1
|
Ogunnigbagbe O, Bunick CG, Kaur K. Keratin 1 as a cell-surface receptor in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188664. [PMID: 34890750 PMCID: PMC8818032 DOI: 10.1016/j.bbcan.2021.188664] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Keratins are fibrous proteins that take part in several important cellular functions, including the formation of intermediate filaments. In addition, keratins serve as epithelial cell markers, which has made their role in cancer progression, diagnosis, and treatment an important focus of research. Keratin 1 (K1) is a type II keratin whose structure is comprised of a coiled-coil central domain flanked by flexible, glycine-rich loops in the N- and C-termini. While the structure of cytoplasmic K1 is established, the structure of cell-surface K1 is not known. Several transformed cells, such as cancerous cells and cells that have undergone oxidative stress, display increased levels of overall and/or cell-surface K1 expression. Cell-surface keratins (CSKs) may be modified or truncated, and their role is yet to be fully elucidated. Current studies suggest that CSKs are involved in receptor-mediated endocytosis and immune evasion. In this Review, we discuss findings relating to K1 structure, overexpression, and cell-surface expression in the context of utilizing CSK1 as a receptor for targeted drug delivery to cancer cells, and other strategies to develop novel treatments for cancer.
Collapse
Affiliation(s)
- Oluseye Ogunnigbagbe
- School of Pharmacy, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| | - Christopher G. Bunick
- Department of Dermatology, Yale University, New Haven, Connecticut, 06520-8059, USA,corresponding author
| | - Kamaljit Kaur
- School of Pharmacy, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA,corresponding author
| |
Collapse
|
2
|
Comprehensive Multi-Omics Analysis Reveals Aberrant Metabolism of Epstein-Barr-Virus-Associated Gastric Carcinoma. Cells 2019; 8:cells8101220. [PMID: 31597357 PMCID: PMC6829863 DOI: 10.3390/cells8101220] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
The metabolic landscape of Epstein–Barr-virus-associated gastric cancer (EBVaGC) remains to be elucidated. In this study, we used transcriptomics, metabolomics, and lipidomics to comprehensively investigate aberrant metabolism in EBVaGC. Specifically, we conducted gene expression analyses using microarray-based data from gastric adenocarcinoma epithelial cell lines and tissue samples from patients with clinically advanced gastric carcinoma. We also conducted complementary metabolomics and lipidomics using various mass spectrometry platforms. We found a significant downregulation of genes related to metabolic pathways, especially the metabolism of amino acids, lipids, and carbohydrates. The effect of dysregulated metabolic genes was confirmed in a survival analysis of 3951 gastric cancer patients. We found 57 upregulated metabolites and 31 metabolites that were downregulated in EBVaGC compared with EBV-negative gastric cancer. Sixty-nine lipids, mainly ether-linked phospholipids and triacylglycerols, were downregulated, whereas 45 lipids, mainly phospholipids, were upregulated. In total, 15 metabolisms related to polar metabolites and 15 lipid-associated pathways were involved in alteration of metabolites by EBV in gastric cancer. In this work, we have described the metabolic landscape of EBVaGC at the multi-omics level. These findings could help elucidate the mechanism of EBVaGC oncogenesis.
