically focusing on chemodynamic therapy, sonodynamic therapy, photodynamic therapy, photothermal therapy, and combination therapy. EXPERT OPINION Although a large number of PCNs have been developed for use in novel cancer therapeutic approaches, further improvements are needed to advance the use of PCNs in the clinic. For example, the main mechanism of action of PCNs against cancer and the metabolic processes in organisms, and how to construct PCNs that maintain good stability in the complex environment of organisms.
Collapse
Affiliation(s)
- Jeifeng Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuting Han
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P.R. China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qian Lan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
8
|
Di X, Pei Z, Pei Y, James TD. Tumor microenvironment-oriented MOFs for chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
9
|
Yang L, Wang Z, Gong H, Gai S, Shen R. Tirapazamine-loaded UiO-66/Cu for ultrasound-mediated promotion of chemodynamic therapy cascade hypoxia-activated anticancer therapy. J Colloid Interface Sci 2023; 634:495-508. [PMID: 36542978 DOI: 10.1016/j.jcis.2022.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Chemodynamic therapy (CDT), an emerging oncology treatment, has received considerable attention owing to its high selectivity, less aggressiveness, and endogenous stimulation. However, the complex intra-tumor environment limits the therapeutic effect. In this study, Cu+ was directly doped into the structure of the UiO-66 matrix using an in situ one-pot oil bath method. The as-formed UiO-66/Cu possessed a large surface area, making it feasible to modify folic acid (FA) and carry more chemotherapeutic agents like tirapazamine (TPZ), thus forming UiO-66/Cu-FA-TPZ nanoplatforms. For CDT, the nanoplatform catalyzed the cyclic generation of the highly oxidizing hydroxyl radical (·OH) from H2O2. Particularly, low-frequency ultrasound enhanced the curative effect. Notably, in a tumor, a severe hypoxic environment and ultrasound can activate more TPZ for safe and efficient chemotherapy, achieving synergistic and hypoxia-activated tumor treatment with a low risk of side effects. Moreover, the nanoplatform exhibits computed tomography imaging functions for combined diagnosis and treatment. Our designed nanoplatform overcomes the dilemma of insufficient efficacy from conventional therapy attributed to a hypoxic environment, expecting to guide the design of future treatment regimens for hypoxic tumors.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - HaiJiang Gong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Yantai Research Institute, Harbin Engineering University, Yantai 264000, PR China.
| | - RuiFang Shen
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
10
|
Zhang C, Wang P, Zhang YN, Lu P, Huang X, Wang Y, Ran L, Xin H, Xu X, Gao W, Sun Y, Zhang L, Zhang G. Biodegradable nanoplatform upregulates tumor microenvironment acidity for enhanced cancer therapy via synergistic induction of apoptosis, ferroptosis, and anti-angiogenesis. J Nanobiotechnology 2023; 21:59. [PMID: 36810074 PMCID: PMC9945394 DOI: 10.1186/s12951-023-01814-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Chemodynamic therapy of cancer is limited by insufficient endogenous H2O2 generation and acidity in the tumor microenvironment (TME). Herein, we developed a biodegradable theranostic platform (pLMOFePt-TGO) involving composite of dendritic organosilica and FePt alloy, loaded with tamoxifen (TAM) and glucose oxidase (GOx), and encapsulated by platelet-derived growth factor-B (PDGFB)-labeled liposomes, that effectively uses the synergy among chemotherapy, enhanced chemodynamic therapy (CDT), and anti-angiogenesis. The increased concentration of glutathione (GSH) present in the cancer cells induces the disintegration of pLMOFePt-TGO, releasing FePt, GOx, and TAM. The synergistic action of GOx and TAM significantly enhanced the acidity and H2O2 level in the TME by aerobiotic glucose consumption and hypoxic glycolysis pathways, respectively. The combined effect of GSH depletion, acidity enhancement, and H2O2 supplementation dramatically promotes the Fenton-catalytic behavior of FePt alloys, which, in combination with tumor starvation caused by GOx and TAM-mediated chemotherapy, significantly increases the anticancer efficacy of this treatment. In addition, T2-shortening caused by FePt alloys released in TME significantly enhances contrast in the MRI signal of tumor, enabling a more accurate diagnosis. Results of in vitro and in vivo experiments suggest that pLMOFePt-TGO can effectively suppress tumor growth and angiogenesis, thus providing an exciting potential strategy for developing satisfactory tumor theranostics.
Collapse
Affiliation(s)
- Caiyun Zhang
- grid.440653.00000 0000 9588 091XSchool of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Peng Wang
- grid.440653.00000 0000 9588 091XSchool of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Ya’ nan Zhang
- grid.440653.00000 0000 9588 091XSchool of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Pengpeng Lu
- grid.440653.00000 0000 9588 091XSchool of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Xiaodan Huang
- grid.440653.00000 0000 9588 091XSchool of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Yinfeng Wang
- grid.440653.00000 0000 9588 091XSchool of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Lang Ran
- grid.440653.00000 0000 9588 091XSchool of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Huan Xin
- grid.440653.00000 0000 9588 091XSchool of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XInstitute of Aging Medicine, Binzhou Medical University, Yantai, 264003 Shandong China
| | - Xiaotong Xu
- grid.440653.00000 0000 9588 091XSchool of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XInstitute of Aging Medicine, Binzhou Medical University, Yantai, 264003 Shandong China
| | - Wenjuan Gao
- grid.440653.00000 0000 9588 091XSchool of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Yu Sun
- Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China. .,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, People's Republic of China. .,Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
11
|
Liu X, Liu Y, Qiang L, Ren Y, Lin Y, Li H, Chen Q, Gao S, Yang X, Zhang C, Fan M, Zheng P, Li S, Wang J. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. J Tissue Eng 2023; 14:20417314231170371. [PMID: 37205149 PMCID: PMC10186582 DOI: 10.1177/20417314231170371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is the most prevalent bone malignant tumor in children and teenagers. The bone defect, recurrence, and metastasis after surgery severely affect the life quality of patients. Clinically, bone grafts are implanted. Primary bioceramic scaffolds show a monomodal osteogenesis function. With the advances in three-dimensional printing technology and materials science, while maintaining the osteogenesis ability, scaffolds become more patient-specific and obtain additional anti-tumor ability with functional agents being loaded. Anti-tumor therapies include photothermal, magnetothermal, old and novel chemo-, gas, and photodynamic therapy. These strategies kill tumors through novel mechanisms to treat refractory osteosarcoma due to drug resistance, and some have shown the potential to reverse drug resistance and inhibit metastasis. Therefore, multifunctional three-dimensional printed bioceramic scaffolds hold excellent promise for osteosarcoma treatments. To better understand, we review the background of osteosarcoma, primary 3D-printed bioceramic scaffolds, and different therapies and have a prospect for the future.
