1
|
Calaf GM. Breast carcinogenesis induced by organophosphorous pesticides. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:71-117. [PMID: 36858780 DOI: 10.1016/bs.apha.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a major health threat to women worldwide and the leading cause of cancer-related death. The use of organophosphorous pesticides has increased in agricultural environments and urban settings, and there is evidence that estrogen may increase breast cancer risk in women. The mammary gland is an excellent model for examining its susceptibility to different carcinogenic agents due to its high cell proliferation capabilities associated with the topography of the mammary parenchyma and specific stages of gland development. Several experimental cellular models are presented here, in which the animals were exposed to chemical compounds such as pesticides, and endogenous substances such as estrogens that exert a significant effect on normal breast cell processes at different levels. Such models were developed by the effect of malathion, parathion, and eserine, influenced by estrogen demonstrating features of cancer initiation in vivo as tumor formation in rodents; and in vitro in the immortalized normal breast cell line MCF-10F, that when transformed showed signs of carcinogenesis such as increased cell proliferation, anchorage independence, invasive capabilities, modulation of receptors and genomic instability. The role of acetylcholine was also demonstrated in the MCF-10F, suggesting a role not only as a neurotransmitter but also with other functions, such as induction of cell proliferation, playing an important role in cancer. Of note, this is a unique experimental approach that identifies mechanistic signs that link organophosphorous pesticides with breast carcinogenesis.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile.
| |
Collapse
|
2
|
Ionizing Radiation and Estrogen Affecting Growth Factor Genes in an Experimental Breast Cancer Model. Int J Mol Sci 2022; 23:ijms232214284. [PMID: 36430763 PMCID: PMC9693528 DOI: 10.3390/ijms232214284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Genes associated with growth factors were previously analyzed in a radiation- and estrogen-induced experimental breast cancer model. Such in vitro experimental breast cancer model was developed by exposure of the immortalized human breast epithelial cell line, MCF-10F, to low doses of high linear energy transfer (LET) α particle radiation (150 keV/μm) and subsequent growth in the presence or absence of 17β-estradiol. The MCF-10F cell line was analyzed in different stages of transformation after being irradiated with either a single 60 cGy dose or 60/60 cGy doses of alpha particles. In the present report, the profiling of differentially expressed genes associated with growth factors was analyzed in their relationship with clinical parameters. Thus, the results indicated that Fibroblast growth factor2 gene expression levels were higher in cells transformed by radiation or in the presence of ionizing radiation; whereas the fibroblast growth factor-binding protein 1gene expression was higher in the tumor cell line derived from this model. Such expressions were coincident with higher values in normal than malignant tissues and with estrogen receptor (ER) negative samples for both gene types. The results also showed that transforming growth factor alpha gene expression was higher in the tumor cell line than the tumorigenic A5 and the transformed A3 cell line, whereas the transforming growth factor beta receptor 3 gene expression was higher in A3 and A5 than in Tumor2 cell lines and the untreated controls and the E cell lines. Such gene expression was accompanied by results indicating negative and positive receptors for transforming growth factor alpha and the transforming growth factor beta receptor 3, respectively. Such expressions were low in malignant tissues when compared with benign ones. Furthermore, Fibroblast growth factor2, the fibroblast growth factor-binding protein 1, transforming growth factor alpha, the transforming growth factor beta receptor 3, and the insulin growth factor receptor gene expressions were found to be present in all BRCA patients that are BRCA-Basal, BRCA-LumA, and BRCA-LumB, except in BRCA-Her2 patients. The results also indicated that the insulin growth factor receptor gene expression was higher in the tumor cell line Tumor2 than in Alpha3 cells transformed by ionizing radiation only; then, the insulin growth factor receptor was higher in the A5 than E cell line. The insulin growth factor receptor gene expression was higher in breast cancer than in normal tissues in breast cancer patients. Furthermore, Fibroblast growth factor2, the fibroblast growth factor-binding protein 1, transforming growth factor alpha, the transforming growth factor beta receptor 3, and the insulin growth factor receptor gene expression levels were in stages 3 and 4 of breast cancer patients. It can be concluded that, by using gene technology and molecular information, it is possible to improve therapy and reduce the side effects of therapeutic radiation use. Knowing the different genes involved in breast cancer will make possible the improvement of clinical chemotherapy.
