1
|
Tehrani HA, Zangi M, Fathi M, Vakili K, Hassan M, Rismani E, Hossein-Khannazer N, Vosough M. GPC-3 in hepatocellular carcinoma; A novel biomarker and molecular target. Exp Cell Res 2025; 444:114391. [PMID: 39725192 DOI: 10.1016/j.yexcr.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is a global health issue due to its late diagnosis and high recurrence rate. The early detection and diagnosis of HCC with specific and sensitive biomarkers and using novel treatment approaches to improve patient outcomes are essential. Glypican-3 (GPC-3) is a cell surface proteoglycan that is overexpressed in many tumors, including HCC. GPC-3 could be used as a specific biomarker for HCC early detection and could be a potential target for precise therapeutic strategies. Effective identification of GPC-3 could improve both diagnosis and targeted therapy of HCC. Moreover, targeted therapy using GPC-3 could result in a better treatment outcome. Recently, GPC3-targeted therapies have been used in different investigational therapeutic approaches like bi-specific/monoclonal antibodies, peptide vaccines, and CAR T cell therapies. This study aims to highlight the theranostic potential of GPC-3 as a novel biomarker for early detection and as a potential molecular target for HCC treatment as well.
Collapse
Affiliation(s)
- Hamed Azhdari Tehrani
- Department of Hematology-Medical Oncology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masood Zangi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Massoud Vosough
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
2
|
Chen L, Cheng S, Zhu D, Bao G, Wang Z, Deng X, Liu X, Ma X, Zhao J, Zhu L, Zhu X. Synthesis and Preclinical Evaluation of Dual-Specific Probe Targeting Glypican-3 and Prostate-Specific Membrane Antigen for Hepatocellular Carcinoma PET Imaging. Mol Pharm 2025; 22:209-220. [PMID: 39655726 DOI: 10.1021/acs.molpharmaceut.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Positron emission tomography (PET) is a promising modality for early diagnosis, accurate detection, and staging of hepatocellular carcinoma (HCC). Hereby, a dual-specific probe targeting Glypican-3 (GPC3) and prostate-specific membrane antigen (PSMA) was evaluated for HCC PET imaging. The probe was prepared by conjugating TJ12P2, a GPC3-targeting peptide previously reported by our group, to a highly potent PSMA inhibitor via a polyethylene glycol linker and further tethered to the 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator. The resultant probe, NOTA-TJ12P2-PSMA, abbreviated as T2P, was labeled with gallium-68 and fluorine-18, respectively, and evaluated in murine HCC models of various levels of GPC3 and PSMA expression. Targeting specificity was confirmed by blocking studies. The synthesized [68Ga]Ga-T2P and [18F]AlF-T2P were stable in saline and fetal bovine serum for over 2 h, and bound to their respective targets with high affinity and specificity in cell assays. PET imaging at 60 min postinjection (p.i.) showed that [68Ga]Ga-T2P exhibited higher uptake (1.75 ± 0.16%ID/g) in Huh7 models with high expression of GPC3 and PSMA than gallium-68 labeled TJ12P2 (1.25 ± 0.07%ID/g, p < 0.01) or gallium-68 labeled PSMA-617 (1.07 ± 0.06%ID/g, p < 0.001). The uptake of [68Ga]Ga-T2P in Huh7 tumors was higher than that in PC-3 tumors with low expression of GPC3 or PSMA (0.55 ± 0.24%ID/g, p < 0.01). The uptake of [18F]AlF-T2P or [68Ga]Ga-T2P in the Huh7 tumor was substantially blocked by TJ12P2, TJ12P2 + PSMA, or T2P, but only partially blocked by PSMA. And the PSMA and TJ12P2 monomer blocking effect was less than that of TJ12P2 + PSMA and T2P. [18F]AlF-T2P had higher tumor-to-muscle ratios than [68Ga]Ga-T2P at 90 min postinjection (4.31 ± 0.10 vs 3.80 ± 0.17, p < 0.05) in Huh7 tumor models. To conclude, radiolabeled T2P exhibited a higher uptake and longer retention in Huh7 tumors than its monomeric counterparts. PET imaging via gallium-68 and fluorine-18 labeled T2P showed a similar imaging quality with comparable signal-to-background ratios. Our results demonstrate that T2P is a promising tool for future clinical diagnosis of HCC.
Collapse
Affiliation(s)
- Lixing Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Siyuan Cheng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dongling Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiaoguang Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
3
|
Batbaatar B, Gurbadam U, Tuvshinsaikhan O, Narmandakh NE, Khatanbaatar G, Radnaabazar M, Erdene-Ochir D, Boldbaatar M, Byambaragchaa M, Amankyeldi Y, Chogsom M, Ganbileg N, Batdelger A, Demchig T, Nyam-Osor L, Bayartugs B, Batmunkh E, Munkhjargal B, Lonjid T, Khasbagana B, Batmunkh M, Jav S, Semchin M. Evaluation of glypican‑3 in patients with hepatocellular carcinoma. Mol Clin Oncol 2025; 22:1. [PMID: 39534882 PMCID: PMC11552472 DOI: 10.3892/mco.2024.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers occurring worldwide, including Mongolia. Although alpha-fetoprotein (AFP) is a widely used marker for HCC, conflicting studies have been published regarding its specificity and sensitivity towards HCC. Glypican-3 (GPC3) is a different promising biomarker for HCC, and there is some evidence to suggest that this protein may be a more specific marker compared with AFP. GPC3 has been shown to fulfill important roles in cell proliferation and division during embryogenesis, and is rarely found in the tissues of healthy adults. The aim of the present study was to investigate the levels of serum GPC3 (sGPC3) and tissue GPC3 in Mongolian patients with HCC. Serum samples from a total of 270 individuals [HCC group, 90 patients; risk group (RG), 90 subjects; and control group, 90 subjects] were evaluated using enzyme-linked immunosorbent assay to identify the sGPC3 levels. In addition, immunohistochemical analysis of the GPC3 was performed on tissue samples from 50 patients with HCC to evaluate the expression of GPC3. sGPC3 level was found to be significantly increased in the HCC group compared with the RG and the control group, with the area under the curve=0.85 (P<0.001). sGPC3 was found to be significantly associated with hepatitis C virus status and cirrhosis (P<0.05). In addition, the tissue expression of GPC3 was associated with the serum AFP (sAFP) level. Finally, positive staining of GPC3 was observed when the sAFP level of the patient was >20 ng/ml. In conclusion, the results from the present study have supported that GPC3 may be a promising marker for HCC, and can be used as a diagnostic marker alongside AFP.
Collapse
Affiliation(s)
- Batchimeg Batbaatar
- Department of Molecular biology and Genetics, School of Bio Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| | | | - Odonchimeg Tuvshinsaikhan
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| | - Nyam-Erdene Narmandakh
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| | | | | | | | | | | | | | | | | | | | | | - Lkham Nyam-Osor
- National Cancer Center of Mongolia, Ulaanbaatar 13370, Mongolia
| | | | | | - Batkhishig Munkhjargal
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| | - Tulgaa Lonjid
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| | - Batbayar Khasbagana
- Institute of Biomedical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Munkhbat Batmunkh
- School of Medicine, International University of Health and Welfare, Narita, Chiba 286-8686, Japan
| | - Sarantuya Jav
- Department of Molecular biology and Genetics, School of Bio Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Munkhbayar Semchin
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| |
Collapse
|
4
|
Yin F, Zhou X, Zhang M, Sun Q, Zhao J, Wu G, Zhang Y, Shen Y. Biocompatible WSe 2@BSA Dots with Merged Catalyst and Coreactant for Efficient Electrochemiluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406374. [PMID: 39285809 DOI: 10.1002/smll.202406374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Electrochemiluminescence (ECL) is a powerful tool for clinical diagnosis due to its exceptional sensitivity. However, the standard tripropylamine (TPrA) coreactant for Ru(bpy)3Cl2, the most widely studied and used ECL system, is highly toxic. Despite extensive research on alternative coreactants, they often fall short in poor efficiency. From a reaction kinetics perspective, accelerating electrooxidation rate of Ru(bpy)3Cl2 is an essential way to compensate the efficiency limitation of coreactants, but is rarely reported. Here, a hybrid electrocatalyst@coreactant dots for the ECL of Ru(bpy)3Cl2 is reported. The as-prepared WSe2@bovine serum albumin (WSe2@BSA) dots is biocompatible, and demonstrate dual functions, i.e., the BSA shell works as a coreactant, meanwhile, the WSe2 core effectively catalyzes Ru(bpy)3Cl2 oxidation. As a result, WSe2@BSA dots exhibit an exceptionally high efficiency comparable to TPrA for the ECL of Ru(bpy)3Cl2. In addition, the procedure for synthesizing WSe2@BSA dots is facile (room temperature, atmospheric conditions), rapid (5 min), and scalable (for millions of bioassays). A biosensor utilizing WSe2@BSA dots shows promise for highly sensitive detecting glypican-3 in clinical liver cancer serum samples, especially for alpha-fetoprotein-negative patients. This work opens a new avenue for developing a highly efficient ECL system for biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Yin
- Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaohe Zhou
- Medical School, Southeast University, Nanjing, 210009, China
| | - Mingming Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Qian Sun
- Medical School, Southeast University, Nanjing, 210009, China
| | - Jinjin Zhao
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
5
|
Chung JY, Lee W, Lee OW, Ylaya K, Nambiar D, Sheehan-Klenk J, Fayn S, Hewitt SM, Choyke PL, Escorcia FE. Glypican-3 deficiency in liver cancer upregulates MAPK/ERK pathway but decreases cell proliferation. Am J Cancer Res 2024; 14:3348-3371. [PMID: 39113871 PMCID: PMC11301284 DOI: 10.62347/ttny4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Glypican-3 (GPC3) is overexpressed in hepatocellular carcinomas and hepatoblastomas and represents an important therapeutic target but the biologic importance of GPC3 in liver cancer is unclear. To date, there are limited data characterizing the biological implications of GPC3 knockout (KO) in liver cancers that intrinsically express this target. Here, we report on the development and characterization of GPC3-KO liver cancer cell lines and compare to them to parental lines. GPC3-KO variants were established in HepG2 and Hep3B liver cancer cell lines using a lentivirus-mediated CRISPR/Cas9 system. We assessed the effects of GPC3 deficiency on oncogenic properties in vitro and in murine xenograft models. Downstream cellular signaling pathway changes induced by GPC3 deficiency were examined by RNAseq and western blot. To confirm the usefulness of the models for GPC3-targeted drug development, we evaluated the target engagement of a GPC3-selective antibody, GC33, conjugated to the positron-emitting zirconium-89 (89Zr) in subcutaneous murine xenografts of wild type (WT) and KO liver cancer cell lines. Deletion of GPC3 significantly reduced liver cancer cell proliferation, migration, and invasion compared to the parental cell lines. Additionally, the tumor growth of GPC3-KO liver cancer xenografts was significantly slower compared with control xenografts. RNA sequencing analysis also showed GPC3-KO resulted in a reduction in the expression of genes associated with cell cycle regulation, invasion, and migration. Specifically, we observed the downregulation of components in the AKT/NFκB/WNT signaling pathways and of molecules related to cell cycle regulation with GPC3-KO. In contrast, pMAPK/ERK1/2 was upregulated, suggesting an adaptive compensatory response. KO lines demonstrated increased sensitivity to ERK (GDC09994), while AKT (MK2206) inhibition was more effective in WT lines. Using antibody-based positron emission tomography (immunoPET) imaging, we confirmed that 89Zr-GC33 accumulated exclusively in GPC3-expression xenografts but not in GPC3-KO xenografts with high tumor uptake and tumor-to-liver signal ratio. We show that GPC3-KO liver cancer cell lines exhibit decreased tumorigenicity and altered signaling pathways, including upregulated pMAPK/ERK1/2, compared to parental lines. Furthermore, we successfully distinguished between GPC3+ and GPC3- tumors using the GPC3-targeted immunoPET imaging agent, demonstrating the potential utility of these cell lines in facilitating GPC3-selective drug development.