Collapse
Affiliation(s)
- Xingran Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Lei Qiang
- Southwest Jiaotong University, Chengdu,
China
| | - Ya Ren
- Southwest Jiaotong University, Chengdu,
China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Li
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Qiuhan Chen
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Shuxin Gao
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Xue Yang
- Southwest Jiaotong University, Chengdu,
China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Li
- Department of Orthopedics, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Southwest Jiaotong University, Chengdu,
China
- Shanghai Jiao Tong University,
Shanghai, China
- Weifang Medical University School of
Rehabilitation Medicine, Weifang, Shandong Province, China
| |
Collapse
|
12
|
Zhang Z, Zhou Y, Zhao S, Ding L, Chen B, Chen Y. Nanomedicine-Enabled/Augmented Cell Pyroptosis for Efficient Tumor Nanotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203583. [PMID: 36266982 PMCID: PMC9762308 DOI: 10.1002/advs.202203583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Indexed: 05/19/2023]
Abstract
The terrible morbidity and mortality of malignant tumors urgently require innovative therapeutics, especially for apoptosis-resistant tumors. Pyroptosis, a pro-inflammatory form of programmed cell death (PCD), is featured with pore formation in plasma membrane, cell swelling with giant bubbles, and leakage of cytoplasmic pro-inflammatory cytokines, which can remodel the tumor immune microenvironment by stimulating a "cold" tumor microenvironment to be an immunogenic "hot" tumor microenvironment, and consequently augment the therapeutic efficiency of malignant tumors. Benefiting from current advances in nanotechnology, nanomedicine is extensively applied to potentiate, enable, and augment pyroptosis for enhancing cancer-therapeutic efficacy and specificity. This review provides a concentrated summary and discussion of the most recent progress achieved in this emerging field, highlighting the nanomedicine-enabled/augmented specific pyroptosis strategy for favoring the construction of next-generation nanomedicines to efficiently induce PCD. It is highly expected that the further clinical translation of nanomedicine can be accelerated by inducing pyroptotic cell death based on bioactive nanomedicines.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of UltrasoundAffiliated Hospital of Jiangsu UniversityZhenjiang212000P. R. China
| | - Yajun Zhou
- Department of UltrasoundThe Fourth Affiliated HospitalNanjing Medical UniversityNanjing210029P. R. China
| | - Shuangshuang Zhao
- Department of UltrasoundAffiliated Hospital of Jiangsu UniversityZhenjiang212000P. R. China
| | - Li Ding
- Tongji University School of MedicineShanghai Tenth People's HospitalTongji University Cancer CenterShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineShanghai200072P. R. China
| | - Baoding Chen
- Department of UltrasoundAffiliated Hospital of Jiangsu UniversityZhenjiang212000P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| |
Collapse
|
13
|
Chakraborty N, Gandhi S, Verma R, Roy I. Emerging Prospects of Nanozymes for Antibacterial and Anticancer Applications. Biomedicines 2022; 10:biomedicines10061378. [PMID: 35740402 PMCID: PMC9219663 DOI: 10.3390/biomedicines10061378] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
The ability of some nanoparticles to mimic the activity of certain enzymes paves the way for several attractive biomedical applications which bolster the already impressive arsenal of nanomaterials to combat deadly diseases. A key feature of such 'nanozymes' is the duplication of activities of enzymes or classes of enzymes, such as catalase, superoxide dismutase, oxidase, and peroxidase which are known to modulate the oxidative balance of treated cells for facilitating a particular biological process such as cellular apoptosis. Several nanoparticles that include those of metals, metal oxides/sulfides, metal-organic frameworks, carbon-based materials, etc., have shown the ability to behave as one or more of such enzymes. As compared to natural enzymes, these artificial nanozymes are safer, less expensive, and more stable. Moreover, their catalytic activity can be tuned by changing their size, shape, surface properties, etc. In addition, they can also be engineered to demonstrate additional features, such as photoactivated hyperthermia, or be loaded with active agents for multimodal action. Several researchers have explored the nanozyme-mediated oxidative modulation for therapeutic purposes, often in combination with other diagnostic and/or therapeutic modalities, using a single probe. It has been observed that such synergistic action can effectively by-pass the various defense mechanisms adapted by rogue cells such as hypoxia, evasion of immuno-recognition, drug-rejection, etc. The emerging prospects of using several such nanoparticle platforms for the treatment of bacterial infections/diseases and cancer, along with various related challenges and opportunities, are discussed in this review.
Collapse
Affiliation(s)
- Nayanika Chakraborty
- Department of Chemistry, University of Delhi, Delhi 110007, India; (N.C.); (S.G.)
| | - Sona Gandhi
- Department of Chemistry, University of Delhi, Delhi 110007, India; (N.C.); (S.G.)
- Department of Chemistry, Galgotias University, Greater Noida 203201, India
| | - Rajni Verma
- School of Physics, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (R.V.); (I.R.)
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India; (N.C.); (S.G.)
- Correspondence: (R.V.); (I.R.)
| |
Collapse
|
14
|
Wang S, Wang Z, Li Z, Zhang X, Zhang H, Zhang T, Meng X, Sheng F, Hou Y. Amelioration of systemic antitumor immune responses in cocktail therapy by immunomodulatory nanozymes. SCIENCE ADVANCES 2022; 8:eabn3883. [PMID: 35622914 PMCID: PMC9140981 DOI: 10.1126/sciadv.abn3883] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/12/2022] [Indexed: 05/28/2023]
Abstract
Nanozymes that mimic natural enzyme-like activities have gradually emerged in cancer therapy. To overcome the bottlenecks of single-mode nanozymes, including "off-target" toxicity and ineffectiveness toward metastatic cancers, we designed magnetic nanoparticle-based multifunctional visualized immunomodulatory nanozymes. Besides the partial initiation of the prime immune response by intrinsic immunogenicity, as a smart drug delivery system with a temperature- and pH-sensitive dual response to the tumor microenvironment, these nanozymes released immune agonists to boost enhanced systemic immune response, eventually ameliorating the cancer immune microenvironment through many aspects: activating dendritic cells, improving the function of CD8+ T cells, and decreasing the population of myeloid-derived suppressor cells, which inhibited both primary and metastatic cancers. Mechanistically, these nanozymes regulated the reactive oxygen species-related Akt signaling pathway and consequently activated cell apoptosis-related signaling pathways, which provided a deeper understanding of the synergistic mechanism of multifunctional nanozymes. Our findings offer a promising imaging-guided cocktail therapy strategy through immunomodulatory nanozymes.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Zhiyi Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Ziyuan Li
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China
- Department of Biomedical Engineering, Peking University, Beijing 100871, China
| | - Xiaoguang Zhang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Hongtao Zhang
- Department of Radiology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Teng Zhang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Fugeng Sheng
- Department of Radiology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanglong Hou
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
|
16
|
Apak R, Calokerinos A, Gorinstein S, Segundo MA, Hibbert DB, Gülçin İ, Demirci Çekiç S, Güçlü K, Özyürek M, Çelik SE, Magalhães LM, Arancibia-Avila P. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-0902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This project was aimed to identify the quenching chemistry of biologically important reactive oxygen and nitrogen species (ROS/RNS, including radicals), to show antioxidant action against reactive species through H‐atom and electron transfer reactions, and to evaluate the ROS/RNS scavenging activity of antioxidants with existing analytical methods while emphasizing the underlying chemical principles and advantages/disadvantages of these methods. In this report, we focused on the applications and impact of existing assays on potentiating future research and innovations to evolve better methods enabling a more comprehensive study of different aspects of antioxidants and to provide a vocabulary of terms related to antioxidants and scavengers for ROS/RNS. The main methods comprise the scavenging activity measurement of the hydroxyl radical (•OH), dioxide(•1–) (O2
•–: commonly known as the superoxide radical), dihydrogen dioxide (H2O2: commonly known as hydrogen peroxide), hydroxidochlorine (HOCl: commonly known as hypochlorous acid), dioxidooxidonitrate(1–) (ONOO−: commonly known as the peroxynitrite anion), and the peroxyl radical (ROO•). In spite of the diversity of methods, there is currently a great need to evaluate the scavenging activity of antioxidant compounds in vivo and in vitro. In addition, there are unsatisfactory methods frequently used, such as non-selective UV measurement of H2O2 scavenging, producing negative errors due to incomplete reaction of peroxide with flavonoids in the absence of transition metal ion catalysts. We also discussed the basic mechanisms of spectroscopic and electrochemical nanosensors for measuring ROS/RNS scavenging activity of antioxidants, together with leading trends and challenges and a wide range of applications. This project aids in the identification of reactive species and quantification of scavenging extents of antioxidants through various assays, makes the results comparable and more understandable, and brings a more rational basis to the evaluation of these assays and provides a critical evaluation of existing ROS/RNS scavenging assays to analytical, food chemical, and biomedical/clinical communities by emphasizing the need for developing more refined, rapid, simple, and low‐cost assays and thus opening the market for a wide range of analytical instruments, including reagent kits and sensors.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Antony Calokerinos