Collapse
|
3
|
LI J, QI L, ZHANG M, YAO C, FENG J, ZHENG Z, CHEN C, DUAN S, QI Y. PRKCDBP Methylation is a Potential and Promising Candidate Biomarker for Non-small Cell Lung Cancer. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:78-85. [PMID: 35224960 PMCID: PMC8913286 DOI: 10.3779/j.issn.1009-3419.2022.102.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The occurrence and development of lung cancer are closely linked to epigenetic modification. Abnormal DNA methylation in the CpG island region of genes has been found in many cancers. Protein kinase C delta binding protein (PRKCDBP) is a potential tumor suppressor and its epigenetic changes are found in many human malignancies. This study investigated the possibility of PRKCDBP methylation as a potential biomarker for non-small cell lung cancer (NSCLC). METHODS We measured the methylation levels of PRKCDBP in the three groups of NSCLC tissues. Promoter activity was measured by the dual luciferase assay, with 5'-aza-deoxycytidine to examine the effect of demethylation on the expression level of PRKCDBP. RESULTS The methylation levels of PRKCDBP in tumor tissues and 3 cm para-tumor were higher than those of distant (>10 cm) non-tumor tissues. Receiver operating characteristic (ROC) curve analysis between tumor tissues and distant non-tumor tissues showed that the area under the line (AUC) was 0.717. Dual luciferase experiment confirmed that the promoter region was able to promote gene expression. Meanwhile, in vitro methylation of the fragment (PRKCDBP_Me) could significantly reduce the promoter activity of the fragment. Demethylation of 5'-aza-deoxycytidine in lung cancer cell lines A549 and H1299 showed a significant up-regulation of PRKCDBP mRNA levels. CONCLUSIONS PRKCDBP methylation is a potential and promising candidate biomarker for non-small cell lung cancer.
Collapse
Affiliation(s)
- Jing LI
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Lin QI
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Mingfang ZHANG
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Caiyun YAO
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jinan FENG
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Zhonghua ZHENG
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Chujia CHEN
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Shiwei DUAN
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yuanlin QI
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China,Yuanlin QI, E-mail:
| |
Collapse
|
4
|
Giwa A, Rossouw SC, Fatai A, Gamieldien J, Christoffels A, Bendou H. Predicting amplification of MYCN using CpG methylation biomarkers in neuroblastoma. Future Oncol 2021; 17:4769-4783. [PMID: 34751044 DOI: 10.2217/fon-2021-0522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Neuroblastoma is the most common extracranial solid tumor in childhood. Amplification of MYCN in neuroblastoma is a predictor of poor prognosis. Materials and methods: DNA methylation data from the TARGET data matrix were stratified into MYCN amplified and non-amplified groups. Differential methylation analysis, clustering, recursive feature elimination (RFE), machine learning (ML), Cox regression analysis and Kaplan-Meier estimates were performed. Results and Conclusion: 663 CpGs were differentially methylated between the two groups. A total of 25 CpGs were selected by RFE for clustering and ML, and a 100% clustering accuracy was obtained. ML validation on three external datasets produced high accuracy scores of 100%, 97% and 93%. Eight survival-associated CpGs were also identified. Therapeutic interventions may need to be targeted to patient subgroups.
Collapse
Affiliation(s)
- Abdulazeez Giwa
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Sophia Catherine Rossouw
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Azeez Fatai
- Department of Biochemistry, Lagos State University, Nigeria
| | - Junaid Gamieldien
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Hocine Bendou
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| |
Collapse
|
5
|
Gwili N, Jones SJ, Amri WA, Carr IM, Harris S, Hogan BV, Hughes WE, Kim B, Langlands FE, Millican-Slater RA, Pramanik A, Thorne JL, Verghese ET, Wells G, Hamza M, Younis L, El Deeb NMF, Hughes TA. Transcriptome profiles of stem-like cells from primary breast cancers allow identification of ITGA7 as a predictive marker of chemotherapy response. Br J Cancer 2021; 125:983-993. [PMID: 34253873 PMCID: PMC8476506 DOI: 10.1038/s41416-021-01484-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) are drivers of therapy-resistance, therefore are responsible for poor survival. Molecular signatures of BCSCs from primary cancers remain undefined. Here, we identify the consistent transcriptome of primary BCSCs shared across breast cancer subtypes, and we examine the clinical relevance of ITGA7, one of the genes differentially expressed in BCSCs. METHODS Primary BCSCs were assessed using immunohistochemistry and fluorescently labelled using Aldefluor (n = 17). Transcriptomes of fluorescently sorted BCSCs and matched non-stem cancer cells were determined using RNA-seq (n = 6). ITGA7 expression was examined in breast cancers using immunohistochemistry (n = 305), and its functional role was tested using siRNA in breast cancer cells. RESULTS Proportions of BCSCs varied from 0 to 9.4%. 38 genes were significantly differentially expressed in BCSCs; genes were enriched for functions in vessel morphogenesis, motility, and metabolism. ITGA7 was found to be significantly downregulated in BCSCs, and low expression significantly correlated with reduced survival in patients treated with chemotherapy, and with chemoresistance in breast cancer cells in vitro. CONCLUSIONS This study is the first to define the molecular profile of BCSCs from a range of primary breast cancers. ITGA7 acts as a predictive marker for chemotherapy response, in accordance with its downregulation in BCSCs.