Collapse
Affiliation(s)
- Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Woonghee Lee
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Olivia W Lee
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Kris Ylaya
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Divya Nambiar
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Julia Sheehan-Klenk
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Stanley Fayn
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
- Oxford Institute for Radiation Oncology, Department of Oncology, University of OxfordOxford OX3 7DQ, UK
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Freddy E Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
6
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
Nguyen T, Chen PC, Pham J, Kaur K, Raman SS, Jewett A, Chiang J. Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma. Crit Rev Immunol 2024; 44:71-85. [PMID: 38618730 DOI: 10.1615/critrevimmunol.2024052486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Natural killer (NK) cells are innate lymphoid cells that exhibit high levels of cytotoxicity against NK-specific targets. NK cells also produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Moreover, NK cells constitute the second most common immune cell in the liver. These properties have drawn significant attention towards leveraging NK cells in treating liver cancer, especially hepatocellular carcinoma (HCC), which accounts for 75% of all primary liver cancer and is the fourth leading cause of cancer-related death worldwide. Notable anti-cancer functions of NK cells against HCC include activating antibody-dependent cell cytotoxicity (ADCC), facilitating Gasdermin E-mediated pyroptosis of HCC cells, and initiating an antitumor response via the cGAS-STING signaling pathway. In this review, we describe how these mechanisms work in the context of HCC. We will then discuss the existing preclinical and clinical studies that leverage NK cell activity to create single and combined immunotherapies.
Collapse
Affiliation(s)
- Tu Nguyen
- UCLA David Geffen School of Medicine
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA
| | - Janet Pham
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Kawaljit Kaur
- Division of Oral Biology and Medicine The Jane and Jerry Weintraub Center of Reconstructive Biotechnology University of California School of Dentistry Los Angeles, CA, USA
| | - Steven S Raman
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Jason Chiang
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| |
Collapse
|
8
|
Imon RR, Aktar S, Morshed N, Nur SM, Mahtarin R, Rahman FA, Talukder MEK, Alam R, Karpiński TM, Ahammad F, Zamzami MA, Tan SC. Biological and clinical significance of the glypican-3 gene in human lung adenocarcinoma: An in silico analysis. Medicine (Baltimore) 2023; 102:e35347. [PMID: 37960765 PMCID: PMC10637541 DOI: 10.1097/md.0000000000035347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 11/15/2023] Open
Abstract
Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, has long been found to be dysregulated in human lung adenocarcinomas (LUADs). Nevertheless, the function, mutational profile, epigenetic regulation, co-expression profile, and clinicopathological significance of the GPC3 gene in LUAD progression are not well understood. In this study, we analyzed cancer microarray datasets from publicly available databases using bioinformatics tools to elucidate the above parameters. We observed significant downregulation of GPC3 in LUAD tissues compared to their normal counterparts, and this downregulation was associated with shorter overall survival (OS) and relapse-free survival (RFS). Nevertheless, no significant differences in the methylation pattern of GPC3 were observed between LUAD and normal tissues, although lower promoter methylation was observed in male patients. GPC3 expression was also found to correlate significantly with infiltration of B cells, CD8+, CD4+, macrophages, neutrophils, and dendritic cells in LUAD. In addition, a total of 11 missense mutations were identified in LUAD patients, and ~1.4% to 2.2% of LUAD patients had copy number amplifications in GPC3. Seventeen genes, mainly involved in dopamine receptor-mediated signaling pathways, were frequently co-expressed with GPC3. We also found 11 TFs and 7 miRNAs interacting with GPC3 and contributing to disease progression. Finally, we identified 3 potential inhibitors of GPC3 in human LUAD, namely heparitin, gemcitabine and arbutin. In conclusion, GPC3 may play an important role in the development of LUAD and could serve as a promising biomarker in LUAD.
Collapse
Affiliation(s)
- Raihan Rahman Imon
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Sharmin Aktar
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Microbiology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Niaz Morshed
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Pharmacy, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Suza Mohammad Nur
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rumana Mahtarin
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Farazi Abinash Rahman
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Enamul Kabir Talukder
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego, Poland
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamzami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Yang H, Wang L. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential. Adv Cancer Res 2023; 157:251-291. [PMID: 36725112 DOI: 10.1016/bs.acr.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heparan sulfate proteoglycans (HSPGs) are glycoproteins that consist of a proteoglycan "core" protein and covalently attached heparan sulfate (HS) chain. HSPGs are ubiquitously expressed in mammalian cells on the cell surface and in the extracellular matrix (ECM) and secretory vesicles. Within HSPGs, the protein cores determine when and where HSPG expression takes place, and the HS chains mediate most of HSPG's biological roles through binding various protein ligands, including cytokines, chemokines, growth factors and receptors, morphogens, proteases, protease inhibitors, and ECM proteins. Through these interactions, HSPGs modulate cell proliferation, adhesion, migration, invasion, and angiogenesis to display essential functions in physiology and pathology. Under physiological conditions, the expression and localization of HSPGs are finely regulated to orchestrate their physiological functions, and this is disrupted in cancer. The HSPG dysregulation elicits multiple oncogenic signaling, including growth factor signaling, ECM and Integrin signaling, chemokine and immune signaling, cancer stem cell, cell differentiation, apoptosis, and senescence, to prompt cell transformation, proliferation, tumor invasion and metastasis, tumor angiogenesis and inflammation, and immunotolerance. These oncogenic roles make HSPGs an attractive pharmacological target for anti-cancer therapy. Several therapeutic strategies have been under development, including anti-HSPG antibodies, peptides and HS mimetics, synthetic xylosides, and heparinase inhibitors, and shown promising anti-cancer efficacy. Therefore, much progress has been made in this line of study. However, it needs to bear in mind that the roles of HSPGs in cancer can be either oncogenic or tumor-suppressive, depending on the HSPG and the cancer cell type with the underlying mechanisms that remain obscure. Further studies need to address these to fill the knowledge gap and rationalize more efficient therapeutic targeting.
Collapse
Affiliation(s)
- Hua Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
10
|
Wu W, Wu W, Ye Y, Li T, Wang B. mRNA and lncRNA expression profiles of liver tissues in children with biliary atresia. Exp Ther Med 2022; 24:634. [PMID: 36160912 PMCID: PMC9468840 DOI: 10.3892/etm.2022.11571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Progressive liver fibrosis is the most common phenotype in biliary atresia (BA). A number of pathways contribute to the fibrosis process so comprehensive understanding the mechanisms of liver fibrosis in BA will pave the way to improve patient's outcome after operation. In this study, the differentially expressed profiles of mRNAs and long non-coding RNAs from BA and choledochal cyst (CC) liver tissues were investigated and analyzed, which may provide potential clues to clarify hepatofibrosis mechanism in BA. A total of two BA and two CC liver tissue specimens were collected, the expression level of mRNAs and lncRNAs was detected by RNA sequencing. Differentially expressed mRNAs (DEmRNAs) were functionally annotated and protein-protein interaction networks (PPI) was established to predict the biological roles and interactive relationships. Differentially expressed lncRNAs (DElncRNAs) nearby targeted DEmRNA network and DElncRNA-DEmRNA co-expression network were constructed to further explore the roles of DElncRNAs in BA pathogenesis. The expression profiles of significant DEmRNAs were validated in Gene Expression Omnibus database. A total of 2,086 DEmRNAs and 184 DElncRNAs between BA and CC liver tissues were obtained. DEmRNAs were enriched in 521 Gene Ontology terms and 71 Kyoto Encyclopedia of Genes and Genomes terms which were mainly biological processes and metabolic pathways related to immune response and inflammatory response. A total of five hub proteins (TYRO protein tyrosine kinase binding protein, C-X-C motif chemokine ligand 8, pleckstrin, Toll-like receptor 8 and C-C motif chemokine receptor 5) were found in the PPI networks. A total of 31 DElncRNA-nearby-targeted DEmRNA pairs and 2,337 DElncRNA-DEmRNA co-expression pairs were obtained. The expression of DEmRNAs obtained from RNA sequencing were verified in GSE46960 dataset, generally. The present study identified key genes and lncRNAs participated in BA associated liver fibrosis, which may present a new avenue for understanding the patho-mechanism for hepatic fibrosis in BA.