- Department of Chemistry , National and Kapodistrian University of Athens, School of Sciences , Panepistimiopolis, 15771 Athens , Greece
| | - Shela Gorinstein
- The Hebrew University, Hadassah Medical School, School of Pharmacy, The Institute for Drug Research , Jerusalem , Israel
| | - Marcela Alves Segundo
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - David Brynn Hibbert
- New South Wales University, School of Chemistry , Sydney , NSW 2052 , Australia
| | - İlhami Gülçin
- Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Sema Demirci Çekiç
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Kubilay Güçlü
- Department of Chemistry , Adnan Menderes University, Faculty of Arts and Sciences , Aydın , Turkey
| | - Mustafa Özyürek
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Saliha Esin Çelik
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Luís M. Magalhães
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - Patricia Arancibia-Avila
- Departamento de Ciencias Básicas , Laboratorio de Ecofisiología y Microalgas, Universidad del Bio-Bio , Chillán , Chile
| |
Collapse
|
17
|
Al-Mansoori L, Elsinga P, Goda SK. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy. Biomed Pharmacother 2021; 144:112260. [PMID: 34607105 DOI: 10.1016/j.biopha.2021.112260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/09/2023] Open
Abstract
Abnormal structural and molecular changes in malignant tissues were thoroughly investigated and utilized to target tumor cells, hence rescuing normal healthy tissues and lowering the unwanted side effects as non-specific cytotoxicity. Various ligands for cancer cell specific markers have been uncovered and inspected for directional delivery of the anti-cancer drug to the tumor site, in addition to diagnostic applications. Over the past few decades research related to the ligand targeted therapy (LTT) increased tremendously aiming to treat various pathologies, mainly cancers with well exclusive markers. Malignant tumors are known to induce elevated levels of a variety of proteins and peptides known as cancer "markers" as certain antigens (e.g., Prostate specific membrane antigen "PSMA", carcinoembryonic antigen "CEA"), receptors (folate receptor, somatostatin receptor), integrins (Integrin αvβ3) and cluster of differentiation molecules (CD13). The choice of an appropriate marker to be targeted and the design of effective ligand-drug conjugate all has to be carefully selected to generate the required therapeutic effect. Moreover, since some tumors express aberrantly high levels of more than one marker, some approaches investigated targeting cancer cells with more than one ligand (dual or multi targeting). We aim in this review to report an update on the cancer-specific receptors and the vehicles to deliver cytotoxic drugs, including recent advancements on nano delivery systems and their implementation in targeted cancer therapy. We will discuss the advantages and limitations facing this approach and possible solutions to mitigate these obstacles. To achieve the said aim a literature search in electronic data bases (PubMed and others) using keywords "Cancer specific receptors, cancer specific antibody, tumor specific peptide carriers, cancer overexpressed proteins, gold nanotechnology and gold nanoparticles in cancer treatment" was carried out.
Collapse
Affiliation(s)
- Layla Al-Mansoori
- Qatar University, Biomedical Research Centre, Qatar University, Doha 2713, Qatar.
| | - Philip Elsinga
- University of Groningen, University Medical Center Groningen (UMCG), Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sayed K Goda
- Cairo University, Faculty of Science, Giza, Egypt; University of Derby, College of Science and Engineering, Derby, UK.
| |
Collapse
|
18
|
Hu ZE, Li J, Wu ZN, Wei YJ, Liu YH, Wang N, Yu XQ. One-Pot Synthesis-Biocompatible Copper-Tripeptide Complex as a Nanocatalytic Medicine to Enhance Chemodynamic Therapy. ACS Biomater Sci Eng 2021; 7:1394-1402. [PMID: 33689270 DOI: 10.1021/acsbiomaterials.0c01678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemodynamic therapy (CDT) is a kind of method utilizing hydroxyl radicals (•OH) generated by Fenton or Fenton-like reactions in situ to kill tumor cells. Copper, a cofactor of many intracellular enzymes, which has good biocompatibility, is a transition metal with extremely high efficiency in the Fenton-like reaction. However, when the intracellular free copper exceeds the threshold, it will bring serious side effects. Hence, we used the chelation between glutathione (GSH) and copper ions to produce a nanocatalytic drug, which was named as Cu-GSSG NPs, to fix free copper. With the aid of hydrogen peroxide (H2O2) in vitro, Cu-GSSG NPs catalyzed it to •OH radicals, which could be confirmed by the electron spin resonance spectrum and the degradation experiment of methylene blue. Based on these results, we further studied the intracellular properties of Cu-GSSG NPs and found that Cu-GSSG NPs could react with the overexpressed H2O2 in tumor cells to produce •OH radicals effectively by the Fenton-like reaction to induce cell death. Therefore, Cu-GSSG NPs could be a kind of potential "green" nanocatalytic drug with good biocompatibility to achieve CDT.
Collapse
Affiliation(s)
- Zu-E Hu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhe-Ning Wu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yun-Jie Wei
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Na Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
He Y, Yi C, Zhang X, Zhao W, Yu D. Magnetic graphene oxide: Synthesis approaches, physicochemical characteristics, and biomedical applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Wang S, Sun Z, Hou Y. Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2000845. [PMID: 32790039 DOI: 10.1002/adhm.202000845] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapy is a new therapeutic strategy to fight cancer by activating the patients' own immune system. At present, immunotherapy approaches such as cancer vaccines, immune checkpoint blockade (ICB), adoptive cell transfer (ACT), monoclonal antibodies (mAbs) therapy, and cytokines therapy have therapeutic potential in preclinical and clinical applications. However, the intrinsic limitations of conventional immunotherapy are difficulty of precise dosage control, insufficient enrichment in tumor tissues, partial immune response silencing or hyperactivity, and high cost. Engineering nanoparticles (NPs) have been emerging as a promising multifunctional platform to enhance conventional immunotherapy due to their intrinsic immunogenicity, convenient delivery function, controlled surface chemistry activity, multifunctional modifying potential, and intelligent targeting. This review presents the recent progress reflected by engineering NPs, including the diversified selection of functionalized NPs, the superiority of engineering NPs for enhancing conventional immunotherapy, and NP-mediated multiscale strategies for synergistic therapy consisting of compositions and their mechanism. Finally, the perspective on multifunctional NP-based cancer immunotherapy for boosting immunomodulation is discussed, which reveals the expanding landscape of engineering NPs in clinical translation.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
| | - Zhaoli Sun
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
- College of Life Sciences Peking University Beijing 100871 China
| | - Yanglong Hou
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
| |
Collapse
|
21
|
Catalase immunoexpression in colorectal lesions. GASTROENTEROLOGY REVIEW 2020; 15:330-337. [PMID: 33777273 PMCID: PMC7988832 DOI: 10.5114/pg.2020.101562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022]
Abstract
Introduction It is generally accepted that the gastrointestinal tract, and especially the colon, is constantly exposed to reactive oxygen species (ROS) that may be responsible for the appearance of genetic mutations. To keep a steady-state control over ROS production-detoxification, organisms have evolved a defensive system. Nevertheless, many reports have described decreased level of antioxidant enzymes, especially catalase (CAT), in cancer tissues. Aim In this work we try to assess the immunohistochemical expression of CAT protein in colorectal adenoma and adenocarcinoma samples. Material and methods This study was performed on resected specimens obtained from 122 patients who had undergone surgical resection for colorectal cancer, and from 120 patients who had undergone colonoscopy. Paraffin- embedded, 4 µm-thick tissue sections were stained for rabbit polyclonal anti CAT antibody obtained from GeneTex (cat. no. GTX110704). Results In adenoma strong immunoexpression was detected mainly in infiltrating mononuclear cells within lamina propria. High expression of CAT was significantly associated with grade of dysplasia (high grade vs. low grade, p = 0.037). In adenocarcinoma samples, the high level of CAT immunoexpression was significantly correlated with histological grade of tumour (G1 vs. G2 vs. G3, p = 0.001) and depth of invasion (T1 vs. T2 vs. T3 vs. T4, p = 0.003). Conclusions Development of colorectal cancer is associated with increased expression of CAT in the stage of adenoma and decreased expression in the stage of adenocarcinoma.