Collapse
|
3
|
Muckenhuber A, Berger AK, Schlitter AM, Steiger K, Konukiewitz B, Trumpp A, Eils R, Werner J, Friess H, Esposito I, Klöppel G, Ceyhan GO, Jesinghaus M, Denkert C, Bahra M, Stenzinger A, Sprick MR, Jäger D, Springfeld C, Weichert W. Pancreatic Ductal Adenocarcinoma Subtyping Using the Biomarkers Hepatocyte Nuclear Factor-1A and Cytokeratin-81 Correlates with Outcome and Treatment Response. Clin Cancer Res 2017; 24:351-359. [PMID: 29101303 DOI: 10.1158/1078-0432.ccr-17-2180] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/17/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
Purpose: Pancreatic ductal adenocarcinoma (PDAC) is associated with a dismal prognosis and poor therapeutic response to current chemotherapy regimens in unselected patient populations. Recently, it has been shown that PDAC may be stratified into functionally and therapeutically relevant molecular subgroups and that some of these subtypes can be recapitulated by IHC for KRT81 [quasi-mesenchymal (QM)/squamous/basal-like] and HNF1A (non-QM, overlap with exocrine/ADEX subtype).Experimental Design: We validated the different outcome of the HNF1A/KRT81 PDAC subtypes in two independent cohorts of surgically treated patients and examined the treatment response to chemotherapy in a third cohort of unresectable patients. The first two cohorts included 262 and 130 patients, respectively, and the third independent cohort comprised advanced-stage PDAC patients who were treated with either FOLFIRINOX (64 patients) or gemcitabine (61 patients).Results: In both cohorts with resected PDAC, the HNF1A-positive subtype showed the best, the KRT81-positive subtype the worst, and the double-negative subtype an intermediate survival (P < 0.013 and P < 0.009, respectively). In the chemotherapy cohort, the survival difference between the double-negative and the HNF1A-positive subtype was lost, whereas the dismal prognosis of KRT81-positive PDAC patients was retained (P < 0.021). Patients with a KRT81-positive subtype did not benefit from FOLFIRINOX therapy, whereas those with HNF1A-positive tumors responded better compared with gemcitabine-based treatment (P < 0.038).Conclusions: IHC stratification recapitulating molecular subtypes of PDAC using HNF1A and KRT81 is associated with significantly different outcomes and responses to chemotherapy. These results may pave the way toward future pretherapeutic biomarker-based stratification of PDAC patients. Clin Cancer Res; 24(2); 351-9. ©2017 AACR.
Collapse
Affiliation(s)
- Alexander Muckenhuber
- Institute of Pathology, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany
| | - Anne Katrin Berger
- Department of Medical Oncology, Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, Germany
| | - Anna Melissa Schlitter
- Institute of Pathology, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany
| | - Björn Konukiewitz
- Institute of Pathology, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics and Heidelberg Center for Personalised Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Jens Werner
- Department of Surgery, University Hospital of the Ludwig-Maximilian University, Munich, Germany
| | - Helmut Friess
- Department of Surgery, University Hospital of the Technical University Munich, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Günter Klöppel
- Institute of Pathology, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, University Hospital of the Technical University Munich, Munich, Germany
| | - Moritz Jesinghaus
- Institute of Pathology, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany
| | - Carsten Denkert
- Institute of Pathology, Charité University Medicine Berlin and German Cancer Consortium (DKTK; partner site Berlin), Berlin, Germany
| | - Marcus Bahra
- Department of Surgery, Charité University Medicine Berlin, Berlin, Germany
| | | | - Martin R Sprick
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany.
| |
Collapse
|
4
|
Nanashima N, Horie K, Yamada T, Shimizu T, Tsuchida S. Hair keratin KRT81 is expressed in normal and breast cancer cells and contributes to their invasiveness. Oncol Rep 2017; 37:2964-2970. [DOI: 10.3892/or.2017.5564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/05/2016] [Indexed: 11/05/2022] Open
|
5
|
Brouillard F, Fritsch J, Edelman A, Ollero M. Contribution of proteomics to the study of the role of cytokeratins in disease and physiopathology. Proteomics Clin Appl 2012; 2:264-85. [PMID: 21136830 DOI: 10.1002/prca.200780018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytokeratins (CKs), the most abundant group of cytoskeletal intermediate filaments, and proteomics are strongly connected. On the one hand, proteomics has been extremely useful to uncover new features and functions of CKs, on the other, the highly abundant CKs serve as an exceptional tool to test new technological developments in proteomics. As a result, proteomics has contributed to finding valuable associations of CKs with diseases as diverse as cancer, cystic fibrosis, steatohepatitis, viral and bacterial infection, keratoconus, vitreoretinopathy, preeclampsia or the chronic fatigue syndrome, as well as to characterizing their participation in a number of physiopathological processes, including drug resistance, response to toxicants, inflammation, stem cell differentiation, embryo development, and tissue repair. In some cases, like in cystic fibrosis, CKs have been described as potential therapeutic targets. The development of a specific field of proteomics where CKs become the main subject of research aims and hypotheses is suggested.