Collapse
Affiliation(s)
- Wenyan Wu
- Medical Laboratory, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong 518001, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523000, P.R. China
| | - Weifang Wu
- Medical College, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
| | - Yongqin Ye
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, P.R. China
| | - Tao Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523000, P.R. China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
- Correspondence to: Professor Bin Wang, Department of General Surgery, Shenzhen Children's Hospital, 7019 Yitian Road, Futian, Shenzhen, Guangdong 518026, P.R. China
| |
Collapse
|
11
|
Shin WR, Park DY, Kim JH, Lee JP, Thai NQ, Oh IH, Sekhon SS, Choi W, Kim SY, Cho BK, Kim SC, Min J, Ahn JY, Kim YH. Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. J Nanobiotechnology 2022; 20:204. [PMID: 35477501 PMCID: PMC9044640 DOI: 10.1186/s12951-022-01391-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is a biomarker of hepatocellular carcinoma (HCC) progression. Aptamers specifically binding to target biomolecules have recently emerged as clinical disease diagnosis targets. Here, we describe 3D structure-based aptaprobe platforms for detecting GPC3, such as aptablotting, aptaprobe-based sandwich assay (ALISA), and aptaprobe-based imaging analysis. RESULTS For preparing the aptaprobe-GPC3 platforms, we obtained 12 high affinity aptamer candidates (GPC3_1 to GPC3_12) that specifically bind to target GPC3 molecules. Structure-based molecular interactions identified distinct aptatopic residues responsible for binding to the paratopic nucleotide sequences (nt-paratope) of GPC3 aptaprobes. Sandwichable and overlapped aptaprobes were selected through structural analysis. The aptaprobe specificity for using in HCC diagnostics were verified through Aptablotting and ALISA. Moreover, aptaprobe-based imaging showed that the binding property of GPC3_3 and their GPC3 specificity were maintained in HCC xenograft models, which may indicate a new HCC imaging diagnosis. CONCLUSION Aptaprobe has the potential to be used as an affinity reagent to detect the target in vivo and in vitro diagnosing system.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Dae-Young Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Nguyen Quang Thai
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung Yeon Kim
- College of Pharmacy, Wonkwang University, Shinyoung-dong 344-2, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
12
|
Liu Z, Mo H, Liu R, Niu Y, Chen T, Xu Q, Tu K, Yang N. Matrix stiffness modulates hepatic stellate cell activation into tumor-promoting myofibroblasts via E2F3-dependent signaling and regulates malignant progression. Cell Death Dis 2021; 12:1134. [PMID: 34873170 PMCID: PMC8648844 DOI: 10.1038/s41419-021-04418-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022]
Abstract
The hepatic stellate cells (HSCs) activation by myofibroblastic differentiation is critical for liver fibrosis. Crosstalk between stromal cells and tumor cells in the microenvironment alters the properties and facilitates the growth and metastasis of tumor cells. How mechanical stimuli originally stiffness of extracellular matrix (ECM) contribute to tumor development remains poorly understood. Here, we demonstrated that stiffness contributes to mechanosignal transduction in HSCs, which promotes hepatocellular carcinoma (HCC) cells growth and metastasis through secretion of FGF2. On stiffness matrix, HSCs activation was confirmed by immunofluorescence (IF) and Western blot (WB) for α-smooth muscle actin (SMA). Increasing matrix stiffness promoted HSCs activation by CD36-AKT-E2F3 mechanosignaling through shRNA-mediated E2F3 knockdown, AKT inhibitors, and CD36 shRNA. Moreover, ChIP-qPCR. Confirmed that E2F3 combined the promoter of FGF2, and stiffness promoted FGF2 expression. On a stiff matrix, HCC cells cultured with conditioned media (CM) from HSCs increased HCC cells growth and metastasis by binding FGFR1 to activate PI3K/AKT and MEK/ERK signaling pathways. Moreover, conditional E2F3 knockout mice were subjected to CCl4 treatment to assess the role of E2F3 in HSC activation. Additionally, the DEN-induced HCC model was also used to evaluate the role of E2F3 in liver fibrosis and HCC growth. In conclusion, we demonstrated that stiffness-induced HSC activation by E2F3 dependent. Stiffness activated CD36-AKT-E2F3 signaling and targeted FGF2 transcription, subsequently, activated HCC growth and metastasis by FGFR1-mediated PI3K/AKT and MEK/ERK signaling.
Collapse
Affiliation(s)
- Zhikui Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China.
| | - Nan Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
13
|
Hu J, Yang Y, Ma Y, Ning Y, Chen G, Liu Y. Proliferation Cycle Transcriptomic Signatures are Strongly associated With Gastric Cancer Patient Survival. Front Cell Dev Biol 2021; 9:770994. [PMID: 34926458 PMCID: PMC8672820 DOI: 10.3389/fcell.2021.770994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer is one of the most heterogeneous tumors with multi-level molecular disturbances. Sustaining proliferative signaling and evading growth suppressors are two important hallmarks that enable the cancer cells to become tumorigenic and ultimately malignant, which enable tumor growth. Discovering and understanding the difference in tumor proliferation cycle phenotypes can be used to better classify tumors, and provide classification schemes for disease diagnosis and treatment options, which are more in line with the requirements of today's precision medicine. We collected 691 eligible samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, combined with transcriptome data, to explore different heterogeneous proliferation cycle phenotypes, and further study the potential genomic changes that may lead to these different phenotypes in this study. Interestingly, two subtypes with different clinical and biological characteristics were identified through cluster analysis of gastric cancer transcriptome data. The repeatability of the classification was confirmed in an independent Gene Expression Omnibus validation cohort, and consistent phenotypes were observed. These two phenotypes showed different clinical outcomes, and tumor mutation burden. This classification helped us to better classify gastric cancer patients and provide targeted treatment based on specific transcriptome data.
Collapse
Affiliation(s)
- Jianwen Hu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yanpeng Yang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yongchen Ma
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Yingze Ning
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Guowei Chen
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yucun Liu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Pan J, Ho M. Role of glypican-1 in regulating multiple cellular signaling pathways. Am J Physiol Cell Physiol 2021; 321:C846-C858. [PMID: 34550795 DOI: 10.1152/ajpcell.00290.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glypican-1 (GPC1) is one of the six glypican family members in humans. It is composed of a core protein with three heparan sulfate chains and attached to the cell membrane by a glycosyl-phosphatidylinositol anchor. GPC1 modulates various signaling pathways including fibroblast growth factors (FGF), vascular endothelial growth factor-A (VEGF-A), transforming growth factor-β (TGF-β), Wnt, Hedgehog (Hh), and bone morphogenic protein (BMP) through specific interactions with pathway ligands and receptors. The impact of these interactions on signaling pathways, activating or inhibitory, is dependent upon specific GPC1 domain interaction with pathway components, as well as cell surface context. In this review, we summarize the current understanding of the structure of GPC1, as well as its role in regulating multiple signaling pathways. We focus on the functions of GPC1 in cancer cells and how new insights into these signaling processes can inform its translational potential as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Jiajia Pan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,School of Life Sciences, East China Normal University, Shanghai, China
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Schobert IT, Savic LJ. Current Trends in Non-Invasive Imaging of Interactions in the Liver Tumor Microenvironment Mediated by Tumor Metabolism. Cancers (Basel) 2021; 13:3645. [PMID: 34359547 PMCID: PMC8344973 DOI: 10.3390/cancers13153645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.
Collapse
Affiliation(s)
- Isabel Theresa Schobert
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
| | - Lynn Jeanette Savic
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
- Berlin Institute of Health, 10178 Berlin, Germany
| |
Collapse
|
16
|
Huang SL, Wang YM, Wang QY, Feng GG, Wu FQ, Yang LM, Zhang XH, Xin HW. Mechanisms and Clinical Trials of Hepatocellular Carcinoma Immunotherapy. Front Genet 2021; 12:691391. [PMID: 34306031 PMCID: PMC8296838 DOI: 10.3389/fgene.2021.691391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common and lethal tumors worldwide, is usually not diagnosed until the disease is advanced, which results in ineffective intervention and unfavorable prognosis. Small molecule targeted drugs of HCC, such as sorafenib, provided only about 2.8 months of survival benefit, partially due to cancer stem cell resistance. There is an urgent need for the development of new treatment strategies for HCC. Tumor immunotherapies, including immune check point inhibitors, chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BsAb), have shown significant potential. It is known that the expression level of glypican-3 (GPC3) was significantly increased in HCC compared with normal liver tissues. A bispecific antibody (GPC3-S-Fabs) was reported to recruit NK cells to target GPC3 positive cancer cells. Besides, bispecific T-cell Engagers (BiTE), including GPC3/CD3, an aptamer TLS11a/CD3 and EpCAM/CD3, were recently reported to efficiently eliminate HCC cells. It is known that immune checkpoint proteins programmed death-1 (PD-1) binding by programmed cell death-ligand 1 (PD-L1) activates immune checkpoints of T cells. Anti-PD-1 antibody was reported to suppress HCC progression. Furthermore, GPC3-based HCC immunotherapy has been shown to be a curative approach to prolong the survival time of patients with HCC in clinically trials. Besides, the vascular endothelial growth factor (VEGF) inhibitor may inhibit the migration, invasion and angiogenesis of HCC. Here we review the cutting-edge progresses on mechanisms and clinical trials of HCC immunotherapy, which may have significant implication in our understanding of HCC and its immunotherapy.
Collapse
Affiliation(s)
- Shao-Li Huang
- Department of Clinical Laboratory, Lianjiang People's Hospital, Zhanjiang, China.,Doctoral Scientific Research Center, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Yu-Ming Wang
- Department of Spinal and Neural Functional Reconstruction, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China.,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | | | - Guang-Gui Feng
- Department of Clinical Laboratory, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Fu-Qing Wu
- Department of Clinical Laboratory, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Liu-Ming Yang
- Doctoral Scientific Research Center, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China.,Department of Gastroenterology and Hepatology, Lianjiang People's Hospital, Zhanjiang, China
| | - Xi-He Zhang
- Doctoral Scientific Research Center, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Faculty of Medicine, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Faculty of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
17
|
Cao A, Li J, Asadi M, Basgen JM, Zhu B, Yi Z, Jiang S, Doke T, El Shamy O, Patel N, Cravedi P, Azeloglu EU, Campbell KN, Menon M, Coca S, Zhang W, Wang H, Zen K, Liu Z, Murphy B, He JC, D’Agati VD, Susztak K, Kaufman L. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J Clin Invest 2021; 131:141279. [PMID: 33998601 PMCID: PMC8121508 DOI: 10.1172/jci141279] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Dachshund homolog 1 (DACH1), a key cell-fate determinant, regulates transcription by DNA sequence-specific binding. We identified diminished Dach1 expression in a large-scale screen for mutations that convert injury-resistant podocytes into injury-susceptible podocytes. In diabetic kidney disease (DKD) patients, podocyte DACH1 expression levels are diminished, a condition that strongly correlates with poor clinical outcomes. Global Dach1 KO mice manifest renal hypoplasia and die perinatally. Podocyte-specific Dach1 KO mice, however, maintain normal glomerular architecture at baseline, but rapidly exhibit podocyte injury after diabetes onset. Furthermore, podocyte-specific augmentation of DACH1 expression in mice protects from DKD. Combined RNA sequencing and in silico promoter analysis reveal conversely overlapping glomerular transcriptomic signatures between podocyte-specific Dach1 and Pax transactivation-domain interacting protein (Ptip) KO mice, with upregulated genes possessing higher-than-expected numbers of promoter Dach1-binding sites. PTIP, an essential component of the activating histone H3 lysine 4 trimethylation (H3K4Me3) complex, interacts with DACH1 and is recruited by DACH1 to its promoter-binding sites. DACH1-PTIP recruitment represses transcription and reduces promoter H3K4Me3 levels. DACH1 knockdown in podocytes combined with hyperglycemia triggers target gene upregulation and increases promoter H3K4Me3. These findings reveal that in DKD, diminished DACH1 expression enhances podocyte injury vulnerability via epigenetic derepression of its target genes.