Collapse
|
22
|
Ezeigwe OC, Nzekwe FA, Nworji OF, Ezennaya CF, Iloanya EL, Asogwa KK. Effect of Aqueous Extract of F. capensis Leaves and Its Combination with C. aconitifolius Leaves on Essential Biochemical Parameters of Phenylhydrazine-Induced Anemic Rats. J Exp Pharmacol 2020; 12:191-201. [PMID: 32669880 PMCID: PMC7335891 DOI: 10.2147/jep.s254003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/07/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Ficus capensis Moraceae and Cnidoscolus aconitifolius Euphorbiaceae leaves have been used separately in traditional medical practice to treat different ailments, of which anemia is one. This study aims to evaluate the effect of F. capensis and C. aconitifolius on hepatic, renal parameters and oxidative stress of phenylhydrazine-induced anemic rats. METHODS Thirty-five rats were randomized into seven groups (A-G) of five rats each. Groups A and B served as the normal control and anemic control, respectively, while Groups C, D, E, F, and G were treated with a standard drug (vitamin B12), 200mg/kg bw. aqueous extract of F. capensis, 400mg/kg b.w. aqueous extract of F. capensis, 200mg/kg bw. of a combination of aqueous extract of F. capensis and C. aconitifolius and 400mg/kg bw. of a combination of aqueous extract of F. capensis and C. aconitifolius, respectively. The biochemical analysis (liver and kidney function analysis, oxidative stress) was carried out using standard diagnostic techniques. RESULTS The results showed that there was significant decrease (p<0.05) in the values obtained for Aspartate Transaminase (AST), alanine Transaminase (ALT), Alkaline Phosphatase (ALP), total bilirubin, urea, creatinine, potassium ion, Total Cholesterol (TCHOL), Low-density Lipoprotein (LDL-C), Triglycerides (TRIG), Very Low-density Lipoprotein (VLDL-C) and Malondialdehyde (MDA) and a significant increase (p<0.05) in obtained values for High-density Lipoprotein (HDL) in all the extract-treated groups compared with the anemic-untreated. The values obtained for most of these biochemical parameters in the extract-treated groups were in the range of the normal control showing that the extract did not, in any way, alter the biochemical parameters. There was a significant increase (p<0.05) in the glutathione peroxidase (Glut. Perox.) enzyme activity of the groups treated with the aqueous extract of F. capensis and its combination with C. aconitifolius compared with the anemic-untreated. CONCLUSION These results suggest that the aqueous extracts of F. capensis and C. aconitifolius leaves may promote liver function parameters, maintain normal serum electrolyte level and kidney function indices, stimulate reduction of "bad cholesterols" and increase "good cholesterol" and reduce oxidative stress.
Collapse
Affiliation(s)
- Obiajulu Christian Ezeigwe
- Department of Applied Biochemistry, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Favour Amarachi Nzekwe
- Department of Applied Biochemistry, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Ogechukwu Frances Nworji
- Department of Applied Biochemistry, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Chidinma Felicia Ezennaya
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Ebele Lauretta Iloanya
- Department of Applied Biochemistry, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Kingsley Kelechi Asogwa
- Department of Applied Biochemistry, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
23
|
Tang ZM, Liu YY, Ni DL, Zhou JJ, Zhang M, Zhao PR, Lv B, Wang H, Jin DY, Bu WB. Biodegradable Nanoprodrugs: "Delivering" ROS to Cancer Cells for Molecular Dynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904011. [PMID: 31793717 DOI: 10.1002/adma.201904011] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Biodegradable nanoprodrugs, inheriting the antitumor effects of chemotherapy drugs and overcoming the inevitable drawback of side effects on normal tissues, hold promise as next-generation cancer therapy candidates. Biodegradable nanoprodrugs of transferrin-modified MgO2 nanosheets are developed to selectively deliver reactive oxygen species to cancer cells for molecular dynamic therapy strategy. The nanosheets favor the acidic and low catalase activity tumor microenvironment to react with proton and release nontoxic Mg2+ . This reaction simultaneously produces abundant H2 O2 to induce cell death and damage the structure of transferrin to release Fe3+ , which will react with H2 O2 to produce highly toxic ·OH to kill tumor cells.
Collapse
Affiliation(s)
- Zhong-Min Tang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yan-Yan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Da-Long Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jia-Jia Zhou
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Pei-Ran Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Bin Lv
- Department of Radiotherapy, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Han Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Da-Yong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wen-Bo Bu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
24
|
Tang Z, Liu Y, He M, Bu W. Chemodynamic Therapy: Tumour Microenvironment‐Mediated Fenton and Fenton‐like Reactions. Angew Chem Int Ed Engl 2019; 58:946-956. [DOI: 10.1002/anie.201805664] [Citation(s) in RCA: 920] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/22/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Zhongmin Tang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P.R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| |
Collapse
|
25
|
Tang Z, Liu Y, He M, Bu W. Chemodynamic Therapy: Tumour Microenvironment‐Mediated Fenton and Fenton‐like Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805664] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhongmin Tang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P.R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| |
Collapse
|
26
|
Li M, Yue GGL, Tsui SKW, Fung KP, Lau CBS. Turmeric extract, with absorbable curcumin, has potent anti-metastatic effect in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:131-141. [PMID: 30097113 DOI: 10.1016/j.phymed.2018.03.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/16/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Curcumin, a well-studied component in turmeric, exhibits potent antitumor effects in colorectal cancer. Previous studies showed that turmerones raised the accumulation of curcumin inside colonic cells, and curcumin present in turmeric ethanolic extract had enhanced anti-tumor activities in mice. Metastasis accounts for more than 90% colorectal cancer deaths. However, the anti-metastatic effect of turmeric extract on colorectal cancer is still unknown. METHODS In the present study, colony formation, scratch, transwell and Western blot were used to assess colony formation, motility, migration and underlying mechanisms in vitro, respectively. Anti-tumor and anti-metastatic effects in vivo were investigated using an orthotopic xenograft model. RESULTS Turmeric extract exhibited cytotoxic effect, inhibited colony formation, decreased cell motility, migration and epithelial-mesenchymal transitions through regulating multiple pathways including cofilin, FAK/p-Src, AKT, Erk and STAT3 signaling pathways in murine colorectal cancer cells. Furthermore, turmeric extract at 200 mg/kg could decrease colon tumor burden and inhibit liver and lung metastasis in vivo. Treatment of turmeric extract enhanced immunity through T cell stimulation, changed tumor microenvironment, exerted anti-metastatic effects which were shown for the first time in pre-clinical colorectal cancer models. The decrease of immunity after FOLFOX treatment was also firstly demonstrated in mouse model. CONCLUSIONS Turmeric extract was demonstrated for the first time for its anti-tumor and anti-metastatic effects in both colorectal cancer cells and orthotopic mouse model through regulation of multiple targets. These findings strongly suggested the promising use of turmeric extract as chemopreventive or chemotherapeutic agent for colorectal cancer patients with metastasis.
