1
|
Buľková V, Vargová J, Babinčák M, Jendželovský R, Zdráhal Z, Roudnický P, Košuth J, Fedoročko P. New findings on the action of hypericin in hypoxic cancer cells with a focus on the modulation of side population cells. Biomed Pharmacother 2023; 163:114829. [PMID: 37146419 DOI: 10.1016/j.biopha.2023.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
The presence of key hypoxia regulators, namely, hypoxia-inducible factor (HIF)-1α or HIF-2α, in tumors is associated with poor patient prognosis. Hypoxia massively activates several genes, including the one encoding the BCRP transporter that proffers multidrug resistance to cancer cells through the xenobiotic efflux and is a determinant of the side population (SP) associated with cancer stem-like phenotypes. As natural medicine comes to the fore, it is instinctive to look for natural agents possessing powerful features against cancer resistance. Hypericin, a pleiotropic agent found in Hypericum plants, is a good example as it is a BCRP substrate and potential inhibitor, and an SP and HIF modulator. Here, we showed that hypericin efficiently accumulated in hypoxic cancer cells, degraded HIF-1/2α, and decreased BCRP efflux together with hypoxia, thus diminishing the SP population. On the contrary, this seemingly favorable result was accompanied by the stimulated migration of this minor population that preserved the SP phenotype. Because hypoxia unexpectedly decreased the BCRP level and SP fraction, we compared the SP and non-SP proteomes and their changes under hypoxia in the A549 cell line. We identified differences among protein groups connected to the epithelial-mesenchymal transition, although major changes were related to hypoxia, as the upregulation of many proteins, including serpin E1, PLOD2 and LOXL2, that ultimately contribute to the initiation of the metastatic cascade was detected. Altogether, this study helps in clarifying the innate and hypoxia-triggered resistance of cancer cells and highlights the ambivalent role of natural agents in the biology of these cells.
Collapse
Affiliation(s)
- Viktória Buľková
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Jana Vargová
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia.
| | - Marián Babinčák
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Rastislav Jendželovský
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ján Košuth
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Peter Fedoročko
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| |
Collapse
|
2
|
Danova K, Motyka V, Trendafilova A, Dobrev PI, Ivanova V, Aneva I. Evolutionary Aspects of Hypericin Productivity and Endogenous Phytohormone Pools Evidenced in Hypericum Species In Vitro Culture Model. PLANTS (BASEL, SWITZERLAND) 2022; 11:2753. [PMID: 36297777 PMCID: PMC9609395 DOI: 10.3390/plants11202753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Shoot cultures of hypericin non-producing H. calycinum L. (primitive Ascyreia section), hypericin-producing H. perforatum L., H. tetrapterum Fries (section Hypericum) and H. richeri Vill. (the evolutionarily most advanced section Drosocarpium in our study) were developed and investigated for their growth, development, hypericin content and endogenous phytohormone levels. Hypericins in wild-growing H. richeri significantly exceeded those in H. perforatum and H. tetrapterum. H. richeri also had the highest hypericin productivity in vitro in medium supplemented with 0.2 mg/L N6-benzyladenine and 0.1 mg/L indole-3-butyric acid and H. tetrapterum-the lowest one in all media modifications. In shoot culture conditions, the evolutionarily oldest H. calycinum had the highest content of salicylic acid and total jasmonates in some of its treatments, as well as dominance of the storage form of abscisic acid (ABA-glucose ester) and lowest cytokinin ribosides and cytokinin O-glucosides as compared with the other three species. In addition, the evolutionarily youngest H. richeri was characterized by the highest total amount of cytokinin ribosides. Thus, both evolutionary development and the hypericin production capacity seemed to interact closely with the physiological parameters of the plant organism, such as endogenous phytohormones, leading to the possible hypothesis that hypericin productivity may have arisen in the evolution of Hypericum as a means to adapt to environmental changes.