Collapse
Affiliation(s)
- Noha Gwili
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK ,grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Stacey J. Jones
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK ,grid.415967.80000 0000 9965 1030Department of Breast Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Waleed Al Amri
- grid.416132.30000 0004 1772 5665Department of Histopathology and Cytopathology, The Royal Hospital, Muscat, Oman
| | - Ian M. Carr
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK
| | - Sarah Harris
- grid.9909.90000 0004 1936 8403School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Brian V. Hogan
- grid.415967.80000 0000 9965 1030Department of Breast Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - William E. Hughes
- grid.414235.50000 0004 0619 2154Children’s Medical Research Institute, Westmead, NSW Australia ,grid.1005.40000 0004 4902 0432St. Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Baek Kim
- grid.415967.80000 0000 9965 1030Department of Breast Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Fiona E. Langlands
- Department of Breast Surgery, Bradford Teaching Hospitals NHS Trust, Bradford, UK
| | | | - Arindam Pramanik
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK
| | - James L. Thorne
- grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Eldo T. Verghese
- grid.443984.6Department of Histopathology, St. James’s University Hospital, Leeds, UK
| | - Geoff Wells
- grid.83440.3b0000000121901201School of Pharmacy, University College London, London, UK
| | - Mervat Hamza
- grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Layla Younis
- grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nevine M. F. El Deeb
- grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Thomas A. Hughes
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Calaf GM, Bleak TC, Roy D. Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells (Review). Oncol Rep 2021; 45:24. [PMID: 33649804 PMCID: PMC7905528 DOI: 10.3892/or.2021.7975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer development is a multistep process that may be induced by a variety of compounds. Environmental substances, such as pesticides, have been associated with different human diseases. Organophosphorus pesticides (OPs) are among the most commonly used insecticides. Despite the fact that organophosphorus has been associated with an increased risk of cancer, particularly hormone-mediated cancer, few prospective studies have examined the use of individual insecticides. Reported results have demonstrated that OPs and estrogen induce a cascade of events indicative of the transformation of human breast epithelial cells. In vitro studies analyzing an immortalized non-tumorigenic human breast epithelial cell line may provide us with an approach to analyzing cell transformation under the effects of OPs in the presence of estrogen. The results suggested hormone-mediated effects of these insecticides on the risk of cancer among women. It can be concluded that, through experimental models, the initiation of cancer can be studied by analyzing the steps that transform normal breast cells to malignant ones through certain substances, such as pesticides and estrogen. Such substances cause genomic instability, and therefore tumor formation in the animal, and signs of carcinogenesis in vitro. Cancer initiation has been associated with an increase in genomic instability, indicated by the inactivation of tumor-suppressor genes and activation of oncogenes in the presence of malathion, parathion, and estrogen. In the present study, a comprehensive summary of the impact of OPs in human and rat breast cancer, specifically their effects on the cell cycle, signaling pathways linked to epidermal growth factor, drug metabolism, and genomic instability in an MCF-10F estrogen receptor-negative breast cell line is provided.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Debasish Roy
- Department of Natural Sciences, Hostos Community College of The City University of New York, Bronx, NY 10451, USA
| |
Collapse
|
7
|
Curcumin, oxidative stress, and breast cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
A novel NAP1L4/NUTM1 fusion arising from translocation t(11;15)(p15;q12) in a myeloid neoplasm with eosinophilia and rearrangement of PDGFRA highlights an unusual clinical feature and therapeutic reaction. Ann Hematol 2020; 99:1561-1564. [PMID: 32451710 DOI: 10.1007/s00277-020-04000-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
NUT midline carcinoma (NMC) is an aggressive neoplasm and mainly involved in the head and neck area. The defining genetic hallmark on these tumors is that testis-specific nuclear gene (NUTM1) fuses to bromodomain protein family member 4 gene (BRD4), resulting in the formation of BRD4-NUTM1 transcript. Here, we report a case with myeloid neoplasm complicating with eosinophilia (MLN-Eo) and rearrangement of PDGFRA, which co-exists with a new nucleosome assemble protein 1-like 4 gene (NAP1L4) NAP1L4-NUTM1 fusion. The patient have unusually clinical features and therapeutic reaction to imatinib mesylate. The cloned NAP1L4-NUTM1 gene structure is also determined.
Collapse
|
9
|
Zhumakayeva AM, Rakhimov KD, Omarova IM, Arystan LI, Adekenov SM. Experimental, Clinical and Morphological Analysis of H-Ras Oncoproteins for Locally Advanced Breast Cancer. Open Access Maced J Med Sci 2019; 7:3153-3157. [PMID: 31949508 PMCID: PMC6953936 DOI: 10.3889/oamjms.2019.708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND: Activated forms of Ras are enhanced in both breast cancer as well as the cell lines with EGFR and HER2 expression. Therefore, H-Ras could be activated in breast tumours in the absence of direct mutational activation of Ras itself and could contribute to 20-50% of the cases. Expression inhibition, signal transduction interruption from H-Ras to the nucleus could become a promising therapeutic target. AIM: The aim of this study was to investigate the clinical and morphological criteria of locally advanced breast cancer and the expression of H-Ras oncoprotein in patients who have been subjected to different regimens of farnesyltransferase inhibitor. METHODS: H-Ras status was assessed by immunohistochemistry (IHC). RESULTS: An association between the expressions of H-Ras and Her2/neu (p = 0.001) as well as the tumour proliferation index Ki-67 (p = 0.001) in patients with breast cancer was established. Analysis of the relationship between H-Ras expression showed a relatively strong association with progression-free survival both before the treatment (V = 0.47; p = 0.001) and after the treatment (V = 0.45; p = 0.001). These results may indicate the clinical applicability of H-Ras as a prognostic factor or serve as a therapeutic target for breast cancer treatment. CONCLUSION: These results could indicate the potential clinical application of H-Ras as a prognostic factor or a therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- A M Zhumakayeva