Collapse
Affiliation(s)
- Mingyue Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwok-Pui Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
27
|
Li C, Liu Y, Fu Y, Huang T, Kang L, Li C. The antiproliferative activity of di-2-pyridylketone dithiocarbamate is partly attributed to catalase inhibition: detailing the interaction by spectroscopic methods. MOLECULAR BIOSYSTEMS 2018; 13:1817-1826. [PMID: 28714505 DOI: 10.1039/c7mb00032d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The bioactivity of drugs is attributed to their interaction with biological molecules, embodied in either their direct or indirect influence on enzyme activity and conformation. Di-2-pyridylketone hydrazine dithiocarbamate (DpdtC) exhibits significant antitumor activity in our preliminary study. We speculated that its activity may partly stem from enzyme inhibition due to strong metal chelating ability. To this end, we assessed its effect on catalase from erythrocytes and found evidence of inhibition, which was further confirmed by ROS determination in vivo. Thus, detailing the interaction between the agent and catalase via spectroscopic methods and molecular docking was required to obtain information on both the dynamics and thermodynamic parameters. The Lineweaver-Burk plot implied an uncompetitive pattern between DpdtC and catalase from beef liver, and IC50 = ∼7 μM. The thermodynamic parameters from fluorescence quenching measurements indicated that DpdtC could bind to catalase with moderate affinity (Ka = approximately 104 M-1). CD spectra revealed that DpdtC could significantly disrupt the secondary structure of catalase. Docking studies indicated that DpdtC bound to a flexible region of catalase, involving hydrogen bonds and salt bond; this was consistent with thermodynamic results from spectral investigations. Our data clearly showed that catalase inhibition of DpdtC was not due to direct chelation of iron from heme (killing), but through an allosteric effect. Thus, it can be concluded that the antiproliferative activity of DpdtC is partially attributed to its catalase inhibition.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | | | | | | | | | | |
Collapse
|
28
|
Natural small molecule bigelovin suppresses orthotopic colorectal tumor growth and inhibits colorectal cancer metastasis via IL6/STAT3 pathway. Biochem Pharmacol 2018; 150:191-201. [PMID: 29454618 DOI: 10.1016/j.bcp.2018.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/14/2018] [Indexed: 01/12/2023]
Abstract
Bigelovin, a sesquiterpene lactone, has been demonstrated to induce apoptosis, inhibit inflammation and angiogenesis in vitro, but its potential anti-metastatic activity remains unclear. In the present study, two colon cancer mouse models, orthotopic tumor allografts and experimental metastatic models were utilized to investigate the progression and metastatic spread of colorectal cancer after bigelovin treatments. Results showed that bigelovin (intravenous injection; 0.3-3 mg/kg) significantly suppressed tumor growth and inhibited liver/lung metastasis with modulation of tumor microenvironment (e.g. increased populations of T lymphocytes and macrophages) in orthotopic colon tumor allograft-bearing mice. Furthermore, the inhibitory activities were also validated in the experimental human colon cancer metastatic mouse model. The underlying mechanisms involved in the anti-metastatic effects of bigelovin were then revealed in murine colon tumor cells colon 26-M01 and human colon cancer cells HCT116. Results showed that bigelovin induced cytotoxicity, inhibition of cell proliferation, motility and migration in both cell lines, which were through interfering IL6/STAT3 and cofilin pathways. Alternations of the key molecules including Rock, FAK, RhoA, Rac1/2/3 and N-cadherin, which were detected in bigelovin-treated cancer cells, were also observed in the tumor allografts of bigelovin-treated mice. These findings strongly indicated that bigelovin has potential to be developed as anti-tumor and anti-metastatic agent for colorectal cancer.
Collapse
|
29
|
Miar A, Hevia D, Muñoz-Cimadevilla H, Astudillo A, Velasco J, Sainz RM, Mayo JC. Manganese superoxide dismutase (SOD2/MnSOD)/catalase and SOD2/GPx1 ratios as biomarkers for tumor progression and metastasis in prostate, colon, and lung cancer. Free Radic Biol Med 2015; 85:45-55. [PMID: 25866291 DOI: 10.1016/j.freeradbiomed.2015.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/09/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
The role of manganese-dependent superoxide dismutase (SOD2/MnSOD) during tumor progression has been studied for several decades with controversial results. While SOD2 downregulation was initially associated with tumor initiation and was proposed as a tumor suppressor gene, recent studies have reported that SOD2 might favor tumor progression and dissemination. To our knowledge this is the first time that changes in SOD2 expression in three different types of tumors, i.e., prostate, lung, and colon cancer, are studied by analyzing both SOD2 mRNA and protein levels in a total of 246 patients' samples. In prostate samples, SOD2 protein levels were also increased, especially in middle stage tumors. In the case of colon and lung tumors both mRNA and protein SOD2 levels were increased in malignant tissues compared to those in nontumor samples. More importantly, all metastases analyzed showed increased levels of SOD2 when compared to those of normal primary tissue and healthy adjacent tissue. Together, these results suggest that a common redox imbalance in these three types of tumor occurs at intermediate stages which then might favor migration and invasion, leading to a more aggressive cancer type. Consequently, the ratios SOD2/catalase and SOD2/Gpx1 could be considered as potential markers during progression from tumor growth to metastasis.
Collapse
Affiliation(s)
- Ana Miar
- Departamento de Morfología y Biología Celular, Facultad de Medicina y Ciencias de la Salud, University of Oviedo, Spain; Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
| | - David Hevia
- Departamento de Morfología y Biología Celular, Facultad de Medicina y Ciencias de la Salud, University of Oviedo, Spain; Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
| | - Henar Muñoz-Cimadevilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina y Ciencias de la Salud, University of Oviedo, Spain
| | - Aurora Astudillo
- Departamento de Morfología y Biología Celular, Facultad de Medicina y Ciencias de la Salud, University of Oviedo, Spain; Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Julio Velasco
- Department of Pathology, Hospital de San Agustin, Aviles, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, Facultad de Medicina y Ciencias de la Salud, University of Oviedo, Spain; Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain.
| | - Juan C Mayo
- Departamento de Morfología y Biología Celular, Facultad de Medicina y Ciencias de la Salud, University of Oviedo, Spain; Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain.
| |
Collapse
|
30
|
Zienkiewicz M, Jabłońska-Wawrzycka A, Szlachetko J, Kayser Y, Stadnicka K, Sawka-Dobrowolska W, Jezierska J, Barszcz B, Sá J. Effective catalytic disproportionation of aqueous H2O2 with di- and mono-nuclear manganese(II) complexes containing pyridine alcohol ligands. Dalton Trans 2015; 43:8599-608. [PMID: 24406400 DOI: 10.1039/c3dt53288g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two novel manganese(II) complexes with 2-hydroxymethylpyridine (2-CH2OHpy) {[Mn2(μ-Cl)2(2-CH2OHpy)4]Cl2·2H2O (1)} and 2-hydroxyethylpyridine (2-(CH2)2OHpy) {[Mn(2-(CH2)2OHpy)2(NCS)2] (2)} were synthesized and characterized by means of X-ray diffraction, IR, EPR, HF EPR spectroscopy, magnetic and TG/DTG data. The complexes show catalase-like activity in neutral aqueous solution since they were able to disproportionate H2O2 to harmless H2O and O2. Both complexes act as true catalysts since they reverted to their original form after depleting all the H2O2, as suggested by the operando resonant inelastic X-ray spectroscopy (RIXS) measurements.
Collapse
Affiliation(s)
- M Zienkiewicz
- Institute of Chemistry, Jan Kochanowski University in Kielce, 15G Swiętokrzyska Str., 25-406 Kielce, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hira SK, Mondal I, Manna PP. Combined immunotherapy with whole tumor lysate–pulsed interleukin-15–activated dendritic cells and cucurbitacin I promotes strong CD8+ T-cell responses and cures highly aggressive lymphoma. Cytotherapy 2015; 17:647-64. [DOI: 10.1016/j.jcyt.2015.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 12/22/2022]
|
32
|
Kang DH, Kang SW. Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease. Biomol Ther (Seoul) 2014; 21:89-96. [PMID: 24009865 PMCID: PMC3762320 DOI: 10.4062/biomolther.2013.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/12/2013] [Indexed: 02/04/2023] Open
Abstract
Atherosclerotic vascular dysfunction is a chronic inflammatory process that spreads from the fatty streak and foam cells through lesion progression. Therefore, its early diagnosis and prevention is unfeasible. Reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerotic vascular disease. Intracellular redox status is tightly regulated by oxidant and antioxidant systems. Imbalance in these systems causes oxidative or reductive stress which triggers cellular damage or aberrant signaling, and leads to dysregulation. Paradoxically, large clinical trials have shown that non-specific ROS scavenging by antioxidant vitamins is ineffective or sometimes harmful. ROS production can be locally regulated by cellular antioxidant enzymes, such as superoxide dismutases, catalase, glutathione peroxidases and peroxiredoxins. Therapeutic approach targeting these antioxidant enzymes might prove beneficial for prevention of ROS-related atherosclerotic vascular disease. Conversely, the development of specific antioxidant enzyme-mimetics could contribute to the clinical effectiveness.