Collapse
Affiliation(s)
- Kalina Danova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Vaclav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Petre I. Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic
| | - Viktorya Ivanova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Doroshenko A, Tomkova S, Kozar T, Stroffekova K. Hypericin, a potential new BH3 mimetic. Front Pharmacol 2022; 13:991554. [PMID: 36267274 PMCID: PMC9577225 DOI: 10.3389/fphar.2022.991554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Many types of cancer such as prostate cancer, myeloid leukemia, breast cancer, glioblastoma display strong chemo resistance, which is supported by enhanced expression of multiple anti-apoptotic Bcl-2, Bcl-XL and Mcl-1 proteins. The viable anti-cancer strategies are based on developing anti-apoptotic Bcl-2 proteins inhibitors, BH3 mimetics. Our focus in past years has been on the investigating a new potential BH3 mimetic, Hypericin (Hyp). Hyp is a naturally occurring photosensitive compound used in photodynamic therapy and diagnosis. We have demonstrated that Hyp can cause substantial effects in cellular ultrastructure, mitochondria function and metabolism, and distribution of Bcl2 proteins in malignant and non-malignant cells. One of the possible mechanisms of Hyp action could be the direct interactions between Bcl-2 proteins and Hyp. We investigated this assumption by in silico computer modelling and in vitro fluorescent spectroscopy experiments with the small Bcl2 peptide segments designed to correspond to Bcl2 BH3 and BH1 domains. We show here that Hyp interacts with BH3 and BH1 peptides in concentration dependent manner, and shows the stronger interactions than known BH3 mimetics, Gossypol (Goss) and ABT-263. In addition, interactions of Hyp, Goss and ABT263, with whole purified proteins Bcl-2 and Mcl-1 by fluorescence spectroscopy show that Hyp interacts stronger with the Bcl-2 and less with Mcl-1 protein than Goss or ABT-263. This suggest that Hyp is comparable to other BH3 mimetics and could be explore as such. Hyp cytotoxicity was low in human U87 MG glioma, similar to that of ABT263, where Goss exerted sufficient cytotoxicity, suggesting that Hyp acts primarily on Bcl-2, but not on Mcl-1 protein. In combination therapy, low doses of Hyp with Goss effectively decreased U87 MG viability, suggesting a possible synergy effect. Overall, we can conclude that Hyp as BH3 mimetic acts primarily on Bcl-2 protein and can be explored to target cells with Bcl-2 over-expression, or in combination with other BH3 mimetics, that target Mcl-1 or Bcl-XL proteins, in dual therapy.
Collapse
Affiliation(s)
- Anastasia Doroshenko
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
| | - Silvia Tomkova
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
| | - Tibor Kozar
- Center of Interdisciplinary Biosciences, TIP-Safarik University, Kosice, Slovakia
| | - Katarina Stroffekova
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
- *Correspondence: Katarina Stroffekova,
| |
Collapse
|
4
|
Choudhary N, Collignon TE, Tewari D, Bishayee A. Hypericin and its anticancer effects: From mechanism of action to potential therapeutic application. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154356. [PMID: 35985181 DOI: 10.1016/j.phymed.2022.154356] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging studies indicate that hypericin has diverse pharmacological actions and exhibits potential for treatment of various types of cancer. PURPOSE The current review evaluates the pharmacological activity, associated molecular mechanism, and therapeutic application of hypericin as an anticancer agent according to the most recent state of knowledge with special emphasis on clinical trials and safety profile. METHOD This review follows The Preferred Reporting Items for Systematic Reviews criteria. Various databases, including PubMed, Scopus and Science Direct, were used to search and collect relevant literature. The major keywords used included the following: cancer, distribution, property, signaling pathway, pharmacological effect, treatment, prevention, in vitro and in vivo studies, toxicity, bioavailability, and clinical trials. RESULTS One hundred three articles met the established inclusion and exclusion criteria. Hypericin has shown anticancer activity against the expansion of several cell types including breast cancer, cervical cancer, colorectal cancer, colon cancer, hepatocellular carcinoma, stomach carcinoma, leukemia, lung cancer, melanoma, and glioblastoma cancer. Hypericin exerts its anticancer activity by inhibiting pro-inflammatory mediators, endothelial growth factor, fibroblast growth factor, cell adhesion, angiogenesis, and mitochondrial thioredoxin. It has also been shown to cause an increase in the levels of caspase-3 and caspase-4, arrest the cell cycle at metaphase leading to cancer cell apoptosis, and affect various protein and gene expression patterns. CONCLUSION Hypericin exhibits significant inhibitory activity against various types of in vitro and in vivo cancer models. However, well-designed, high quality, large-scale and multi-center randomized clinical studies are required to establish the safety and clinical utility of hypericin in cancer patients.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab 151101, India
| | - Taylor E Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA.