Collapse
Affiliation(s)
- Aili Cao
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Morad Asadi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John M. Basgen
- Life Science Institute, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Bingbing Zhu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Tomohito Doke
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Osama El Shamy
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Niralee Patel
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Cravedi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Evren U. Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav Menon
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steve Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Barbara Murphy
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John C. He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vivette D. D’Agati
- Department of Pathology, Columbia University Medical Center, New York, New York, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lewis Kaufman
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
18
|
Zhao J, Gao S, Sun W, Grimm R, Fu C, Han J, Sheng R, Zeng M. Magnetic resonance imaging and diffusion-weighted imaging-based histogram analyses in predicting glypican 3-positive hepatocellular carcinoma. Eur J Radiol 2021; 139:109732. [PMID: 33905978 DOI: 10.1016/j.ejrad.2021.109732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE We aimed to investigate the potential MR imaging findings in predicting glypican-3 (GPC3)-positive hepatocellular carcinomas (HCCs), with special emphasis on diffusion-weighted imaging (DWI)-based histogram analyses. METHODS Forty-three patients with pathologically-confirmed GPC3-negative HCCs and 100 patients with GPC3-positive HCCs were retrospectively evaluated using contrast-enhanced MRI and DWI. Clinical characteristics and MRI features including DWI-based histogram features were assessed and compared between the two groups. Univariate and multivariate analyses were used to identify the significant clinico-radiologic variables associated with GPC3 expressions that were then incorporated into a predictive nomogram. Nomogram performance was evaluated based on calibration, discrimination, and decision curve analyses. RESULTS Features significantly related to GPC3-positive HCCs at univariate analyses were serum alpha-fetoprotein (AFP) levels >20 ng/mL (P < 0.0001), absence of enhancing capsule (P = 0.040), peritumoral enhancement appearance on the arterial phase (P = 0.049), as well as lower mean (P = 0.0278), median (P = 0.0372) and 75th percentile (P = 0.0085) apparent diffusion coefficient (ADC) values. At multivariate analysis, the AFP levels (odds ratio, 11.236; P < 0.0001) and 75th percentile ADC values (odds ratio, 1.009; P = 0.033) were independent risk factors associated with GPC3-positive HCCs. When both criteria were combined, both sensitivity (79.0 %) and specificity (79.1 %) greater than 75 % were achieved, and satisfactory predictive nomogram performance was obtained with a C-index of 0.804 (95 % confidence interval, 0.729-0.866). Decision curve analysis further confirmed the clinical usefulness of the nomogram. CONCLUSIONS Elevated serum AFP levels and lower 75th percentile ADC values were helpful in differentiating GPC3-positive and GPC3-negative HCCs. The combined nomogram achieved satisfactory preoperative risk prediction of GPC3 expression in HCC patients.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, 91052, Erlangen, Germany.
| | - Caixia Fu
- MR Application Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, 518057, China.
| | - Jing Han
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| | - Ruofan Sheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
19
|
Wang H, Yang J, Zhang K, Liu J, Li Y, Su W, Song N. Advances of Fibroblast Growth Factor/Receptor Signaling Pathway in Hepatocellular Carcinoma and its Pharmacotherapeutic Targets. Front Pharmacol 2021; 12:650388. [PMID: 33935756 PMCID: PMC8082422 DOI: 10.3389/fphar.2021.650388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of primary liver cancer with poor prognosis, and its incidence and mortality rate are increasing worldwide. It is refractory to conventional chemotherapy and radiotherapy owing to its high tumor heterogeneity. Accumulated genetic alterations and aberrant cell signaling pathway have been characterized in HCC. The fibroblast growth factor (FGF) family and their receptors (FGFRs) are involved in diverse biological activities, including embryonic development, proliferation, differentiation, survival, angiogenesis, and migration, etc. Data mining results of The Cancer Genome Atlas demonstrate high levels of FGF and/or FGFR expression in HCC tumors compared with normal tissues. Moreover, substantial evidence indicates that the FGF/FGFR signaling axis plays an important role in various mechanisms that contribute to HCC development. At present, several inhibitors targeting FGF/FGFR, such as multikinase inhibitors, specific FGFR4 inhibitors, and FGF ligand traps, exhibit antitumor activity in preclinical or early development phases in HCC. In this review, we summarize the research progress regarding the molecular implications of FGF/FGFR-mediated signaling and the development of FGFR-targeted therapeutics in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Haijun Wang
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
20
|
Gerlza T, Trojacher C, Kitic N, Adage T, Kungl AJ. Development of Molecules Antagonizing Heparan Sulfate Proteoglycans. Semin Thromb Hemost 2021; 47:316-332. [PMID: 33794555 DOI: 10.1055/s-0041-1725067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) occur in almost every tissue of the human body and consist of a protein core, with covalently attached glycosaminoglycan polysaccharide chains. These glycosaminoglycans are characterized by their polyanionic nature, due to sulfate and carboxyl groups, which are distributed along the chain. These chains can be modified by different enzymes at varying positions, which leads to huge diversity of possible structures with the complexity further increased by varying chain lengths. According to their location, HSPGs are divided into different families, the membrane bound, the secreted extracellular matrix, and the secretory vesicle family. As members of the extracellular matrix, they take part in cell-cell communication processes on many levels and with different degrees of involvement. Of particular therapeutic interest is their role in cancer and inflammation as well as in infectious diseases. In this review, we give an overview of the current status of medical approaches to antagonize HSPG function in pathology.
Collapse
Affiliation(s)
- Tanja Gerlza
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Christina Trojacher
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Nikola Kitic
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | | | - Andreas J Kungl
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria.,Antagonis Biotherapeutics GmbH, Graz, Austria
| |
Collapse
|
21
|
Cao R, Liu H, Cheng Z. Radiolabeled Peptide Probes for Liver Cancer Imaging. Curr Med Chem 2021; 27:6968-6986. [PMID: 32196443 DOI: 10.2174/0929867327666200320153837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Liver cancer/Hepatocellular Carcinoma (HCC) is a leading cause of cancer death and represents an important cause of mortality worldwide. Several biomarkers are overexpressed in liver cancer, such as Glypican 3 (GPC3) and Epidermal Growth Factor Receptor (EGFR). These biomarkers play important roles in the progression of tumors and could serve as imaging and therapeutic targets for this disease. Peptides with adequate stability, receptor binding properties, and biokinetic behavior have been intensively studied for liver cancer imaging. A great variety of them have been radiolabeled with clinically relevant radionuclides for liver cancer diagnosis, and many are promising imaging and therapeutic candidates for clinical translation. Herein, we summarize the advancement of radiolabeled peptides for the targeted imaging of liver cancer.
Collapse
Affiliation(s)
- Rui Cao
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Hongguang Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Zhen Cheng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Bio-X Program and Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA, 94305, United States
| |
Collapse
|
22
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Yu L, Yang X, Huang N, Wu M, Sun H, He Q, Lang Q, Zou X, Liu Z, Wang J, Ge L. Generation of fully human anti-GPC3 antibodies with high-affinity recognition of GPC3 positive tumors. Invest New Drugs 2020; 39:615-626. [PMID: 33215325 DOI: 10.1007/s10637-020-01033-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
The acceleration of therapeutic antibody development has been motivated by the benefit to and their demand for human health. In particular, humanized transgenic antibody discovery platforms, combined with immunization, hybridoma fusion and/or single cell DNA sequencing are the most reliable and rapid methods for mining the human monoclonal antibodies. Human GPC3 protein is an oncofetal antigen, and it is highly expressed in most hepatocellular carcinomas and some types of squamous cell carcinomas. Currently, no fully human anti-GPC3 therapeutic antibodies have been reported and evaluated in extensive tumor tissues. Here, we utilized a new humanized transgenic mouse antibody discovery platform (CAMouse) that contains large V(D)J -regions and human gamma-constant regions of human immunoglobulin in authentic configurations to generate fully human anti-GPC3 antibodies. Our experiments resulted in four anti-GPC3 antibodies with high-specific binding and cytotoxicity to GPC3 positive cancer cells, and the antibody affinities are in the nanomolar range. Immunohistochemistry analysis demonstrated that these antibodies can recognize GPC3 protein on many types of solid tumors. In summary, the human anti-human GPC3 monoclonal antibodies described here are leading candidates for further preclinical studies of cancer therapy, further, the CAMouse platform is a robust tool for human therapeutic antibody discovery.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Xi Yang
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Nan Huang
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Qilin He
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Qiaoli Lang
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Xiangang Zou
- Chongqing CAMAB Biotech Ltd., Chongqing, 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China. .,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China. .,Chongqing CAMAB Biotech Ltd., Chongqing, 402460, China.
| |
Collapse
|
24
|
Chow AKM, Yau SWL, Ng L. Novel molecular targets in hepatocellular carcinoma. World J Clin Oncol 2020; 11:589-605. [PMID: 32879846 PMCID: PMC7443834 DOI: 10.5306/wjco.v11.i8.589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is a leading cause of cancer and cancer-related deaths. The therapeutic efficacy of locoregional and systemic treatment in patients with advanced HCC remains low, which results in a poor prognosis. The development of sorafenib for the treatment of HCC has resulted in a new era of molecular targeted therapy for this disease. However, the median overall survival was reported to be barely higher in the sorafenib treatment group than in the control group. Hence, in this review we describe the importance of developing more effective targeted therapies for the management of advanced HCC. Recent investigations of molecular signaling pathways in several cancers have provided some insights into developing molecular therapies that target critical members of these signaling pathways. Proteins involved in the Hedgehog and Notch signaling pathways, Polo-like kinase 1, arginine, histone deacetylases and Glypican-3 can be potential targets in the treatment of HCC. Monotherapy has limited therapeutic efficacy due to the development of inhibitory feedback mechanisms and induction of chemoresistance. Thus, emphasis is now on the development of personalized and combination molecular targeted therapies that can serve as ideal therapeutic strategies for improved management of HCC.