Collapse
Affiliation(s)
- Dong Hoon Kang
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | |
Collapse
|
33
|
Tsai JY, Lee MJ, Dah-Tsyr Chang M, Huang H. The effect of catalase on migration and invasion of lung cancer cells by regulating the activities of cathepsin S, L, and K. Exp Cell Res 2014; 323:28-40. [PMID: 24583396 DOI: 10.1016/j.yexcr.2014.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/10/2014] [Accepted: 02/16/2014] [Indexed: 12/16/2022]
Abstract
Abundant clinical evidences indicate that up-regulation of several cathepsins in many human cancers is correlated with malignant progression and poor patient prognosis. In addition, a decrease in catalase activity or accumulation of hydrogen peroxide correlates with cancer metastasis. Recent studies indicate that cathepsin activation and expression can be modulated via H2O2 treatment. However, the actual relationship between catalase and cathepsins is not yet fully understood. In the present study, we found that catalase expression (or activity) was higher, while intracellular and extracellular Cat S, Cat L, and Cat K activities were lower in the non-invasive CL1-0 cells compared to the highly invasive CL1-5 cells. After CL1-0 cells were transfected with catalase-shRNA, the corresponding ROS (H2O2) level and Cat S, Cat L, or Cat K expression (or activity) was up-regulated, accompanied by an increase in cell migration and invasion. On the other hand, ROS (H2O2) level, cathepsin S, L, and K activities, cell migration and invasion were decreased in catalase-overexpressed CL1-5 cells. It is suggested that catalase may regulate cathepsin activity by controlling the production of ROS (H2O2), leading to variation in migration and invasion ability of lung cancer cells.
Collapse
Affiliation(s)
- Ju-Ying Tsai
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology & Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan.
| | - Haimei Huang
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
34
|
Villalonga ML, Díez P, Sánchez A, Gamella M, Pingarrón JM, Villalonga R. Neoglycoenzymes. Chem Rev 2014; 114:4868-917. [DOI: 10.1021/cr400290x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Paula Díez
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - Alfredo Sánchez
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - María Gamella
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - José M. Pingarrón
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
- IMDEA
Nanoscience, Cantoblanco Universitary City, 28049-Madrid, Spain
| | - Reynaldo Villalonga
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
- IMDEA
Nanoscience, Cantoblanco Universitary City, 28049-Madrid, Spain
| |
Collapse
|
35
|
Pharmacokinetic considerations for targeted drug delivery. Adv Drug Deliv Rev 2013; 65:139-47. [PMID: 23280371 DOI: 10.1016/j.addr.2012.11.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023]
Abstract
Drug delivery systems involve technology designed to maximize therapeutic efficacy of drugs by controlling their biodistribution profile. In order to optimize a function of the delivery systems, their biodistribution characteristics should be systematically understood. Pharmacokinetic analysis based on the clearance concepts provides quantitative information of the biodistribution, which can be related to physicochemical properties of the delivery system. Various delivery systems including macromolecular drug conjugates, chemically or genetically modified proteins, and particulate drug carriers have been designed and developed so far. In this article, we review physiological and pharmacokinetic implications of the delivery systems.
Collapse
|
36
|
Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, Martinez-Outschoorn UE, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 2012; 16:1264-84. [PMID: 21883043 PMCID: PMC3324816 DOI: 10.1089/ars.2011.4243] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Here, we review certain recent advances in oxidative stress and tumor metabolism, which are related to understanding the contributions of the microenvironment in promoting tumor growth and metastasis. In the early 1920s, Otto Warburg, a Nobel Laureate, formulated a hypothesis to explain the "fundamental basis" of cancer, based on his observations that tumors displayed a metabolic shift toward glycolysis. In 1963, Christian de Duve, another Nobel Laureate, first coined the phrase auto-phagy, derived from the Greek words "auto" and "phagy," meaning "self" and "eating." RECENT ADVANCES Now, we see that these two ideas (autophagy and aerobic glycolysis) physically converge in the tumor stroma. First, cancer cells secrete hydrogen peroxide. Then, as a consequence, oxidative stress in cancer-associated fibroblasts drives autophagy, mitophagy, and aerobic glycolysis. CRITICAL ISSUES This "parasitic" metabolic coupling converts the stroma into a "factory" for the local production of recycled and high-energy nutrients (such as L-lactate)-to fuel oxidative mitochondrial metabolism in cancer cells. We believe that Warburg and de Duve would be pleased with this new two-compartment model for understanding tumor metabolism. It adds a novel stromal twist to two very well-established cancer paradigms: aerobic glycolysis and autophagy. FUTURE DIRECTIONS Undoubtedly, these new metabolic models will foster the development of novel biomarkers, and corresponding therapies, to achieve the goal of personalized cancer medicine. Given the central role that oxidative stress plays in this process, new powerful antioxidants should be developed in the fight against cancer.
Collapse
Affiliation(s)
- Stephanos Pavlides
- Department of Stem Cell Biology & Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ramos-Mozo P, Madrigal-Matute J, Martinez-Pinna R, Blanco-Colio LM, Lopez JA, Camafeita E, Meilhac O, Michel JB, Aparicio C, de Ceniga MV, Egido J, Martín-Ventura JL. Proteomic Analysis of Polymorphonuclear Neutrophils Identifies Catalase as a Novel Biomarker of Abdominal Aortic Aneurysm: Potential Implication of Oxidative Stress in Abdominal Aortic Aneurysm Progression. Arterioscler Thromb Vasc Biol 2011; 31:3011-9. [DOI: 10.1161/atvbaha.111.237537] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Polymorphonuclear neutrophils (PMNs) play a main role in abdominal aortic aneurysm (AAA) progression. We have analyzed circulating PMNs isolated from AAA patients and controls by a proteomic approach to identify proteins potentially involved in AAA pathogenesis.
Methods and Results—
PMNs from 8 AAA patients (4 large AAA >5 cm and 4 small AAA 3–5 cm) and 4 controls were analyzed by 2D differential in-gel electrophoresis. Among differentially expressed spots, several proteins involved in redox balance were identified by mass spectrometry (eg, cyclophilin, thioredoxin reductase, catalase). Diminished catalase expression and activity were observed in PMNs from AAA patients compared with controls. In contrast, PMNs from AAA patients displayed higher H
2
O
2
and myeloperoxidase levels than PMNs from controls. Moreover, a significant decrease in catalase mRNA levels was observed in PMNs after phorbol 12-myristate 13-acetate incubation. Catalase plasma levels were also decreased in large (n=47) and small (n=56) AAA patients compared with controls (n=34). We observed catalase expression in AAA thrombus and thrombus-conditioned medium, associated with PMN infiltration. Furthermore, increased H
2
O
2
levels were observed in AAA thrombus-conditioned medium compared with the media layer.
Conclusion—
Diminished catalase levels in circulating PMNs and plasma are observed in AAA patients, supporting an important role of oxidative stress in AAA evolution.
Collapse
Affiliation(s)
- Priscila Ramos-Mozo
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - Julio Madrigal-Matute
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - Roxana Martinez-Pinna
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - Luis Miguel Blanco-Colio
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - Juan Antonio Lopez
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - Emilio Camafeita
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - Olivier Meilhac
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - Jean-Baptiste Michel
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - Cesar Aparicio
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - Melina Vega de Ceniga
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - Jesus Egido
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| | - José Luis Martín-Ventura
- From the Vascular Research Laboratory (P.R.-M., J.M.-M., R.M.-P., L.M.B.-C., J.E., J.L.M.-V.) and Vascular Surgery (C.A.), Instituto de Investigaciones Sanitarias, Fundación Jiménez Diaz, Autonoma University, Madrid, Spain; Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.A.L., E.C.); Institut National de la Santé et de la Recherche Médicale, U698, Univ Paris 7, College Hospital Universitary, X-Bichat, Paris, France (O.M., J.-B.M.); Galdakao Hospital,
| |
Collapse
|
38
|
Lisanti MP, Martinez-Outschoorn UE, Lin Z, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer". Cell Cycle 2011; 10:2440-9. [PMID: 21734470 PMCID: PMC3180186 DOI: 10.4161/cc.10.15.16870] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/18/2011] [Indexed: 01/13/2023] Open
Abstract
In 1889, Dr. Stephen Paget proposed the "seed and soil" hypothesis, which states that cancer cells (the seeds) need the proper microenvironment (the soil) for them to grow, spread and metastasize systemically. In this hypothesis, Dr. Paget rightfully recognized that the tumor microenvironment has an important role to play in cancer progression and metastasis. In this regard, a series of recent studies have elegantly shown that the production of hydrogen peroxide, by both cancer cells and cancer-associated fibroblasts, may provide the necessary "fertilizer," by driving accelerated aging, DNA damage, inflammation and cancer metabolism, in the tumor microenvironment. By secreting hydrogen peroxide, cancer cells and fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local and systemic inflammation, via the innate immune response (NFκB). Thus, we should consider using various therapeutic strategies (such as catalase and/or other anti-oxidants) to neutralize the production of cancer-associated hydrogen peroxide, thereby preventing tumor-stroma co-evolution and metastasis. The implications of these findings for overcoming chemo-resistance in cancer cells are also discussed in the context of hydrogen peroxide production and cancer metabolism.