Collapse
Affiliation(s)
- Franck Brouillard
- INSERM, Unité 845, Paris, France; Faculté de Médecine René Descartes, Université Paris-Descartes, Plateau Protéomes IFR94, Paris, France
| | | | | | | |
Collapse
|
6
|
Kim DN, Lee SK. Biogenesis of Epstein-Barr virus microRNAs. Mol Cell Biochem 2012; 365:203-10. [PMID: 22350759 DOI: 10.1007/s11010-012-1261-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/08/2012] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus implicated in lymphomas, such as Burkitt's lymphoma, Hodgkin's lymphoma, and NK/T cell lymphoma. MicroRNAs (miRNAs) are 19-25 nucleotide long single-stranded RNAs involved in post-transcriptional gene regulation. miRNAs are mainly transcribed by RNA polymerase II (pol II) to have stem-loop structures and subsequently processed by Drosha and Dicer. EBV miRNAs are expressed in B cells, nasopharyngeal carcinoma cells, and gastric carcinoma cells infected with EBV. EBV miRNAs can be divided into two groups: BHRF1 miRNAs and BART miRNAs. In this study, we investigated the biogenesis of EBV miRNAs. Treatment of the SNU-719 EBV-positive gastric cancer cell line with α-amanitin at a concentration that selectively inhibits RNA polymerase II activity decreased the expression levels of BART miRNAs. The expression levels of BART miRNAs were also reduced by RNA interference targeting Drosha and Dicer. Two of each C/EBPβ and c-Myc binding sites are located upstream of the proposed initiation sites for primary BART miRNA transcripts. Knockdown of C/EBPβ but not c-Myc using siRNAs reduced BART miRNA expression by 25-55% compared with the control. These results suggest that BART miRNAs are transcribed by pol II and undergo a similar biogenesis process with cellular miRNAs.
Collapse
Affiliation(s)
- Do Nyun Kim
- Department of Medical Lifescience, Research Institute of Immunobiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | | |
Collapse
|
7
|
Abstract
Methylation of cytosine bases in DNA provides a layer of epigenetic control in many eukaryotes that has important implications for normal biology and disease. DNA methylation is a crucial epigenetic modification of the genome that is involved in regulating many cellular processes. A growing number of human diseases including cancer have been found to be associated with aberrant DNA methylation. Recent advancements in the rapidly evolving field of cancer epigenetics have described extensive reprogramming of every component of the epigenetic machinery in cancer, such as DNA demethylation. In this review, we discuss the current understanding of alterations in DNA methylation composing the epigenetic landscape that occurs in gastric cancer compared with normal cells, the roles of these changes in gastric cancer initiation and progression, and the potential use of this knowledge in designing more effective treatment strategies.
Collapse
|
8
|
Herpesviruses and intermediate filaments: close encounters with the third type. Viruses 2011; 3:1015-40. [PMID: 21994768 PMCID: PMC3185793 DOI: 10.3390/v3071015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/07/2011] [Accepted: 06/24/2011] [Indexed: 01/29/2023] Open
Abstract
Intermediate filaments (IF) are essential to maintain cellular and nuclear integrity and shape, to manage organelle distribution and motility, to control the trafficking and pH of intracellular vesicles, to prevent stress-induced cell death, and to support the correct distribution of specific proteins. Because of this, IF are likely to be targeted by a variety of pathogens, and may act in favor or against infection progress. As many IF functions remain to be identified, however, little is currently known about these interactions. Herpesviruses can infect a wide variety of cell types, and are thus bound to encounter the different types of IF expressed in each tissue. The analysis of these interrelationships can yield precious insights into how IF proteins work, and into how viruses have evolved to exploit these functions. These interactions, either known or potential, will be the focus of this review.