Collapse
Affiliation(s)
- Ariel Ka-Man Chow
- School of Nursing and Health Studies, The Open University of Hong Kong, Hong Kong, China
| | - Simon Wing-Lung Yau
- School of Nursing and Health Studies, The Open University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Abstract
Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline R Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Udomsinprasert W, Angkathunyakul N, Klaikeaw N, Vejchapipat P, Poovorawan Y, Honsawek S. Hepatic glypican-3 and alpha-smooth muscle actin overexpressions reflect severity of liver fibrosis and predict outcome after successful portoenterostomy in biliary atresia. Surgery 2020; 167:560-568. [DOI: 10.1016/j.surg.2019.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
|
27
|
Guo M, Zhang H, Zheng J, Liu Y. Glypican-3: A New Target for Diagnosis and Treatment of Hepatocellular Carcinoma. J Cancer 2020; 11:2008-2021. [PMID: 32127929 PMCID: PMC7052944 DOI: 10.7150/jca.39972] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related deaths worldwide, and hepatocellular carcinoma is the most common type. The pathogenesis of hepatocellular carcinoma is concealed, its progress is rapid, its prognosis is poor, and the mortality rate is high. Therefore, novel molecular targets for hepatocellular carcinoma early diagnosis and development of targeted therapy are critically needed. Glypican-3, a cell-surface glycoproteins in which heparan sulfate glycosaminoglycan chains are covalently linked to a protein core, is overexpressed in HCC tissues but not in the healthy adult liver. Thus, Glypican-3 is becoming a promising candidate for liver cancer diagnosis and immunotherapy. Up to now, Glypican-3 has been a reliable immunohistochemical marker for hepatocellular carcinoma diagnosis, and soluble Glypican-3 in serum has becoming a promising marker for liquid biopsy. Moreover, various immunotherapies targeting Glypican-3 have been developed, including Glypican-3 vaccines, anti- Glypican-3 immunotoxin and chimeric-antigen-receptor modified cells. In this review, we summarize and analyze the structure and physicochemical properties of Glypican-3 molecules, then review their biological functions and applications in clinical diagnosis, and explore the diagnosis and treatment strategies based on Glypican-3.
Collapse
Affiliation(s)
- Meng Guo
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianming Zheng
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yangfang Liu
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Normal Alpha-Fetoprotein Hepatocellular Carcinoma: Are They Really Normal? J Clin Med 2019; 8:jcm8101736. [PMID: 31635078 PMCID: PMC6832124 DOI: 10.3390/jcm8101736] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction: serum alpha-fetoprotein (AFP) was routinely employed as a tumor marker for screening, diagnosis, and treatment follow-up of hepatocellular carcinoma (HCC). However, a substantial proportion of HCC patients had normal AFP level even at an advanced disease status. Few studies to date had tried to explore the nature and behavior of this normal AFP HCC (N-HCC). The purpose of this study was to investigate the clinicopathological characteristics and survival outcome of N-HCC after operation. In addition, potential tumor markers for N-HCC were also sought in an attempt to augment diagnostic ability. Methods: between 2005 and 2015, patients with hepatocellular carcinoma who were treated with hepatectomy in Chang Gung Memorial Hospital Linkou branch were divided into two groups according to their preoperative serum AFP level (<15 ng/mL: NHCC; ≥15 ng/mL: abnormal AFP HCC (A-HCC)). Patient demographic data and clinicopathological variables were collected. Kaplan–Meier and Cox regression multivariate analyses were performed to identify significant risk factors for disease-free survival (DFS) and overall survival (OS) for N-HCC. ELISA and immunohistochemical (IHC) studies were employed to determine the diagnostic accuracy of various tumor markers. Results: a total of 1616 patients (78% male) who underwent liver resection for HCC were included in this study. Of them, 761 patients (47.1%) were N-HCC. N-HCC patients were significantly older with more comorbidities and less hepatitis virus infections. Furthermore, N-HCC had fewer early recurrences (49.6% vs. 60.8%, p < 0.001) and better DFS (44.6 months vs. 23.6 months, p < 0.001) and OS (94.5 months vs. 81.7 months, p < 0.001). Both ELISA and IHC studies demonstrated that glypican-3 (GPC3) would be a promising diagnostic tumor marker for N-HCC. Conclusion: N-HCC patients were significantly older and had less hepatitis virus infections or cirrhosis. Their tumors tended to be smaller, less vascular invaded, and well-differentiated. The carcinogenesis of N-HCC may thus not be identical to that of typical HCC. GPC3 would be a promising tumor marker for diagnosing N-HCC. Further study is warranted to validate our findings.
Collapse
|
29
|
Farcas M, Gavrea AA, Gulei D, Ionescu C, Irimie A, Catana CS, Berindan-Neagoe I. SIRT1 in the Development and Treatment of Hepatocellular Carcinoma. Front Nutr 2019; 6:148. [PMID: 31608282 PMCID: PMC6773871 DOI: 10.3389/fnut.2019.00148] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Current treatment options for inoperable HCCs have decreased therapeutic efficacy and are associated with systemic toxicity and chemoresistance. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide–dependent enzyme that is frequently overexpressed in HCC, where it promotes tumorigenicity, metastasis, and chemoresistance. SIRT1 also maintains the tumorigenic and self-renewal proprieties of liver cancer stem cells. Multiple tumor-suppressive microRNAs (miRNAs) are downregulated in HCC and, as a consequence, permit SIRT1-induced tumorigenicity. However, either directly targeting SIRT1, combining conventional chemotherapy with SIRT1 inhibitors, or upregulating tumor-suppressive miRNAs may improve therapeutic efficacy and patient outcomes. Here, we present the interaction between SIRT1, miRNAs, and liver cancer stem cells and discuss the consequences of their interplay for the development and treatment of HCC.
Collapse
Affiliation(s)
- Marius Farcas
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Alexandru Gavrea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Calin Ionescu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| | - Cristina S Catana
- Department of Medical Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| |
Collapse
|
30
|
Nishida T, Kataoka H. Glypican 3-Targeted Therapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:E1339. [PMID: 31510063 PMCID: PMC6770328 DOI: 10.3390/cancers11091339] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is an oncofetal glycoprotein attached to the cell membrane by a glycophosphatidylinositol anchor. GPC3 is overexpressed in some kinds of tumors, particularly hepatocellular carcinoma (HCC). The prognostic significance of serum GPC3 levels and GPC3 immunoreactivity in tumor cells has been defined in patients with HCC. In addition to its usefulness as a biomarker, GPC3 has attracted attention as a novel therapeutic target molecule, and clinical trials targeting GPC3 are in progress. The major mechanism of anti-GPC3 antibody (GPC3Ab) against cancer cells is antibody-dependent cellular cytotoxicity and/or complement-dependent cytotoxicity. Since GPC3Ab is associated with immune responses, a combination of protocols with immune checkpoint inhibitors has also been investigated. Moreover, some innovative approaches for GPC3-targeting therapy have emerged in recent years. This review introduces the results of recent clinical trials targeting GPC3 in HCC and summarizes the latest knowledge regarding the role of GPC3 in HCC progression and clinical application targeting GPC3.
Collapse
Affiliation(s)
- Takahiro Nishida
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
- Division of Gastrointestinal, Endocrine and Pediatric Surgery, Department of Surgery, University of Miyazaki Faculty of Medicine, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
31
|
Zhang Y, Qiu D, Li R, Liu Y, Shi S, Wang Y. Preparation of a monoclonal antibody against the carcinoembryonic antigen, glypican‑3. Mol Med Rep 2019; 19:3889-3895. [PMID: 30896845 DOI: 10.3892/mmr.2019.10019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/17/2019] [Indexed: 11/05/2022] Open
Abstract
The carcinoembryonic antigen, glypican‑3 (GPC3), is a putative therapeutic target and diagnostic marker of hepatoma. In the present study, a monoclonal antibody (mAb) specifically against GPC3 was obtained via cloning the sequence of GPC3 via polymerase chain reaction and inserting it into a pET16b vector prior to transfection into Escherichia coli (E. coli) BL21. BALB/c mice were immunized with 20 µg purified antigen by intrasplenic embedding. Splenocytes and mouse myeloma cells SP2/0 were fused; then, the hybridoma cells were screened by an indirect ELISA. The properties of the mAb were examined by western blotting and immunofluorescence analysis against the purified protein. The results revealed that the prokaryotic expression vector of GPC3 had been successfully generated and GPC3 was stably expressed in E. coli BL21. A stable hybridoma cell line, 2F3, was generated in the present study, which produced mAbs against GPC3. The mAb 2F3 had a high antibody titer and the isotype was identified as IgG1/κ; 2F3 hybridomas had a median chromosome number of 98. Western blot and immunofluorescence analyses revealed that 2F3 specifically recognized recombinant and native GPC3. The 2F3 clone was proposed as a stable secretor of this mAb against GPC3. The results of present study indicated that the successful preparation of recombinant GPC3 protein and an anti‑human GPC3 mouse mAb may be provide a basis for developments in the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Yongdong Zhang
- Department of Stomatology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Dongri Qiu
- Department of Stomatology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Ronghua Li
- Department of Stomatology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Yawu Liu
- Department of Clinical Radiology, Kuopio University Hospital, FIN‑70210 Kuopio, Finland
| | - Shuainan Shi
- Department of Clinical Laboratory Medicine, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, P.R. China
| | - Yuliang Wang
- Department of Clinical Laboratory Medicine, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, P.R. China
| |
Collapse
|
32
|
Increased serum glypican-3 is associated with liver stiffness and hepatic dysfunction in children with biliary atresia. Clin Exp Hepatol 2019; 5:48-54. [PMID: 30915406 PMCID: PMC6431085 DOI: 10.5114/ceh.2019.83156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
Aim of the study Biliary atresia (BA) is an uncommon disorder of the liver and bile ducts affecting infants and is characterized by progressive fibrosclerosing obstruction of the extrahepatic biliary tree leading to end-stage liver failure. The purpose of this study was to determine serum glypican-3 (GPC3) levels and liver stiffness in children with BA and the correlation of glypican-3 with clinical parameters. Material and methods Seventy-five post-Kasai BA patients and 28 healthy age-matched controls were registered. Serum GPC3 levels were examined by enzyme-linked immunosorbent assay. Liver stiffness measurement was analyzed by transient elastography. Results BA patients had significantly greater serum GPC3 and liver stiffness values than controls (p < 0.001). Serum GPC3 and liver stiffness values were significantly higher in jaundiced BA patients than in non-jaundiced BA patients (p < 0.001). Additionally, serum glypican-3 was associated with liver stiffness and serum total bilirubin (p < 0.001, respectively). Conclusions Elevated serum GPC3 levels were associated with hepatic dysfunction and the severity of BA. As a result, serum GPC3 and liver stiffness might serve as biomarkers reflecting the deterioration of hepatic function and the outcome in post-Kasai BA.