- "International Scientific and Production Holding", Karaganda City, Kazakhstan
| | - K D Rakhimov
- "International Scientific and Production Holding", Karaganda City, Kazakhstan.,Department of Clinical Pharmacology, Kazakh National Medical University, Almaty, Kazakhstan
| | - I M Omarova
- Department of Oncology and Radiology of the Karaganda Medical University, Karaganda City, Kazakhstan
| | - L I Arystan
- "International Scientific and Production Holding", Karaganda City, Kazakhstan.,Department of Clinical Pharmacology of Karaganda Medical University, Karaganda City, Kazakhstan
| | - S M Adekenov
- "International Scientific and Production Holding", Karaganda City, Kazakhstan
| |
Collapse
|
10
|
Calaf GM, Urzua U, Termini L, Aguayo F. Oxidative stress in female cancers. Oncotarget 2018; 9:23824-23842. [PMID: 29805775 PMCID: PMC5955122 DOI: 10.18632/oncotarget.25323] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Breast, cervical and ovarian cancers are highly prevalent in women worldwide. Environmental, hormonal and viral-related factors are especially relevant in the development of these tumors. These factors are strongly related to oxidative stress (OS) through the generation of reactive oxygen species (ROS). The OS is caused by an imbalance in the redox status of the organism and is literally defined as "an imbalance between ROS generation and its detoxification by biological system leading to impairment of damage repair by cell/tissue". The multistep progression of cancer suggests that OS is involved in cancer initiation, promotion and progression. In this review, we described the role of OS and the interplay with environmental, host and viral factors related to breast, cervical and ovarian cancers initiation, promotion and progression. In addition, the role of the natural antioxidant compound curcumin and other compounds for breast, cervical and ovarian cancers prevention/treatment is discussed.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación (IAI), Universidad de Tarapacá, Arica, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| | - Ulises Urzua
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lara Termini
- Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Laboratório de Oncologia Experimental, São Paulo, SP, Brazil
| | - Francisco Aguayo
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Calaf GM, Abarca-Quinones J. Ras protein expression as a marker for breast cancer. Oncol Lett 2016; 11:3637-3642. [PMID: 27284366 PMCID: PMC4887929 DOI: 10.3892/ol.2016.4461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022] Open
Abstract
Breast cancer, the most common neoplasm in women of all ages, is the leading cause of cancer-related mortality in women worldwide. Markers to help to predict the risk of progression and ultimately provide non-surgical treatment options would be of great benefit. At present, there are no available molecular markers to predict the risk of carcinoma in situ progression to invasive cancer; therefore, all women diagnosed with this type of malignancy must undergo surgery. Breast cancer is a heterogeneous complex disease, and different patients respond differently to different treatments. In breast cancer, analysis using immunohistochemical markers remains an essential component of routine pathological examinations, and plays an import role in the management of the disease by providing diagnostic and prognostic strategies. The aim of the present study was to identify a marker that can be used as a prognostic tool for breast cancer. For this purpose, we firstly used an established breast cancer model. MCF-10F, a spontaneously immortalized breast epithelial cell line was transformed by exposure to estrogen and radiation. MCF-10F cells were exposed to low doses of high linear energy transfer (LET) α particles (150 keV/μm) of radiation, and subsequently cultured in the presence of 17β-estradiol. Three cell lines were used: i) MCF-10F cells as a control; ii) Alpha5 cells, a malignant and tumorigenic cell line; and iii) Tumor2 cells derived from Alpha5 cells injected into nude mice. Secondly, we also used normal, benign and malignant breast specimens obtained from biopsies. The results revealed that the MCF-10F cells were negative for c-Ha-Ras protein expression; however, the Alpha5 and Tumor2 cell lines were positive for c-Ha-Ras protein expression. The malignant breast samples were also strongly positive for c-Ha-Ras expression. The findings of our study indicate that c-Ha-Ras protein expression may be used as a marker to predict the progression of breast cancer; this marker may also ultimately provide non-surgical treatment options for patients who are at a lower risk.
Collapse
Affiliation(s)
- Gloria M Calaf
- Institute for Advanced Research, Tarapacá University, Arica 1001236, Chile; Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Jorge Abarca-Quinones
- School of Medicine, Saint-Luc Hospital, IMAG Unit (IREC), University of Louvain, Brussels 1200, Belgium
| |
Collapse
|
12
|
|
13
|
Wade MA, Sunter NJ, Fordham SE, Long A, Masic D, Russell LJ, Harrison CJ, Rand V, Elstob C, Bown N, Rowe D, Lowe C, Cuthbert G, Bennett S, Crosier S, Bacon CM, Onel K, Scott K, Scott D, Travis LB, May FEB, Allan JM. c-MYC is a radiosensitive locus in human breast cells. Oncogene 2014; 34:4985-94. [PMID: 25531321 PMCID: PMC4391966 DOI: 10.1038/onc.2014.427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 10/15/2014] [Accepted: 11/21/2014] [Indexed: 12/30/2022]
Abstract
Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer.