Collapse
|
9
|
Dombkowski AA, Sultana Z, Craig DB, Jamil H. In silico analysis of combinatorial microRNA activity reveals target genes and pathways associated with breast cancer metastasis. Cancer Inform 2011; 10:13-29. [PMID: 21552493 PMCID: PMC3085424 DOI: 10.4137/cin.s6631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited. Aberrant microRNA activity has been reported in many diseases, and studies often find numerous microRNAs concurrently dysregulated. Most target genes have binding sites for multiple microRNAs, and mounting evidence indicates that it is important to consider their combinatorial effect on target gene repression. A recent study associated the coincident loss of expression of six microRNAs with metastatic potential in breast cancer. Here, we used a new computational method, miR-AT!, to investigate combinatorial activity among this group of microRNAs. We found that the set of transcripts having multiple target sites for these microRNAs was significantly enriched with genes involved in cellular processes commonly perturbed in metastatic tumors: cell cycle regulation, cytoskeleton organization, and cell adhesion. Network analysis revealed numerous target genes upstream of cyclin D1 and c-Myc, indicating that the collective loss of the six microRNAs may have a focal effect on these two key regulatory nodes. A number of genes previously implicated in cancer metastasis are among the predicted combinatorial targets, including TGFB1, ARPC3, and RANKL. In summary, our analysis reveals extensive combinatorial interactions that have notable implications for their potential role in breast cancer metastasis and in therapeutic development.
Collapse
Affiliation(s)
- Alan A Dombkowski
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | |
Collapse
|
10
|
Lin S, Liu N, Yang Z, Song W, Wang P, Chen H, Lucio M, Schmitt-Kopplin P, Chen G, Cai Z. GC/MS-based metabolomics reveals fatty acid biosynthesis and cholesterol metabolism in cell lines infected with influenza A virus. Talanta 2010; 83:262-8. [DOI: 10.1016/j.talanta.2010.09.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 09/10/2010] [Accepted: 09/18/2010] [Indexed: 12/12/2022]
|
11
|
Fukagawa Y, Nishikawa J, Kuramitsu Y, Iwakiri D, Takada K, Imai S, Satake M, Okamoto T, Fujimoto M, Okita K, Nakamura K, Sakaida I. Epstein-Barr virus upregulates phosphorylated heat shock protein 27 kDa in carcinoma cells using the phosphoinositide 3-kinase/Akt pathway. Electrophoresis 2008; 29:3192-200. [PMID: 18604870 DOI: 10.1002/elps.200800086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastric cancer is the most common cancer in Japan and infection with Epstein-Barr virus (EBV) is responsible for about 10% of gastric cancers worldwide. Although EBV infection may be involved at an early stage of gastric carcinogenesis, the mechanisms underlying its involvement remain unknown. To investigate the role of EBV in gastric carcinogenesis, we performed proteomic analyses of an EBV-infected gastric carcinoma cell line NU-GC-3 (EBV(+)) and its uninfected control (EBV(-)). 2-DE was combined with MS to identify differentially expressed proteins. We found that EBV infection upregulated one of the phosphorylated heat shock protein 27 kDa (HSP27). The phosphorylated HSP27 isoform which increased in EBV(+) cells can be induced by both heat shock and arsenite. The increase of phosphorylated HSP27 in EBV(+) cells was reduced by treatment with the phosphoinositide 3-kinase (PI3K) inhibitors (LY294002 and wortmannin). In addition, we found increased levels of phosphorylated Akt in EBV(+) cells. These findings suggest that EBV infection upregulates the phosphorylation of HSP27 via the PI3K/Akt pathway. Thus, activation of the PI3K/Akt pathway may contribute to the establishment of a malignant phenotype in EBV-infected gastric carcinomas.
Collapse
Affiliation(s)
- Yuki Fukagawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jazii FR, Najafi Z, Malekzadeh R, Conrads TP, Ziaee AA, Abnet C, Yazdznbod M, Karkhane AA, Salekdeh GH. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 2006; 12:7104-12. [PMID: 17131471 PMCID: PMC4087770 DOI: 10.3748/wjg.v12.i44.7104] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the proteome of normal versus tumor tissue in squamous cell carcinoma of the esophagus (SCCE) in Iranian patients and compare our results with former reports by using proteomics.