Collapse
|
33
|
Shibui Y, Miyoshi K, Kohashi K, Kinoshita Y, Kuda M, Yamamoto H, Taguchi T, Oda Y. Glypican-3 expression in malignant small round cell tumors. Oncol Lett 2019; 17:3523-3528. [PMID: 30867793 DOI: 10.3892/ol.2019.9976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Malignant small round cell tumors usually progress rapidly and show resistance to chemotherapy, and it is often difficult to make a definitive diagnosis based on their histological morphology. Glypican-3 (GPC3) is a highly tumor-specific antigen, and the overexpression of GPC3 was reported in many pediatric and adult malignancies. In the present study, we investigated the GPC3 expression in pediatric malignant small round cell tumors to assess its role in the differential diagnosis of the tumors. Immunohistochemistry was performed to assess the expression of GPC3 in samples from 84 rhabdomyosarcomas (RMSs; 44 alveolar and 40 embryonal RMSs), 62 Ewing sarcomas (EWSs), 35 neuroblastomas (NBs) and two desmoplastic small round cell tumors (DSRCTs). We performed a reverse transcription-quantitative polymerase chain reaction for GPC3 to determine the GPC3 mRNA expression in samples from 66 frozen tumors (23 RMSs, 28 EWSs and 15 NBs). The serum expression levels of GPC3 were analyzed in pre-operative blood samples from two RMS and eight NB patients. In total, 25% (21/84) of the RMSs and 3% (1/35) of the NBs exhibited a focal expression of GPC3, whereas, the other specimens showed no GPC3 expression. The GPC3 mRNA expression level of the RMSs with positive GPC3 expression (n=6) was significantly higher compared with the RMSs without such expression (n=17). A total of two cases of NB showed high serum levels of GPC3, but neither tumor showed immunoreactivity for GPC3. The immunohistochemical overexpression of GPC3 may be a candidate ancillary parameter in the differential diagnosis of RMS from EWS and DSRCT.
Collapse
Affiliation(s)
- Yuichi Shibui
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kina Miyoshi
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshiaki Kinoshita
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masaaki Kuda
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
34
|
Tanaka Y, Tateishi R, Koike K. Proteoglycans Are Attractive Biomarkers and Therapeutic Targets in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19103070. [PMID: 30297672 PMCID: PMC6213444 DOI: 10.3390/ijms19103070] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Proteoglycans, which consist of a protein core and glycosaminoglycan chains, are major components of the extracellular matrix and play physiological roles in maintaining tissue homeostasis. In the carcinogenic tissue microenvironment, proteoglycan expression changes dramatically. Altered proteoglycan expression on tumor and stromal cells affects cancer cell signaling pathways, which alters growth, migration, and angiogenesis and could facilitate tumorigenesis. This dysregulation of proteoglycans has been implicated in the pathogenesis of diseases such as hepatocellular carcinoma (HCC) and the underlying mechanism has been studied extensively. This review summarizes the current knowledge of the roles of proteoglycans in the genesis and progression of HCC. It focuses on well-investigated proteoglycans such as serglycin, syndecan-1, glypican 3, agrin, collagen XVIII/endostatin, versican, and decorin, with particular emphasis on the potential of these factors as biomarkers and therapeutic targets in HCC regarding the future perspective of precision medicine toward the "cure of HCC".
Collapse
Affiliation(s)
- Yasuo Tanaka
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Ryosuke Tateishi
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kazuhiko Koike
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
35
|
Uthamalingam P, Das A, Behra A, Kalra N, Chawla Y. Diagnostic Value of Glypican3, Heat Shock Protein 70 and Glutamine Synthetase in Hepatocellular Carcinoma Arising in Cirrhotic and Non-Cirrhotic Livers. J Clin Exp Hepatol 2018; 8:173-180. [PMID: 29892181 PMCID: PMC5992316 DOI: 10.1016/j.jceh.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/27/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Histopathological distinction of various nodular lesions in liver with sufficient sensitivity and specificity is a challenge even in an expert set up. The panel of immunohistochemical markers composed of glutamine synthetase (GS), Glypican3 (GPC3) and heat shock protein 70 (HSP70) was recommended by the International Consensus Group for Hepatocellular Neoplasia group for the differentiation of high grade dysplastic nodule and early hepatocellular carcinoma (HCC). The panel has been extensively validated in the western population. This study aims to test this panel on Indian population on resected, explanted and autopsy cirrhotic and non-cirrhotic liver specimens of HCC. METHODOLOGY This study was conducted on 39 such liver specimens (12 cirrhotic, 12 pre-cirrhotic and 11 non-cirrhotic, non-fibrotic livers), including 35 cases of HCC over a period of 12 years. Immunohistochemistry was performed with antibodies against GS, GPC3 and HSP70 on the sections containing both malignant and dysplastic nodules. RESULTS The diagnostic yield depended upon the nature of background liver pathology and was found to be high for only those HCCs arising in cirrhotic background, when positivity of any two markers was taken to be in favor of HCC (sensitivity-58.33%; specificity-100%). GS had a sensitivity and Negative predictive value of 100% for HCCs arising in cirrhotic livers. CONCLUSIONS Strong positivity for GS is a highly sensitive marker for HCC in a cirrhotic background regardless of the differentiation of the tumor in Indian population. This may be due to preferential activation of Wnt pathway in Indian patients with cirrhosis. The sensitivity of the panel was too low for detecting HCCs arising in non-cirrhotic livers, even in the pre-cirrhotic chronically inflamed livers, even though the specificity was high. GPC3 and HSP70 appear to be useful as individual markers for HCCs arising in non-cirrhotic livers.
Collapse
Key Words
- C, cirrhotic
- GPC3, Glypican3
- GS, glutamine synthetase
- Glypican3
- HCC, hepatocellular carcinoma
- HGDN, high grade dysplastic nodule
- HSP70, heat shock protein 70
- ICGHN, International Consensus Group for Hepatocellular Neoplasia
- LGDN, low grade dysplastic nodules
- NCNF, non-cirrhotic, non-fibrotic livers
- PC, pre-cirrhotic
- dysplastic nodules
- glutamine synthetase
- heat shock protein 70
- hepatocellular carcinoma
Collapse
Affiliation(s)
| | - Ashim Das
- Department of Histopathology, PGIMER, Chandigarh, India,Address for correspondence: Ashim Das, Professor, Department of Histopathology, Research Block A, PGIMER, Chandigarh 160012, India.
| | | | - Naveen Kalra
- Department of Radiodiagnosis, PGIMER, Chandigarh, India
| | | |
Collapse
|
36
|
Zhang J, Zhang M, Ma H, Song X, He L, Ye X, Li X. Overexpression of glypican-3 is a predictor of poor prognosis in hepatocellular carcinoma: An updated meta-analysis. Medicine (Baltimore) 2018; 97:e11130. [PMID: 29901640 PMCID: PMC6024095 DOI: 10.1097/md.0000000000011130] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3) has been widely recognized in the progression of liver tumors for several years. The relationship between overexpression of GPC3 and the poorer prognosis of patients with hepatocellular carcinoma (HCC) was performed by 2 meta-analyses. However, there were also some latest literatures that indicated different conclusions distinctly. It is necessary for us to carry out a meta-analysis by adding the latest data from current studies to explore the correlation between GPC3 and prognostic value in HCC. METHODS We conducted a meta-analysis including a total of 14 studies to assess the potential prognostic significance of GPC3 expression for overall survival (OS) and disease-free survival (DFS). The expression of GPC3 was assessed by immunohistochemistry. RESULTS Fourteen studies with 2364 patients were incorporated in the meta-analysis. The combined hazard ratios (HRs) revealed that the overexpression of GPC3 could forecast a poor OS [n = 2233 in 12 studies, HR = 1.40, 95% confidence interval (95% CI): 1.07-1.85, Z = 2.42, P = .02] and DFS (n = 1308 in 10 studies, HR = 1.61, 95% CI: 1.13-2.30, Z = 2.63, P = .008) in HCC patients. Subgroup treated by hepatectomy indicated that the pooled HR of OS was 1.43 (95% CI: 1.01-2.01, P = .04) and the combined HR of DFS was 1.59 (95% CI: 1.09-2.31, P = .02). The pooled odds ratios (ORs) showed that high GPC3 expression was also extensively associated with worse tumor differentiation, later tumor stage, presence of vascular invasion, and hepatitis B virus (HBV) infection. Subgroup analyses for GPC3 on HCC OS based on the studies categorized by regions, follow-up period, and sample size were also conducted. CONCLUSION The meta-analysis indicated that overexpression of GPC3 was significantly associated with poor prognosis in patients with HCC.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital
| | - Manka Zhang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital
| | - Huimin Ma
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University
| | - Xincheng Song
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital
| | - Lingling He
- Department of Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University
| | - Xiaohui Ye
- Department of Institute of Infectious Disease, Peking University Ditan Teaching Hospital, Beijing, People's Republic of China
| | - Xin Li
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University
| |
Collapse
|
37
|
Wang S, Kalim M, Liang K, Zhan J. Polyclonal antibody production against rGPC3 and their application in diagnosis of hepatocellular carcinoma. Prep Biochem Biotechnol 2018; 48:435-445. [PMID: 29561231 DOI: 10.1080/10826068.2018.1452258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glypican-3 (GPC3) is an integral membrane proteoglycan, which contains a core protein anchored to the cytoplasmic membrane through a glycosylphosphatidylinositol linkage. The glypican-3 can regulate the signaling pathways, thereby enhances cell division, growth, and apoptosis in certain cell types. It is almost nonexistent on the surface of the human normal cell membrane and highly expresses on the membrane of hepatocellular carcinoma (HCC) cells. It has been well established that GPC3 provides a useful diagnostic marker. For generating the polyclonal antibody of GPC3, we expected that GPC3 N-terminal region (amino acid sequence 26-358) could be expressed in Escherichia coli system, however, no active expression was observed after IPTG induction. Interestingly, after deletion of six proline residues from position 26 to 31 in the N-terminus, expression of recombinant GPC3 was clearly detected. We further analyzed the expressed protein deprived of six prolines, to immunize the New Zealand male rabbits for production of active antibodies. The binding affinity of antibody was analyzed by immunofluorescence analysis, immunohistochemical detection, and western blotting. The functional GPC3 N-terminal protein recombinant development, expression, purification, and the polyclonal antibody have been generated provide the basis for the diagnosis of HCC in cancer therapy.