Collapse
Affiliation(s)
- Michael P Lisanti
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle 2011; 10:2504-20. [PMID: 21778829 DOI: 10.4161/cc.10.15.16585] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Previously, we proposed that cancer cells behave as metabolic parasites, as they use targeted oxidative stress as a "weapon" to extract recycled nutrients from adjacent stromal cells. Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis, and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the "reverse Warburg effect." To further test the validity of this hypothesis, here we used an in vitro MCF7-fibroblast co-culture system, and quantitatively measured a variety of metabolic parameters by FACS analysis (analogous to laser-capture micro-dissection). Mitochondrial activity, glucose uptake, and ROS production were measured with highly-sensitive fluorescent probes (MitoTracker, NBD-2-deoxy-glucose, and DCF-DA). Interestingly, using this approach, we directly show that cancer cells initially secrete hydrogen peroxide that then triggers oxidative stress in neighboring fibroblasts. Thus, oxidative stress is contagious (spreads like a virus) and is propagated laterally and vectorially from cancer cells to adjacent fibroblasts. Experimentally, we show that oxidative stress in cancer-associated fibroblasts quantitatively reduces mitochondrial activity, and increases glucose uptake, as the fibroblasts become more dependent on aerobic glycolysis. Conversely, co-cultured cancer cells show significant increases in mitochondrial activity, and corresponding reductions in both glucose uptake and GLUT1 expression. Pre-treatment of co-cultures with extracellular catalase (an anti-oxidant enzyme that detoxifies hydrogen peroxide) blocks the onset of oxidative stress, and potently induces the death of cancer cells, likely via starvation. Given that cancer-associated fibroblasts show the largest increases in glucose uptake, we suggest that PET imaging of human tumors, with Fluoro-2-deoxy-D-glucose (F-2-DG), may be specifically detecting the tumor stroma, rather than epithelial cancer cells.
Collapse
Affiliation(s)
- Ubaldo E Martinez-Outschoorn
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lisanti MP, Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Accelerated aging in the tumor microenvironment: connecting aging, inflammation and cancer metabolism with personalized medicine. Cell Cycle 2011; 10:2059-63. [PMID: 21654190 DOI: 10.4161/cc.10.13.16233] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cancer is thought to be a disease associated with aging. Interestingly, normal aging is driven by the production of ROS and mitochondrial oxidative stress, resulting in the cumulative accumulation of DNA damage. Here, we discuss how ROS signaling, NFκB- and HIF1-activation in the tumor microenvironment induces a form of "accelerated aging," which leads to stromal inflammation and changes in cancer cell metabolism. Thus, we present a unified model where aging (ROS), inflammation (NFκB) and cancer metabolism (HIF1), act as co-conspirators to drive autophagy ("self-eating") in the tumor stroma. Then, autophagy in the tumor stroma provides high-energy "fuel" and the necessary chemical building blocks, for accelerated tumor growth and metastasis. Stromal ROS production acts as a "mutagenic motor" and allows cancer cells to buffer-at a distance-exactly how much of a mutagenic stimulus they receive, further driving tumor cell selection and evolution. Surviving cancer cells would be selected for the ability to induce ROS more effectively in stromal fibroblasts, so they could extract more nutrients from the stroma via autophagy. If lethal cancer is a disease of "accelerated host aging" in the tumor stroma, then cancer patients may benefit from therapy with powerful antioxidants. Antioxidant therapy should block the resulting DNA damage, and halt autophagy in the tumor stroma, effectively "cutting off the fuel supply" for cancer cells. These findings have important new implications for personalized cancer medicine, as they link aging, inflammation and cancer metabolism with novel strategies for more effective cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Michael P Lisanti
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Increase in preoperative serum reactive oxygen metabolite levels indicates nodal extension in patients with clinical stage I lung adenocarcinoma. Gen Thorac Cardiovasc Surg 2011; 59:335-40. [PMID: 21547627 DOI: 10.1007/s11748-010-0739-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/01/2010] [Indexed: 12/20/2022]
Abstract
PURPOSE Reactive oxygen species contribute to various features of malignant tumors, including carcinogenesis, aberrant growth, metastasis, and angiogenesis. Investigation of serum oxidative stress levels may predict the tumor's condition, including malignant and metastatic potential. METHODS We recruited 46 patients (27 men, 19 women; median age 70 years) with clinical stage I lung adenocarcinoma who had undergone pulmonary resection with mediastinal lymph node dissection. Preoperative serum reactive oxygen metabolite (ROM) levels were measured as an indicator of oxidative stress. RESULTS The serum ROM level was significantly correlated with the increase in tumor size (P = 0.018) and pathological nodal extension (P = 0.005). Multivariate analysis revealed that pathological nodal extension was significantly correlated with the increase in serum ROM level (P = 0.027). The prognostic cutoff value was determined according to receiver operating characteristic curve analysis for patients with and those without nodal extension; the cutoff value was determined to be 318 Carratelli units (U.CARR). CONCLUSION The findings of our study revealed that patients with clinical stage I lung adenocarcinoma and a serum ROM level above 318 U.CARR were likely to develop nodal extension. The finding of a significant correlation between serum ROM level and nodal extension may help in the development of new treatment strategies.
Collapse
|
42
|
|
43
|
Kim MH, Chi YS, Han JH. A New Stereoisomer of Mn(II) Tris(2-Pyridylmethyl)amine Complex, [TPA2Mn](ClO4)2. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 2009; 5:51-66. [PMID: 20057381 DOI: 10.1038/nprot.2009.197] [Citation(s) in RCA: 835] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cells contain a large number of antioxidants to prevent or repair the damage caused by reactive oxygen species, as well as to regulate redox-sensitive signaling pathways. General protocols are described to measure the antioxidant enzyme activity of superoxide dismutase (SOD), catalase and glutathione peroxidase. The SODs convert superoxide radical into hydrogen peroxide and molecular oxygen, whereas the catalase and peroxidases convert hydrogen peroxide into water. In this way, two toxic species, superoxide radical and hydrogen peroxide, are converted to the harmless product water. Western blots, activity gels and activity assays are various methods used to determine protein and activity in both cells and tissue depending on the amount of protein required for each assay. Other techniques including immunohistochemistry and immunogold can further evaluate the levels of the various antioxidant enzymes in tissues and cells. In general, these assays require 24-48 h to complete.
Collapse
|
45
|
Nishikawa M, Hashida M, Takakura Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv Drug Deliv Rev 2009; 61:319-26. [PMID: 19385054 DOI: 10.1016/j.addr.2009.01.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) have been suggested to be involved in a variety of human diseases. Catalase, an enzyme degrading hydrogen peroxide, can be used as a therapeutic agent for such diseases, but its successful application will depend on the distribution of the enzyme to the sites where ROS are generated. Chemical modification techniques have been used to control the tissue distribution of catalase, and delivery to hepatocytes (galactosylation), liver nonparenchymal cells (mannosylation or succinylation), kidney (cationization) and the blood pool (PEGylation) has been achieved. The effectiveness of catalase delivery has been demonstrated in animal models for hepatic ischemia/reperfusion injury, chemical-induced tissue injuries and tumor metastasis to the liver, lung and peritoneal organs. Significant inhibition was observed in the ROS-mediated oxidative tissue damages and ROS-mediated upregulation of expression of genes responsible for recruitment of inflammatory cells and for metastatic growth of tumor cells. Because oxygen plays a fundamental key role in our life and oxidative stress is implicated in a wide variety of human diseases, catalase delivery could have wide application in the near future.