| |
Collapse
|
5
|
de Keijzer MJ, de Klerk DJ, de Haan LR, van Kooten RT, Franchi LP, Dias LM, Kleijn TG, van Doorn DJ, Heger M. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol Biol 2022; 2451:285-403. [PMID: 35505024 DOI: 10.1007/978-1-0716-2099-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a non-to-minimally invasive treatment modality that utilizes photoactivatable drugs called photosensitizers to disrupt tumors with locally photoproduced reactive oxygen species (ROS). Photosensitizer activation by light results in hyperoxidative stress and subsequent tumor cell death, vascular shutdown and hypoxia, and an antitumor immune response. However, sublethally afflicted tumor cells initiate several survival mechanisms that account for decreased PDT efficacy. The hypoxia inducible factor 1 (HIF-1) pathway is one of the most effective cell survival pathways that contributes to cell recovery from PDT-induced damage. Several hundred target genes of the HIF-1 heterodimeric complex collectively mediate processes that are involved in tumor cell survival directly and indirectly (e.g., vascularization, glucose metabolism, proliferation, and metastasis). The broad spectrum of biological ramifications culminating from the activation of HIF-1 target genes reflects the importance of HIF-1 in the context of therapeutic recalcitrance. This chapter elaborates on the involvement of HIF-1 in cancer biology, the hypoxic response mechanisms, and the role of HIF-1 in PDT. An overview of inhibitors that either directly or indirectly impede HIF-1-mediated survival signaling is provided. The inhibitors may be used as pharmacological adjuvants in combination with PDT to augment therapeutic efficacy.
Collapse
Affiliation(s)
- Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne R de Haan
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert T van Kooten
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, epartment of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group,University of São Paulo, São Paulo, Brazil
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick J van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Near-infrared Transillumination and Photodynamic Therapy Using Hypericin in Animal Laryngeal Tumors. Tissue Eng Regen Med 2021; 18:941-951. [PMID: 34495501 DOI: 10.1007/s13770-021-00377-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND We aimed to validate a pilot study of photodiagnosis using near infrared (NIR) transillumination and assess the clinical efficacy of hypericin-mediated photodynamic therapy (HYP-PDT) in a rabbit laryngeal cancer model in order to develop a novel therapeutic modality with complete remission and preservation of the functional organ. METHODS (1) In vitro study: VX tumor cells were subcultured and subjected to HYP-PDT. (2) In vivo study: A laryngeal cancer model was developed in which 12 rabbits were inoculated with a VX tumor suspension in the submucosal area of the left vocal fold using a transoral approach. All rabbits underwent NIR transillumination using light with a wavelength of 780 nm. The survival periods of the three treatment groups (6 rabbits in Group A: HYP-PDT, 3 each in Groups B and C: laser irradiation or HYP administration only) were analyzed. RESULTS The higher the HYP concentration, the lower the VX cell viability in response to HYP-PDT using 590 nm LED. Following HYP-PDT, small tumors in Group A-1 rabbits healed completely and the animals demonstrated a long survival period, and larger tumors in Group A-2 healed partially with a survival period that extended over 3 weeks after inoculation. The survival of Groups B and C were not different over the first 3 weeks of the study, and were shorter than in Group A. CONCLUSION We found HYP-PDT could be a curative therapy for early-stage cancers that may also preserve organ function, and may inhibit tumor progression and metastasis during advanced stages of laryngeal cancer.
Collapse
|
7
|
Willis JA, Cheburkanov V, Kassab G, Soares JM, Blanco KC, Bagnato VS, Yakovlev VV. Photodynamic viral inactivation: Recent advances and potential applications. APPLIED PHYSICS REVIEWS 2021; 8:021315. [PMID: 34084253 PMCID: PMC8132927 DOI: 10.1063/5.0044713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
Antibiotic-resistant bacteria, which are growing at a frightening rate worldwide, has put the world on a long-standing alert. The COVID-19 health crisis reinforced the pressing need to address a fast-developing pandemic. To mitigate these health emergencies and prevent economic collapse, cheap, practical, and easily applicable infection control techniques are essential worldwide. Application of light in the form of photodynamic action on microorganisms and viruses has been growing and is now successfully applied in several areas. The efficacy of this approach has been demonstrated in the fight against viruses, prompting additional efforts to advance the technique, including safety use protocols. In particular, its application to suppress respiratory tract infections and to provide decontamination of fluids, such as blood plasma and others, can become an inexpensive alternative strategy in the fight against viral and bacterial infections. Diverse early treatment methods based on photodynamic action enable an accelerated response to emerging threats prior to the availability of preventative drugs. In this review, we evaluate a vast number of photodynamic demonstrations and first-principle proofs carried out on viral control, revealing its potential and encouraging its rapid development toward safe clinical practice. This review highlights the main research trends and, as a futuristic exercise, anticipates potential situations where photodynamic treatment can provide a readily available solution.