Collapse
Affiliation(s)
- M A Wade
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - N J Sunter
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - S E Fordham
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - A Long
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - D Masic
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - L J Russell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - C J Harrison
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - V Rand
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - C Elstob
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - N Bown
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - D Rowe
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - C Lowe
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - G Cuthbert
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - S Bennett
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - S Crosier
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - C M Bacon
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - K Onel
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - K Scott
- Department of Biology, University of York, Heslington, York, UK
| | - D Scott
- Department of Histopathology, Harrogate and District NHS Foundation Trust, Harrogate District Hospital, Yorkshire, UK
| | - L B Travis
- Department of Radiation Oncology and Rubin Center for Cancer Survivorship, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - F E B May
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J M Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
ROY DEBASISH, CALAF GLORIAM. Mutation of β-catenin in a radiation and estrogen breast cancer model. Int J Oncol 2014; 46:153-60. [DOI: 10.3892/ijo.2014.2722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/17/2014] [Indexed: 11/06/2022] Open
|
15
|
Roy D, Calaf GM. Allelic loss at chromosome 11q13 alters FGF3 gene expression in a human breast cancer progression model. Oncol Rep 2014; 32:2445-52. [PMID: 25333703 DOI: 10.3892/or.2014.3502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/26/2014] [Indexed: 11/06/2022] Open
Abstract
Identification of markers with the potential to predict tumorigenic behavior is important in breast cancer, due to the variability in clinical disease progression. Genetic alterations during neoplastic progression may appear as changes in total DNA content, single genes, or gene expression. Oncogenic alterations are thought to be prognostic indices for patients with breast cancer. Breast cancer deregulation can occur in the normal cellular process and can be measured by microsatellite instability (MSI)/loss of heterozygosity (LOH). Chromosome 11 is unique in this respect, as three regions of MSI/LOH have been identified (11p15-p15.5, 11q13-q13.3 and 11q23-q24). There are many important families of genes, such as FGF, CCND1, FADD, BAD and GAD2, that are located on chromosome 11 and these play a crucial role in breast cancer progression. Among them, different members of the fibroblast growth factor (FGF) family of genes are clustered around human chromosome 11q13 amplicon, which are constantly altering during breast cancer progression. Therefore, in this study, locus 11q13 and FGF3 gene (11q13) function were investigated in a radiation and estrogen breast cancer model induced by high-LET (α-particle) radiation and estrogen exposure. To assess the effect of ionizing radiation and estrogen at chromosome 11q13 loci and the subsequent role of FGF3 gene expression, various microsatellite markers were chosen in this region, and allelic loses (~20-45%) were identified by PCR-SSCP analysis. Results showed an increase in FGF3 protein expression and a 6- to 8-fold change in gene expression of FGF3 and associated genes. These deregulations could be utilized as an appropriate target for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY, USA
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
16
|
Yoo TH, Ryu BK, Lee MG, Chi SG. CD81 is a candidate tumor suppressor gene in human gastric cancer. Cell Oncol (Dordr) 2012; 36:141-53. [PMID: 23264205 DOI: 10.1007/s13402-012-0119-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2012] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND CD81 is a transmembrane protein that serves as a putative receptor for hepatitis C virus. In addition, CD81 has been suggested to be involved in a broad range of other cellular functions. Its putative implication in tumorigenesis has so far, however, remained largely unexplored. To assess the candidacy of CD81 as a tumor suppressor in gastric cancer development, we investigated its expression and function in a series of primary gastric tumors and gastric tumor-derived cell lines. METHODS The expression and concomitant methylation status of the CD81 gene and its effect on tumor development and cellular signaling were evaluated. RESULTS CD81 mRNA levels were found to be low in 16 of 40 (40 %) primary tumors and 9 of 14 (64.2 %) cell lines, and these low expression levels were found to correlate with the stage and grade of the tumors. Genomic alterations of CD81 were not encountered, whereas its expression could be re-activated in low expressing cells upon 5-aza-dC treatment. Bisulfite DNA sequencing analysis of 10 CpG sites within the 5' proximal region of the CD81 gene promoter revealed that the observed transcriptional silencing was tightly associated with aberrant hypermethylation. Subsequent restoration of CD81 expression induced a G1 cell cycle arrest and apoptosis, whereas siRNA-mediated CD81 down-regulation promoted cell proliferation and attenuated cellular responses to various apoptotic stress stimuli. Also the colony-forming ability of the tumor cells could be inhibited and enhanced through CD81 up- and down-regulation, respectively. CD81 was found to inhibit p38 (but not ERK, JNK and AKT) phosphorylation and its growth suppressive effect could be abolished through p38 up- and down-regulation. CONCLUSION From our data we conclude that epigenetic inactivation of CD81 is a common feature of gastric tumors and that this inactivation may render growth and survival advantages to the tumor cells, at least partially through p38 signaling.