Collapse
|
46
|
Hyoudou K, Nishikawa M, Ikemura M, Kobayashi Y, Mendelsohn A, Miyazaki N, Tabata Y, Yamashita F, Hashida M. Prevention of pulmonary metastasis from subcutaneous tumors by binary system-based sustained delivery of catalase. J Control Release 2009; 137:110-5. [PMID: 19361547 DOI: 10.1016/j.jconrel.2009.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/09/2009] [Accepted: 04/04/2009] [Indexed: 11/25/2022]
Abstract
Catalase delivery can be effective in inhibiting reactive oxygen species (ROS)-mediated acceleration of tumor metastasis. Our previous studies have demonstrated that increasing the plasma half-life of catalase by pegylation (PEG-catalase) significantly increases its potency of inhibiting experimental pulmonary metastasis in mice. In the present study, a biodegradable gelatin hydrogel formulation was used to further increase the circulation time of PEG-catalase. Implantation of (111)In-PEG-catalase/hydrogel into subcutaneous tissues maintained the radioactivity in plasma for more than 14 days. Then, the effect of the PEG-catalase/hydrogel on spontaneous pulmonary metastasis of tumor cells was evaluated in mice with subcutaneous tumor of B16-BL6/Luc cells, a murine melanoma cell line stably expressing luciferase. Measuring luciferase activity in the lung revealed that the PEG-catalase/hydrogel significantly (P<0.05) inhibited the pulmonary metastasis compared with PEG-catalase solution. These findings indicate that sustaining catalase activity in the blood circulation achieved by the use of pegylation and gelatin hydrogel can reduce the incidence of tumor cell metastasis.
Collapse
Affiliation(s)
- Kenji Hyoudou
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kobayashi Y, Nishikawa M, Hyoudou K, Yamashita F, Hashida M. Hydrogen peroxide-mediated nuclear factor kappaB activation in both liver and tumor cells during initial stages of hepatic metastasis. Cancer Sci 2008; 99:1546-52. [PMID: 18754865 PMCID: PMC11158348 DOI: 10.1111/j.1349-7006.2008.00856.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various factors involved in tumor metastasis are regulated by the transcription factor nuclear factor kappaB (NF-kappaB). Because NF-kappaB activation may contribute to establishment of hepatic metastasis, its activation in liver cells and tumor cells was separately evaluated in a mouse model of hepatic metastasis. pNF-kappaB-Luc, a firefly luciferase-expressing plasmid DNA depending on the NF-kappaB activity, was injected into the tail vein of mice by the hydrodynamics-based procedure, a well-established method for gene transfer to BALB/c male mouse liver. The luciferase activity in the liver was significantly increased by an intraportal inoculation of murine adenocarcinoma colon26 cells, but not of peritoneal macrophages, suggesting that the NF-kappaB in liver cells is activated when tumor cells enter the hepatic circulation. Then, colon26 cells stably transfected with pNF-kappaB-Luc were inoculated. The firefly luciferase activity, an indicator of NF-kappaB activity in tumor cells, was significantly increased when colon26/NFkappaB-Luc cells were inoculated into the portal vein of BALB/c male mice. The NF-kappaB activation in both liver and tumor cells was significantly inhibited by injection of catalase derivatives, which have been reported to inhibit hepatic metastasis of tumor cells. These findings indicate for the first time that NF-kappaB, a key agent regulating the expression of various molecules involved in tumor metastasis, is activated in both liver and tumor cells during the initial stages of tumor metastasis through a hydrogen peroxide mediated pathway. Thus, the removal of hydrogen peroxide will be a promising approach to treating hepatic metastasis.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
48
|
de Moreno de LeBlanc A, LeBlanc JG, Perdigón G, Miyoshi A, Langella P, Azevedo V, Sesma F. Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice. J Med Microbiol 2008; 57:100-105. [PMID: 18065674 DOI: 10.1099/jmm.0.47403-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Reactive oxygen species, such as hydrogen peroxide (H2O2), are involved in various aspects of tumour development. Decreasing their levels can therefore be a promising approach for colon cancer prevention. The objective of this study was to evaluate the effect of catalase-producing Lactococcus lactis on the prevention of an experimental murine 1,2-dimethylhydrazine (DMH)-induced colon cancer. DMH-treated BALB/c mice received either a catalase-producing L. lactis strain or the isogenic non-catalase-producing strain as a control, whereas other untreated mice did not receive bacterial supplementation. Catalase activity and H2O2 levels in intestinal fluids and blood samples were measured, and changes in the histology of the large intestines during tumour progression were evaluated. The catalase-producing L. lactis strain used in this study was able to slightly increase catalase activities in DMH-treated mice (1.19+/-0.08 U ml(-1)) and reduce H2O2 levels (3.4+/-1.1 microM) compared to (i) animals that received the non-catalase-producing strain (1.00+/-0.09 U ml(-1), 9.0+/-0.8 microM), and (ii) those that did not receive bacterial supplementation (1.06+/-0.07 U ml(-1), 10.0+/-1.1 microM). Using the histopathological grading scale of chemically induced colorectal cancer, animals that received the catalase-producing L. lactis had a significantly lesser extent of colonic damage and inflammation (2.0+/-0.4) compared to animals that received the non-catalase-producing L. lactis (4.0+/-0.3) or those that did not receive bacterial supplementation (4.7+/-0.5). The catalase-producing L. lactis strain used in this study was able to prevent tumour appearance in an experimental DMH-induced colon cancer model.
Collapse
Affiliation(s)
| | - Jean Guy LeBlanc
- Centro de Referencias para Lactobacilos (CERELA), Chacabuco 145, T4000ILC San Miguel de Tucumán, Argentina
| | - Gabriela Perdigón
- Cátedra de Inmunología, Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Argentina.,Centro de Referencias para Lactobacilos (CERELA), Chacabuco 145, T4000ILC San Miguel de Tucumán, Argentina
| | - Anderson Miyoshi
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, Minas Gerais, Brazil
| | - Philippe Langella
- Unite d'Ecologie et de Physiologie Digestive, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Sesma
- Centro de Referencias para Lactobacilos (CERELA), Chacabuco 145, T4000ILC San Miguel de Tucumán, Argentina
| |
Collapse
|
49
|
Nishikawa M, Takakura Y, Hashida M. Pharmacokinetic considerations regarding non-viral cancer gene therapy. Cancer Sci 2008; 99:856-62. [PMID: 18294288 PMCID: PMC11158855 DOI: 10.1111/j.1349-7006.2008.00774.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cancer gene therapy, in which pharmacologically active compounds are administered to cancer patients in a genetic form, has been examined not only in animals but also in cancer patients. Viral vector-induced severe side effects in patients have greatly underscored the importance of non-viral gene transfer methods. Even though the importance of pharmacokinetics is undoubtedly understood in the development of anticancer therapies, its importance has been less well recognized in non-viral cancer gene therapy. When transgene products express their activity within transduced cells, such as herpes simplex virus type 1 thymidine kinase and short hairpin RNA, the pharmacokinetics of the vectors and the expression profiles of the transgenes will determine the efficacy of gene transfer. The percentage of cells transduced is highly important if few by-stander effects are expected. If transgene products are secreted from cells into the blood circulation, such as interferons and interleukins, the pharmacokinetics of transgenes becomes a matter of significant importance. Then, any approach to increasing the level and duration of transgene expression will increase the therapeutic effects of cancer gene therapy. Here we review the pharmacokinetics of both non-viral vectors and transgene products, and discuss what should be done to achieve safer and more effective non-viral cancer gene therapy.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
50
|
SOD derivatives prevent metastatic tumor growth aggravated by tumor removal. Clin Exp Metastasis 2008; 25:531-6. [DOI: 10.1007/s10585-008-9165-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 03/11/2008] [Indexed: 11/27/2022]
|