Collapse
Affiliation(s)
- Jace A. Willis
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Vsevolod Cheburkanov
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Giulia Kassab
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Jennifer M. Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Kate C. Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Serwetnyk MA, Blagg BS. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta Pharm Sin B 2021; 11:1446-1468. [PMID: 34221862 PMCID: PMC8245820 DOI: 10.1016/j.apsb.2020.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- Aha1, activator of Hsp90 ATPase homologue 1
- CTD, C-terminal domain
- Cdc37, cell division cycle 37
- Disruptors
- Grp94, 94-kD glucose-regulated protein
- HIF-1α, hypoxia-inducing factor-1α
- HIP, Hsp70-interaction protein
- HOP, Hsp70‒Hsp90 organizing protein
- HSQC, heteronuclear single quantum coherence
- Her-2, human epidermal growth factor receptor-2
- Hsp90
- Hsp90, 90-kD heat shock protein
- MD, middle domain
- NTD, N-terminal domain
- Natural products
- PPI, protein−protein interaction
- Peptidomimetics
- Protein−protein interactions
- SAHA, suberoylanilide hydroxamic acid
- SAR, structure–activity relationship
- SUMO, small ubiquitin-like modifier
- Small molecules
- TPR2A, tetratricopeptide-containing repeat 2A
- TRAP1, Hsp75tumor necrosis factor receptor associated protein 1
- TROSY, transverse relaxation-optimized spectroscopy
- hERG, human ether-à-go-go-related gene
Collapse
|
9
|
Wang G, Li L, Wang X, Li X, Zhang Y, Yu J, Jiang J, You X, Xiong YQ. Hypericin enhances β-lactam antibiotics activity by inhibiting sarA expression in methicillin-resistant Staphylococcus aureus. Acta Pharm Sin B 2019; 9:1174-1182. [PMID: 31867163 PMCID: PMC6900551 DOI: 10.1016/j.apsb.2019.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/11/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023] Open
Abstract
Bacteremia is a life-threating syndrome often caused by methicillin-resistant Staphylococcus aureus (MRSA). Thus, there is an urgent need to develop novel approaches to successfully treat this infection. Staphylococcal accessory regulator A (SarA), a global virulence regulator, plays a critical role in pathogenesis and β-lactam antibiotic resistance in Staphylococcus aureus. Hypericin is believed to act as an antibiotic, antidepressant, antiviral and non-specific kinase inhibitor. In the current study, we investigated the impact of hypericin on β-lactam antibiotics susceptibility and mechanism(s) of its activity. We demonstrated that hypericin significantly decreased the minimum inhibitory concentrations of β-lactam antibiotics (e.g., oxacillin, cefazolin and nafcillin), biofilm formation and fibronectin binding in MRSA strain JE2. In addition, hypericin significantly reduced sarA expression, and subsequently decreased mecA, and virulence-related regulators (e.g., agr RNAⅢ) and genes (e.g., fnbA and hla) expression in the studied MRSA strain. Importantly, the in vitro synergistic effect of hypericin with β-lactam antibiotic (e.g., oxacillin) translated into in vivo therapeutic outcome in a murine MRSA bacteremia model. These findings suggest that hypericin plays an important role in abrogation of β-lactam resistance against MRSA through sarA inhibition, and may allow us to repurpose the use of β-lactam antibiotics, which are normally ineffective in the treatment of MRSA infections (e.g., oxacillin).
Collapse
Affiliation(s)
- Genzhu Wang
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liang Li
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Yu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Corresponding authors. Tel.: +86 10 67061033, fax: +86 10 67017302 (Xuefu You); Tel.: +1 310 2223545 (Yan Q. Xiong).
| | - Yan Q. Xiong
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Corresponding authors. Tel.: +86 10 67061033, fax: +86 10 67017302 (Xuefu You); Tel.: +1 310 2223545 (Yan Q. Xiong).