Collapse
Affiliation(s)
- Tae-Hyoung Yoo
- School of Life Sciences and Biotechnology, Korea University, 136-701, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
17
|
Tong SY, Lee JM, Ki KD, Seol HJ, Choi YJ, Lee SK. Genetic Polymorphism of PRKCDBP is Associated with an Increased Risk of Endometrial Cancer. Cancer Invest 2012; 30:642-5. [DOI: 10.3109/07357907.2012.727054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Lee JH, Kang MJ, Han HY, Lee MG, Jeong SI, Ryu BK, Ha TK, Her NG, Han J, Park SJ, Lee KY, Kim HJ, Chi SG. Epigenetic alteration of PRKCDBP in colorectal cancers and its implication in tumor cell resistance to TNFα-induced apoptosis. Clin Cancer Res 2011; 17:7551-62. [PMID: 21980136 DOI: 10.1158/1078-0432.ccr-11-1026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE PRKCDBP is a putative tumor suppressor in which alteration has been observed in several human cancers. We investigated expression and function of PRKCDBP in colorectal cells and tissues to explore its candidacy as a suppressor in colorectal tumorigenesis. EXPERIMENTAL DESIGN Expression and methylation status of PRKCDBP and its effect on tumor growth were evaluated. Transcriptional regulation by NF-κB signaling was defined by luciferase reporter and chromatin immunoprecipitation assays. RESULTS PRKCDBP expression was hardly detectable in 29 of 80 (36%) primary tumors and 11 of 19 (58%) cell lines, and its alteration correlated with tumor stage and grade. Promoter hypermethylation was commonly found in cancers. PRKCDBP expression induced the G(1) cell-cycle arrest and increased cellular sensitivity to various apoptotic stresses. PRKCDBP was induced by TNFα, and its level correlated with tumor cell sensitivity to TNFα-induced apoptosis. PRKCDBP induction by TNFα was disrupted by blocking NF-κB signaling while it was enhanced by RelA transfection. The PRKCDBP promoter activity was increased in response to TNFα, and this response was abolished by disruption of a κB site in the promoter. PRKCDBP delayed the formation and growth of xenograft tumors and improved tumor response to TNFα-induced apoptosis. CONCLUSIONS PRKCDBP is a proapoptotic tumor suppressor which is commonly altered in colorectal cancer by promoter hypermethylation, and its gene transcription is directly activated by NF-κB in response to TNFα. This suggests that PRKCDBP inactivation may contribute to tumor progression by reducing cellular sensitivity to TNFα and other stresses, particularly under chronic inflammatory microenvironment.
Collapse
Affiliation(s)
- Jin-Hee Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gene expression patterns distinguish breast carcinomas from normal breast tissues: the Malaysian context. Pathol Res Pract 2010; 206:223-8. [PMID: 20097481 DOI: 10.1016/j.prp.2009.11.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/01/2009] [Accepted: 11/10/2009] [Indexed: 11/23/2022]
Abstract
Genomic and transcriptomic alterations that affect cellular processes, such as cell proliferation, differentiation, apoptosis and invasion, commonly occur in breast oncogenesis. Epidemiological evidence has proven that the risk of breast cancer predisposition varies among different ethnicities. This study aims to identify the transcriptome changes that commonly occur during the transition of normal breast epithelium to carcinoma in three local ethnic groups (Malays, Chinese and Indians). The gene expression patterns of 43 breast carcinomas with 43 patient-matched normal breast tissues were investigated using Affymetrix U133A GeneChip (containing 22,283 probe sets targeting approximately 18,400 different transcripts) and analyzed with GeneSpring GX10. Our findings revealed a total of 33 significantly differentially expressed genes, which showed>2-fold change at a 99.9% confidence interval level (p<0.001). The significantly differentially expressed genes included CD24, CD36, CD9, TACSTD1, TACSTD2, HBB, LEP, LPL, AKR1C1, AKR1C2 and AKR1C3. Our results indicate that the vast majority of gene expression changes, from normal breast epithelial to carcinoma, found in our three major ethnic populations are similar to those in the Caucasian population. Further study of the differentially expressed genes identified in our present study is needed to search for potential breast tumor biomarkers. This will eventually help to improve the therapeutic and treatment strategies for breast cancer patients in the future.
Collapse
|
20
|
Lee JH, Byun DS, Lee MG, Ryu BK, Kang MJ, Chae KS, Lee KY, Kim HJ, Park H, Chi SG. Frequent epigenetic inactivation of hSRBC in gastric cancer and its implication in attenuated p53 response to stresses. Int J Cancer 2008; 122:1573-84. [PMID: 18059034 DOI: 10.1002/ijc.23166] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
hSRBC is a putative tumor suppressor located at 11p15.4, at which frequent genomic loss has been observed in several human malignancies. To explore the candidacy of hSRBC as a suppressor of gastric tumorigenesis, we analyzed the expression and mutation status of hSRBC in gastric tissues and cell lines. hSRBC transcript was expressed in all normal and benign tumor tissues examined, but undetectable or very low in 73% (11/15) cancer cell lines and 41% (46/111) primary tumors. Loss or reduction of hSRBC expression was tumor-specific and correlated with stage and grade of tumors. While allelic loss or somatic mutations of the gene were infrequent, its expression was restored in tumor cells by 5-aza-2'-deoxycytidine treatment and aberrant hypermethylation of 23 CpG sites in the promoter region showed a tight association with altered expression. Transient or stable expression of hSRBC led to a G(1) cell cycle arrest and apoptosis of tumor cells, and strongly suppresses colony forming ability and xenograft tumor growth. In addition, hSRBC elevated apoptotic sensitivity of tumor cells to genotoxic agents, such as 5-FU, etoposide and ultraviolet. Interestingly, hSRBC increased the protein stability of p53 and expression of p53 target genes, such as p21(Waf1), PUMA and NOXA, while hSRBC-mediated cell cycle arrest and apoptosis were abolished by blockade of p53 function. Our findings suggest that hSRBC is a novel tumor suppressor whose epigenetic inactivation contributes to the malignant progression of gastric tumors, in part, through attenuated p53 response to stresses.