Collapse
Affiliation(s)
- Shenghao Wang
- a Department of Biochemistry and Genetics , Zhejiang University School of Medicine , Hangzhou , China
| | - Muhammad Kalim
- a Department of Biochemistry and Genetics , Zhejiang University School of Medicine , Hangzhou , China
| | | | - Jinbiao Zhan
- a Department of Biochemistry and Genetics , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
38
|
Girerd S, Tosca L, Herault O, Vignon C, Biard D, Aggoune D, Dkhissi F, Bonnet ML, Sorel N, Desterke C, Bennaceur-Griscelli A, Tachdjian G, Guilhot F, Guilhot J, Chomel JC, Turhan AG. Superoxide dismutase 2 (SOD2) contributes to genetic stability of native and T315I-mutated BCR-ABL expressing leukemic cells. Biochem Biophys Res Commun 2018; 498:715-722. [DOI: 10.1016/j.bbrc.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 01/12/2023]
|
39
|
Simpson–Golabi–Behmel syndrome human adipocytes reveal a changing phenotype throughout differentiation. Histochem Cell Biol 2018; 149:593-605. [DOI: 10.1007/s00418-018-1663-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/22/2022]
|
40
|
Biomolecular analysis of matrix proteoglycans as biomarkers in non small cell lung cancer. Glycoconj J 2018; 35:233-242. [DOI: 10.1007/s10719-018-9815-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/28/2018] [Accepted: 02/06/2018] [Indexed: 01/18/2023]
|
41
|
Saad A, Liet B, Joucla G, Santarelli X, Charpentier J, Claverol S, Grosset CF, Trézéguet V. Role of Glycanation and Convertase Maturation of Soluble Glypican-3 in Inhibiting Proliferation of Hepatocellular Carcinoma Cells. Biochemistry 2018; 57:1201-1211. [PMID: 29345911 DOI: 10.1021/acs.biochem.7b01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glypican 3 (GPC3) is a complex heparan sulfate proteoglycan associated with the outer surface of the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. It is also N-glycosylated and processed by a furin-like convertase. GPC3 has numerous biological functions. Although GPC3 is undetectable in normal liver tissue, it is abnormally and highly overexpressed in hepatocellular carcinoma (HCC). Interestingly, proliferation of HCC cells such as HepG2 and HuH7 is inhibited when they express a soluble form of GPC3 after lentiviral transduction. To obtain more insight into the role of some of its post-translational modifications, we designed a mutant GPC3, sGPC3m, without its GPI anchor, convertase cleavage site, and glycosaminoglycan chains. The highly pure sGPC3m protein strongly inhibited HuH7 and HepG2 cell proliferation in vitro and induced a significant increase in their cell doubling time. It changed the morphology of HuH7 cells but not that of HepG2. It induced the enlargement of HuH7 cell nuclear area and the restructuration of adherent cell junctions. Unexpectedly, for both cell types, the levels of apoptosis, cell division, and β-catenin were not altered by sGPC3m, although growth inhibition was very efficient. Overall, our data show that glycanation and convertase maturation are not required for sGPC3m to inhibit HCC cell proliferation.
Collapse
Affiliation(s)
- Ahmad Saad
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Benjamin Liet
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Gilles Joucla
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Xavier Santarelli
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | | | - Stéphane Claverol
- Univ. Bordeaux, Plateforme Protéome, CGFB , F-33076 Bordeaux, France
| | - Christophe F Grosset
- Univ. Bordeaux, Inserm, BMGIC, U1035 , 33076 Bordeaux, France.,Univ. Bordeaux, Inserm, GREF, U1053 , 33076 Bordeaux, France
| | - Véronique Trézéguet
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France.,Univ. Bordeaux, Inserm, BMGIC, U1035 , 33076 Bordeaux, France
| |
Collapse
|
42
|
Combining expression of GPC3 in tumors and CD16 on NK cells from peripheral blood to identify patients responding to codrituzumab. Oncotarget 2018. [PMID: 29535817 PMCID: PMC5828203 DOI: 10.18632/oncotarget.23830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Codrituzumab, a monoclonal antibody targeting an oncofetal protein glypican-3 (GPC3) expressed on cell surface of hepatocellular carcinoma (HCC) induces antibody-dependent cellular cytotoxicity (ADCC) and inhibits tumor growth in preclinical studies. Based on this mechanism, tumor GPC3 expression and CD16 expression on NK cells, which are the effector cells of ADCC, were investigated to correlate with codrituzumab's clinical efficacy in patients with advanced HCC. Results Joint analyses of the two biomarkers revealed that both high levels of GPC3 and CD16 were required for patients to benefit from codrituzumab; lack of either one of them would lead to a loss of the therapeutic effect. Conclusions These results suggest the combination of tumor GPC3 expression and CD16 expression on NK cells from peripheral blood at baseline as a composite biomarker to select HCC patients for codrituzumab. Impact The conclusion warrants a future study in an HCC population with both high GPC3 expression and high levels of CD16 at baseline to establish codrituzumab's therapeutic benefit in HCC. Methods Data from a phase II clinical trial of codrituzumab were used for the analyses. GPC3 expression in baseline tumor biopsies was determined by immunohistochemistry (IHC) analysis, and baseline CD16 expression on NK cells were quantified by peripheral blood lymphocyte immunophenotyping. According to high or low expression of GPC3 and CD16, different patient subgroups were formed; for each subgroup, overall survival of patients having high codrituzumab exposure was compared to that of patients receiving placebo.
Collapse
|
43
|
Nagarajan A, Malvi P, Wajapeyee N. Heparan Sulfate and Heparan Sulfate Proteoglycans in Cancer Initiation and Progression. Front Endocrinol (Lausanne) 2018; 9:483. [PMID: 30197623 PMCID: PMC6118229 DOI: 10.3389/fendo.2018.00483] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
Heparan sulfate (HS) are complex unbranched carbohydrate chains that are heavily modified by sulfate and exist either conjugated to proteins or as free, unconjugated chains. Proteins with covalently bound Heparan sulfate chains are termed Heparan Sulfate Proteoglycans (HSPGs). Both HS and HSPGs bind to various growth factors and act as co-receptors for different cell surface receptors. They also modulate the dynamics and kinetics of various ligand-receptor interactions, which in turn can influence the duration and potency of the signaling. HS and HSPGs have also been shown to exert a structural role as a component of the extracellular matrix, thereby altering processes such as cell adhesion, immune cell infiltration and angiogenesis. Previous studies have shown that HS are deregulated in a variety of solid tumors and hematological malignancies and regulate key aspects of cancer initiation and progression. HS deregulation in cancer can occur as a result of changes in the level of HSPGs or due to changes in the levels of HS biosynthesis and remodeling enzymes. Here, we describe the major cell-autonomous (proliferation, apoptosis/senescence and differentiation) and cell-non-autonomous (angiogenesis, immune evasion, and matrix remodeling) roles of HS and HSPGs in cancer. Finally, we discuss therapeutic opportunities for targeting deregulated HS biosynthesis and HSPGs as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Parmanand Malvi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Narendra Wajapeyee
| |
Collapse
|
44
|
Precision diagnosis and treatment of liver cancer in China. Cancer Lett 2018; 412:283-288. [DOI: 10.1016/j.canlet.2017.10.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
|
45
|
Araujo BHS, Kaid C, De Souza JS, Gomes da Silva S, Goulart E, Caires LCJ, Musso CM, Torres LB, Ferrasa A, Herai R, Zatz M, Okamoto OK, Cavalheiro EA. Down Syndrome iPSC-Derived Astrocytes Impair Neuronal Synaptogenesis and the mTOR Pathway In Vitro. Mol Neurobiol 2017; 55:5962-5975. [PMID: 29128905 DOI: 10.1007/s12035-017-0818-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 11/02/2017] [Indexed: 10/25/2022]
Abstract
Several methods have been used to study the neuropathogenesis of Down syndrome (DS), such as mouse aneuploidies, post mortem human brains, and in vitro cell culture of neural progenitor cells. More recently, induced pluripotent stem cell (iPSC) technology has offered new approaches in investigation, providing a valuable tool for studying specific cell types affected by DS, especially neurons and astrocytes. Here, we investigated the role of astrocytes in DS developmental disease and the impact of the astrocyte secretome in neuron mTOR signaling and synapse formation using iPSC derived from DS and wild-type (WT) subjects. We demonstrated for the first time that DS neurons derived from hiPSC recapitulate the hyperactivation of the Akt/mTOR axis observed in DS brains and that DS astrocytes may play a key role in this dysfunction. Our results bear out that 21 trisomy in astrocytes contributes to neuronal abnormalities in addition to cell autonomous dysfunctions caused by 21 trisomy in neurons. Further research in this direction will likely yield additional insights, thereby improving our understanding of DS and potentially facilitating the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Bruno H S Araujo
- Department of Neurosurgery and Neurology, Laboratory of Neuroscience, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, São Paulo, Brazil. .,Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro, no. 10.000, Campinas, São Paulo, 13083-970, Brazil.
| | - Carolini Kaid
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Janaina S De Souza
- Department of Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| | - Sérgio Gomes da Silva
- Hospital Israelita Albert Einstein (HIAE), São Paulo, São Paulo, Brazil.,Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Ernesto Goulart
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Luiz C J Caires
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Camila M Musso
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Laila B Torres
- São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo, Brazil
| | - Adriano Ferrasa
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil.,Department of Informatics (DEINFO), Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná, 84030-900, Brazil
| | - Roberto Herai
- Department of Informatics (DEINFO), Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná, 84030-900, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Oswaldo K Okamoto
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Esper A Cavalheiro
- Department of Neurosurgery and Neurology, Laboratory of Neuroscience, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Cervantes-Garcia D, Cuellar-Juarez AG, Borrego-Soto G, Rojas-Martinez A, Aldaba-Muruato LR, Salinas E, Ventura-Juarez J, Muñoz-Ortega MH. Adenoviral‑bone morphogenetic protein‑7 and/or doxazosin therapies promote the reversion of fibrosis/cirrhosis in a cirrhotic hamster model. Mol Med Rep 2017; 16:9431-9440. [PMID: 29039539 PMCID: PMC5780000 DOI: 10.3892/mmr.2017.7785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis occurs in the presence of continuous insults, including toxic or biological agents. Novel treatments must focus on ceasing the progression of cellular damage, promoting the regeneration of the parenchyma and inhibition of the fibrotic process. The present study analyzed the effect of bone morphogenetic protein (BMP)-7 gene therapy with or without co-treatment with doxazosin in a model of liver cirrhosis in hamsters. The serum alanine aminotransferase, aspartate aminotransferase and albumin levels were analyzed spectrophotometrically. Tissue hepatic samples were analyzed by hematoxylin and eosin for parenchymal structure and Sirius red for collagen fiber content. BMP-7 and α-smooth muscle actin (SMA)-positive cells were detected by immunohistochemistry. BMP-7 and collagen type I content in hepatic tissue were analyzed by western blotting, and tissue inhibitor of metalloproteinases (TIMP)-2 and matrix metalloproteinase (MMP)-13 expression levels were detected by reverse transcription-quantitative polymerase chain reaction. The present study detected a significant reduction of collagen type I deposits in the group treated with adenoviral-transduction with BMP-7 and doxazosin. In animals with BMP-7 and doxazosin therapy, α-SMA-positive cells were 31.7 and 29% significantly decreased compared with animals with placebo, respectively. Adenoviral-BMP-7 transduction and/or doxazosin treatments actively induced decrement in type I collagen deposition via increased MMP-13 and reduced TIMP-2 expression. In conclusion, the adenovirus-BMP-7 gene therapy and the doxazosin therapy are potential candidates for the diminution of fibrosis in the liver, although combination of both therapies does not improve the individual anti-fibrotic effect once cirrhosis is established.