METHODS: Protein was extracted from normal and tumor tissues. Two dimensional electrophoresis was carried out and spots with differential expression were identified with mass spectrometry. RNA extraction and RT-PCR along with immunodetection were performed.
RESULTS: Fourteen proteins were found whose expression levels differed in tumor compared to normal tissues. Mass spectrometric analysis resulted in the identification of β-tropomyosin (TMβ), myosin light chain 2 (and its isoform), myosin regulatory light chain 2, peroxyredoxin 2, annexinIand an unknown polypeptide as the down regulated polypeptides in tumor tissue. Heat shock protein 70 (HSP70), TPM4-ALK fusion oncoprotein 2, myosin light polypeptide 6, keratinI, GH16431p and calreticulin were the up-regulated polypeptides found in tumor tissue. Several of these proteins, such as TMβ, HSP70, annexinI, calreticulin, TPM4-ALK and isoforms of myosins, have been well recognized in tumorigenesis of esophageal or other types of cancers.
CONCLUSION: Our study not only supports the involve-ment of some of the formerly reported proteins in SCCE but also introduces additional proteins found to be lost in SCCE, including TMβ.
Collapse
Affiliation(s)
- Ferdous-Rastgar Jazii
- National Institute of Genetic Engineering and Biotechnology, PO BOX 14155 6343, Tehran, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim DN, Chae HS, Oh ST, Kang JH, Park CH, Park WS, Takada K, Lee JM, Lee WK, Lee SK. Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J Virol 2006; 81:1033-6. [PMID: 17079300 PMCID: PMC1797424 DOI: 10.1128/jvi.02271-06] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with about 6 to 16% of gastric carcinoma cases worldwide. Expression of the EBV microRNAs (miRNAs) was observed in B cells and nasopharyngeal carcinoma cells infected with EBV. However, it is not clear if the EBV miRNAs are expressed in EBV-associated gastric carcinomas (EBVaGCs). We found that BART miRNAs but not BHRF1 miRNAs were expressed in EBV-infected gastric carcinoma cell lines and the tumor tissues from patients as well as the animal model. The expression of viral miRNAs in EBVaGCs suggests that these EBV miRNAs may play important roles in the tumorigenesis of EBVaGCs.
Collapse
Affiliation(s)
- Do Nyun Kim
- Research Institute of Immunobiology, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen Y, Zhang YZ, Zhou ZG, Wang G, Yi ZN. Identification of differently expressed genes in human colorectal adenocarcinoma. World J Gastroenterol 2006; 12:1025-32. [PMID: 16534841 PMCID: PMC4087892 DOI: 10.3748/wjg.v12.i7.1025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differently expressed genes in human colorectal adenocarcinoma.
METHODS: The integrated approach for gene expression profiling that couples suppression subtractive hybridization, high-throughput cDNA array, sequencing, bioinformatics analysis, and reverse transcriptase real-time quantitative polymerase chain reaction (PCR) was carried out. A set of cDNA clones including 1260 SSH inserts amplified by PCR was arrayed using robotic printing. The cDNA arrays were hybridized with florescent-labeled probes prepared from RNA of human colorectal adenocarcinoma (HCRAC) and normal colorectal tissues.
RESULTS: A total of 86 genes were identified, 16 unknown genes and 70 known genes. The transcription factor Sox9 influencing cell differentiation was downregulated. At the same time, Heat shock protein 10 KDis downregulated and Calmoulin is up-regulated.
CONCLUSION: Downregulation of heat shock protein 10 KD lost its inhibition of Ras, and then attenuated the Ras GTPase signaling pathway, increased cell proliferation and inhibited cell apoptosis. Down-regulated transcription factor So x 9 influences cell differentiation and cell-specific gene expression. Down-regulated So x 9 also decreases its binding to calmodulin, accumulates calmodulin as receptor-activated kinase and phosphorylase kinase due to the activation of PhK.
Collapse
Affiliation(s)
- Yao Chen
- Department of Anatomy, Basic and Legal Medical Institute, West China Medical Center, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | | | | | | | | |
Collapse
|