Collapse
Affiliation(s)
- Jin-Hee Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Onda M, Akaishi J, Asaka S, Okamoto J, Miyamoto S, Mizutani K, Yoshida A, Ito K, Emi M. Decreased expression of haemoglobin beta (HBB) gene in anaplastic thyroid cancer and recovery of its expression inhibits cell growth. Br J Cancer 2005; 92:2216-24. [PMID: 15956966 PMCID: PMC2361827 DOI: 10.1038/sj.bjc.6602634] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is one of the most fulminant and foetal diseases in human malignancies. However, the genetic alterations and carcinogenic mechanisms of ATC are still unclear. Recently, we investigated the gene expression profile of 11 anaplastic thyroid cancer cell lines (ACL) and significant decreased expression of haemoglobin beta (HBB) gene in ACL. Haemoglobin beta is located at 11p15.5, where loss of heterozygosity (LOH) was reported in various kinds of cancers, including ATC, and it has been suggested that novel tumour suppressor genes might exist in this region. In order to clarify the meaning of decreased expression of HBB in ATC, the expression status of HBB was investigated with ACL, ATC, papillary thyroid cancer (PTC) and normal human tissues. Haemoglobin beta showed significant decreased expression in ACLs and ATCs; however, in PTC, HBB expressed equal to the normal thyroid gland. In addition, HBB expressed in normal human tissues ubiquitously. To validate the tumour-suppressor function of HBB, cell growth assay was performed. Forced expression of HBB in KTA2 cell, which is a kind of ACL, significantly suppressed KTA2 growth. The mechanism of downregulation of HBB in ATC is still unclear; however, our results suggested the possibility of HBB as a novel tumour-suppressor gene.
Collapse
Affiliation(s)
- M Onda
- Department of Molecular Biology, Institute of Gerontology, Nippon Medical School, Kawasaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Calaf GM, Roy D, Hei TK. Immunochemical analysis of protein expression in breast epithelial cells transformed by estrogens and high linear energy transfer (LET) radiation. Histochem Cell Biol 2005; 124:261-74. [PMID: 16088382 DOI: 10.1007/s00418-005-0033-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
Breast cancer is a complex disease involving numerous genetic aberrations. Immunochemical analysis of protein expression is presented in a human breast epithelial cell line neoplastically transformed by high linear energy transfer (LET) alpha particle radiation in the presence of 17beta estradiol (E) and in the parental human breast epithelial cell line (MCF-10F) which served as a non-tumorigenic control. The aim of this work was to determine the levels of mRNA and protein expression in control and transformed cells at various stages of the neoplastic process. The levels of mRNA and protein expression of PCNA, c-fos, JNK2 and Fra-1 were increased in the transformed cell line compared to the levels in non-tumorigenic control cells. The transforming factor Rho A was significantly increased only in the tumor cell line. Furthermore, the levels of mRNA and protein expression of ErbB2 were significantly increased in the transformed cell line and in tumor cells derived from the transformed cells after injecting them into nude mice. A decrease in RbA/p48 protein expression and mRNA levels was observed in cells treated with double doses of alpha particle radiation in the presence of estrogen, regardless of tumorigenicity. Such expression was lower than that in the control untreated MCF-10F cells. In summary, these studies show that estrogen and high LET-radiation induce changes in oncoprotein expression and mRNA levels of human breast cell lines. These changes are indicative of a cascade of events that characterize the process of cell transformation in breast cancer. These results provide evidence that multiple steps with consecutive changes are involved when normal cells become tumorigenic cells as a result of alpha particle irradiation and estrogen treatments.