Collapse
Affiliation(s)
- Daniel Cervantes-Garcia
- Department of Microbiology, Basic Sciences Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico
| | | | - Gissela Borrego-Soto
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, 64710 Nuevo Leon, Mexico
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, 64710 Nuevo Leon, Mexico
| | - Liseth Rubi Aldaba-Muruato
- Department of Morphology, Basic Sciences Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico
| | - Eva Salinas
- Department of Microbiology, Basic Sciences Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico
| | - Javier Ventura-Juarez
- Department of Morphology, Basic Sciences Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico
| | - Martin Humberto Muñoz-Ortega
- Department of Chemistry, Basic Sciences Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico
| |
Collapse
|
47
|
Koyama K, Maeda D, Tamura D, Narita C, Kudo-Asabe Y, Sato T, Yamamoto Y, Sageshima M, Nanjo H, Goto A. Fetal gut-like differentiation in gallbladder cancer. Hum Pathol 2017; 70:27-34. [PMID: 28970139 DOI: 10.1016/j.humpath.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 11/26/2022]
Abstract
Adenocarcinomas showing fetal gut-like (enteroblastic) differentiation can arise in a variety of organs and are frequently accompanied by an elevated serum α-fetoprotein (AFP) level. However, no study has investigated fetal gut-like differentiation in gallbladder cancer in detail. Herein, we performed morphological and immunohistochemical analyses of fetal gut-like differentiation in 49 consecutive gallbladder cancer cases. The expression of Sal-like protein 4 (SALL4), an embryonic stem cell marker reported to represent fetal gut-like differentiation, as well as other oncofetal proteins, including glypican-3 (GPC3) and AFP, was assessed. We found 1 case of fetal gut-like adenocarcinoma that coexisted with conventional-type adenocarcinoma. The fetal gut-like adenocarcinoma component revealed diffuse immunoreactivity for SALL4 and partial positivity for AFP, whereas the conventional-type adenocarcinoma component was negative. We also found 2 poorly differentiated adenocarcinomas with hepatoid morphology and 1 clear cell carcinoma, none of which showed SALL4 positivity. In other conventional-type adenocarcinomas, focal immunoreactivity for SALL4 and GPC3 was occasionally observed. The overall positivity rates for SALL4 and GPC3 were 12.2% (6/49) and 16.3% (8/49), respectively. SALL4 and GPC3 expression was not associated with clinicopathological factors, including T category, lymphovascular invasion, and lymph node metastases. In conclusion, fetal gut-like adenocarcinoma was found in 2% of our gallbladder cancer series. We conclude that fetal gut-like adenocarcinoma is a distinct histological subtype of gallbladder cancer, characterized by SALL4 expression.
Collapse
Affiliation(s)
- Kei Koyama
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, 010-8543, Japan; Faculty of Medicine, Akita University, Akita, 010-8543, Japan
| | - Daichi Maeda
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, 010-8543, Japan.
| | - Daisuke Tamura
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, 010-8543, Japan; Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, 010-8543, Japan
| | - Chisato Narita
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, 010-8543, Japan; Faculty of Medicine, Akita University, Akita, 010-8543, Japan
| | - Yukitsugu Kudo-Asabe
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, 010-8543, Japan
| | - Tsutomu Sato
- Department of Surgery, Akita City Hospital, Akita, 010-0933, Japan
| | - Yuzo Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Akita University, Akita, 010-8543, Japan
| | - Masato Sageshima
- Department of Pathology, Akita City Hospital, Akita, 010-0933, Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University Hospital, Akita, Akita 010-8543, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, 010-8543, Japan
| |
Collapse
|
48
|
MXR7 facilitates liver cancer metastasis via epithelial-mesenchymal transition. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1203-1213. [PMID: 28812296 DOI: 10.1007/s11427-016-9042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
Abstract
MXR7 is a cell-surface protein and highly expressed in hepatocellular carcinoma (HCC). The aim of this study is to determine the expression profile of MXR7 in HCC and investigate the influence of MXR7 on invasion and metastasis of HCC cells. For this purpose, immunohistochemical assay was used to identify the differential expression of MXR7 in 94 HCC specimens. Expression of MXR7 in 4 pairs of HCC and portal vein tumor thrombus (PVTT) was also tested. The motility of HCC cells were characterized by transwell migration and matrigel invasion assays. In vivo metastasis potential was determined via tail vein injection assay. Moreover, compared with noninvasive HCC tumors or human HCC cell lines with low metastatic potential, invasive HCC samples and HCC cell lines with high metastatic potential exhibited higher MXR7 expression. Furthermore, forced expression of MXR7 in SMMC-7721 promoted cell proliferation, migration and invasion in vitro and accelerated tumor growth and metastasis in vivo. Conversely, knockdown of MXR7 expression in HuH7 cells inhibited proliferation and motility of cells. Mechanically, overexpression of MXR7 promoted epithelial-mesenchymal transition (EMT) progress, and MXR7 depletion repressed the EMT phenotype. In conclusion, MXR7 is a mediator of EMT and metastasis in HCC and may serve as a novel therapeutic target.
Collapse
|
49
|
Pok S, Vohra H, Wehbe C, Barn VA, Arfianti E, Dan YY, Farrell GC, Teoh NC. Deriving and testing of dysplastic murine hepatocytes: A new platform in liver cancer research. Exp Cell Res 2017; 356:48-56. [PMID: 28408319 DOI: 10.1016/j.yexcr.2017.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 11/27/2022]
Abstract
Dysplastic hepatocytes (DH) represent altered hepatocytes with potential for malignant transformation. To date, most research on pathways to hepatocarcinogenesis has focused on use of "hepatoma" cell lines derived from hepatocellular carcinoma (HCC). We describe a novel technique for deriving/culturing DH and demonstrate their utility for functional studies in vitro, compared to primary hepatocytes (PH) and HCC. PH and DH were prepared by portal vein collagenase perfusion from C57BL/6J mice. DH were subsequently subjected to FACS. HCC from diethylnitrosamine (DEN)-injected mice were mechanically isolated. Cell cycle analyses were performed by flow cytometry and PCNA immunohistochemistry. To establish utility of DH, we studied pathways of p53 turnover, apoptosis and cell proliferation using pfithrin-α (PFT) and nutlin-3. Like PH, DH were minimally proliferative compared to HCC. Only 30±0.03% of DH were in G2/M phase versus 51±0.01% of HCC; this difference corroborated with PCNA-immunostaining of dysplastic nodules from DEN-injected mice. In DH and HCC, nutlin-3 suppressed p53 mRNA, induced p53 and mdm2 activation but paradoxically resulted in increased anti-apoptotic and proliferative activity. Primary murine DH display distinctive biological characteristics compared with PH and HCC. As an intermediate cell type to HCC, they offer a new pathobiologically relevant primary cell culture system with which to interrogate the molecular changes in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Sharon Pok
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Building 10 Level 5, Yamba Drive, Garran, Canberra, ACT 2605, Australia.
| | - Harpreet Vohra
- Imaging and Cytometry Facility, John Curtin School of Medical Research, Building 131, Garran Rd, Acton, Canberra, ACT 2601, Australia.
| | - Charbel Wehbe
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Building 10 Level 5, Yamba Drive, Garran, Canberra, ACT 2605, Australia.
| | - Vanessa A Barn
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Building 10 Level 5, Yamba Drive, Garran, Canberra, ACT 2605, Australia.
| | - Evi Arfianti
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Building 10 Level 5, Yamba Drive, Garran, Canberra, ACT 2605, Australia.
| | - Yock-Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, Singapore 117549, Singapore.
| | - Geoffrey C Farrell
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Building 10 Level 5, Yamba Drive, Garran, Canberra, ACT 2605, Australia.
| | - Narci C Teoh
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Building 10 Level 5, Yamba Drive, Garran, Canberra, ACT 2605, Australia.
| |
Collapse
|
50
|
Zhou F, Shang W, Yu X, Tian J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 2017. [PMID: 28621802 DOI: 10.1002/med.21455] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liver cancer is the second leading cause of cancer-related deaths, and hepatocellular carcinoma (HCC) is the most common type. Therefore, molecular targets are urgently required for the early detection of HCC and the development of novel therapeutic approaches. Glypican-3 (GPC3), an oncofetal proteoglycan anchored to the cell membrane, is normally detected in the fetal liver but not in the healthy adult liver. However, in HCC patients, GPC3 is overexpressed at both the gene and protein levels, and its expression predicts a poor prognosis. Mechanistic studies have revealed that GPC3 functions in HCC progression by binding to molecules such as Wnt signaling proteins and growth factors. Moreover, GPC3 has been used as a target for molecular imaging and therapeutic intervention in HCC. To date, GPC3-targeted magnetic resonance imaging, positron emission tomography, and near-infrared imaging have been investigated for early HCC detection, and various immunotherapeutic protocols targeting GPC3 have been developed, including the use of humanized anti-GPC3 cytotoxic antibodies, treatment with peptide/DNA vaccines, immunotoxin therapies, and genetic therapies. In this review, we summarize the current knowledge regarding the structure, function, and biology of GPC3 with a focus on its clinical potential as a diagnostic molecule and a therapeutic target in HCC immunotherapy.
Collapse
Affiliation(s)
- Fubo Zhou
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|