Collapse
Affiliation(s)
- Gloria M Calaf
- Center for Radiological Research, Columbia University Medical Center, P&S 11-230, 630 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
23
|
Imaoka T, Nishimura M, Teramoto A, Nishimura Y, Ootawara M, Osada H, Kakinuma S, Maekawa A, Shimada Y. Cooperative induction of rat mammary cancer by radiation and 1-methyl-1-nitrosourea via the oncogenic pathways involving c-Myc activation and H-ras mutation. Int J Cancer 2005; 115:187-93. [PMID: 15688392 DOI: 10.1002/ijc.20904] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Humans are continually exposed to various environmental carcinogens. Cancers may arise as a result of exposure to carcinogenic chemicals, ionizing radiation or a combination thereof. However, the mechanism of combined carcinogenesis has been only deduced from oncogenic actions of individual agents. Here, we analyzed experimental mammary carcinogenesis caused by a combination of radiation and a chemical carcinogen, 1-methyl-1-nitrosourea (MNU). Seven-week-old female Sprague-Dawley rats were divided into 4 groups: control, g gamma-irradiated (2 Gy), MNU-treated (40 mg/kg, i.p.) and combined treatment of radiation with subsequent MNU after 3 days. Rats with palpable tumors were sacrificed at 50 weeks of age to collect tumors for histologic typing and mutational analysis of the H-ras gene codon 12. The combined treatment induced adenocarcinomas, but not fibroadenomas, more efficiently than radiation or MNU alone. The H-ras mutation was not seen in radiation-induced carcinomas and was specific to MNU-induced carcinomas in individually treated groups. In the combined treatment group, H-ras-mutated, but not nonmutated, tumors were more frequent and developed significantly earlier than in the MNU-treated group. Significantly higher numbers of cells were stained for activated c-Myc protein in g gamma-ray- and combined treatment-induced cancers than in MNU-induced cancers. These results indicate that combined exposure to the 2 carcinogens elicits an unexpected cooperativity in which pre-irradiation enhances mammary carcinogenesis predominantly through the oncogenic pathway involving H-ras, possibly by synergism with c-Myc activation.
Collapse
Affiliation(s)
- Tatsuhiko Imaoka
- Research Center for Radiation Safety, National Institute of Radiological Sciences, Anagawa, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li X, Cowell JK, Sossey-Alaoui K. CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene 2004; 23:1474-80. [PMID: 14973555 DOI: 10.1038/sj.onc.1207249] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The calcium-activated chloride channel gene family is clustered in the 1p31 region, which is frequently deleted in sporadic breast cancer. Recent studies have indicated the association of the second member of this gene family (CLCA2) with the development of breast cancer and metastasis. We have now shown the absence of expression of CLCA2 in several breast cancer tumours and cell lines, which confirms the results from other reports. When overexpressed in CLCA2-negative cell lines, their tumorigenicity and metastasis capability were significantly reduced, suggesting a tumour suppressor role for CLCA2 in breast cancer. The mechanisms behind the silencing of CLCA2 in breast cancer, however, have not been elucidated to date. Although we were able to identify CLCA2 mutations in breast cancers, somatic mutations are not the major cause of CLCA2 gene silencing. On the other hand, treatment of breast cancer CLCA2-negative cell lines with demethylating agents was able to restore CLCA2 expression, suggesting an epigenetic inactivation of this gene. Bisulphite-sequencing of the promoter-associated CpG island of the CLCA2 gene in breast tumours demonstrated that the absence of expression in these tumours was caused by hypermethylation of the promoter CpG island. In contrast, in breast cancer cell lines, tumours, and control cell lines that express CLCA2, a much lower level, and often absence, of methylation of the promoter were demonstrated. These findings demonstrate that CLCA2 is frequently inactivated in breast cancer by promoter region hypermethylation, which makes it an excellent candidate for the 1p31 breast cancer tumour suppressor gene.
Collapse
Affiliation(s)
- Xiurong Li
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
25
|
Roy D, Calaf G, Hei TK. Role of Vitamin D receptor gene in radiation-induced neoplastic transformation of human breast epithelial cell. Steroids 2003; 68:621-7. [PMID: 12957667 DOI: 10.1016/s0039-128x(03)00091-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1 Alpha,25-(OH)(2)-Vitamin D(3), the physiologically active metabolite of Vitamin D is known for its pro-differentiating and antiproliferative activity on various cancer cell lines. It exerts its growth-regulatory effects through binding to the Vitamin D recepter (VDR), a member of the steroid/thyroid/retinoic acid receptor family, which functions as a ligand-dependent transcription factor. There is accumulating evidence that Vitamin D may be an important determinant of both the occurrence and progression of breast cancer. Since radiation is an important etiological factor for breast cancer progression, it is important to study the role of VDR gene in radiation-induced breast carcinogenesis. This study is focused on a human breast tumor model developed by irradiating the spontaneously immortalized MCF-10F cell line with graded doses of high-linear energy transfer (LET) radiation followed by treatment with estrogen. Study of VDR gene by restriction digestion with ApaI, BsmI and TaqI detected no polymorphism but direct sequencing analyses identified few single-base mutations within intron 8 and exon 9 of the gene. Over-expression of the VDR gene was noticed in irradiated and tumorigenic cell lines compared with control. Likewise, immunohistochemical data indicated a significant increase in VDR intensity in irradiated and tumorigenic cell lines. Considering all these evidence, it is likely that VDR can be used as a prognostic marker of tumor progression in radiation- and estrogen-induced breast carcinogenesis.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Breast Neoplasms/diagnosis
- Breast Neoplasms/etiology
- Breast Neoplasms/pathology
- Cell Line, Transformed
- Cell Transformation, Neoplastic/chemistry
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/radiation effects
- DNA Mutational Analysis
- Epithelial Cells/chemistry
- Epithelial Cells/pathology
- Estrogens/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mutation, Missense
- Neoplasm Proteins/analysis
- Neoplasm Proteins/genetics
- Prognosis
- Receptors, Calcitriol/analysis
- Receptors, Calcitriol/genetics
Collapse
Affiliation(s)
- Debasish Roy
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|