| |
Collapse
|
10
|
Importance of Hypericin-Bcl2 interactions for biological effects at subcellular levels. Photodiagnosis Photodyn Ther 2019; 28:38-52. [PMID: 31430575 DOI: 10.1016/j.pdpdt.2019.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Hypericin (Hyp) is a naturally occurring compound used as photosensitizer in photodynamic therapy and diagnosis. Recently, we have shown that Hyp presence alone, without illumination, resulted in substantial biological effects at several sub-cellular levels. Hyp induced changes in cellular ultrastructure, mitochondria function and metabolism, and distribution of Bcl2 proteins in malignant and non-malignant cells. The molecular mechanisms that underlie Hyp light-independent effects are still elusive. We have hypothesized that Bcl2-Hyp interactions might be one possible mechanism. We performed molecular docking studies to determine the Hyp-Bcl2 interaction profile. Based on the interaction profiles small Bcl2 peptide segments were selected for further study. We designed small peptides corresponding to Bcl2 BH3 and BH1 domains and tested the binding of Hyp and Bcl2 known inhibitor, ABT263, to the peptides in computer modeling and in vitro binding studies. We employed endogenous tryptophan and tyrosine in the BH3 and BH1 peptides, respectively, and their fluorescent properties to show interaction with Hyp and ABT263. Overall, our results indicate that Hyp can interact with Bcl2 protein at its BH3-BH1 hydrophobic groove, and this interaction may trigger changes in intracellular distribution of Bcl2 proteins. In addition, our computer modeling results suggest that Hyp also interacts with other anti-apoptotic members of Bcl2 family similar to the known BH3 mimetics. Our findings are novel and might contribute to understanding Hyp light-independent effects. In addition, they may substantiate the therapeutic use of Hyp as a BH3 mimetic molecule to enhance other cancer treatments.
Collapse
|
11
|
Vargová J, Mikeš J, Jendželovský R, Mikešová L, Kuchárová B, Čulka Ľ, Fedr R, Remšík J, Souček K, Kozubík A, Fedoročko P. Hypericin affects cancer side populations via competitive inhibition of BCRP. Biomed Pharmacother 2018; 99:511-522. [PMID: 29665654 DOI: 10.1016/j.biopha.2018.01.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/22/2017] [Accepted: 01/12/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Cancer stem-like cells (CSLCs) are considered a root of tumorigenicity and resistance. However, their identification remains challenging. The use of the side population (SP) assay as a credible marker of CSLCs remains controversial. The SP assay relies on the elevated activity of ABC transporters that, in turn, can be modulated by hypericin (HYP), a photosensitizer and bioactive compound of St. John's Wort (Hypericum perforatum), a popular over-the-counter antidepressant. Here we aimed to comprehensively characterize the SP phenotype of cancer cells and to determine the impact of HYP on these cells. METHODS Flow cytometry and sorting-based assays were employed, including CD24-, CD44-, CD133-, and ALDH-positivity, clonogenicity, 3D-forming ability, ABC transporter expression and activity, and intracellular accumulation of HYP/Hoechst 33342. The tumorigenic ability of SP, nonSP, and HYP-treated cells was verified by xenotransplantation into immunodeficient mice. RESULTS The SP phenotype was associated with elevated expression of several investigated transporters and more intensive growth in non-adherent conditions but not with higher clonogenicity, tumorigenicity or ALDH-positivity. Despite stimulated BCRP level and MRP1 activity, HYP reversibly decreased the SP proportion, presumably via competitive inhibition of BCRP. HYP-selected SP cells acquired additional traits of resistance and extensively eliminated HYP. CONCLUSIONS Our results suggest that SP is not an unequivocal CSLC-marker. However, SP could play an important role in modulating HYP-treatment and serve as a negative predictive tool for HYP-based therapies. Moreover, the use of supplements containing HYP by cancer patients should be carefully considered, due to its proposed effect on drug efflux and complex impact on tumor cells, which have not yet been sufficiently characterized.
Collapse
Affiliation(s)
- Jana Vargová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Jaromír Mikeš
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Rastislav Jendželovský
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Lucia Mikešová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Barbora Kuchárová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Ľubomír Čulka
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Královopolská 135, 612 65, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Ján Remšík
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Královopolská 135, 612 65, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Karel Souček
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Královopolská 135, 612 65, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Alois Kozubík
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Královopolská 135, 612 65, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Peter Fedoročko
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic.
| |
Collapse
|
12
|
Sobaci G, Bayraktar M, Karslioğlu Y, Durukan A, Hurmeriç V, Aykaş S. Hypericin-Enhanced Argon Laser Photocoagulation for Subfoveal Choroidal Neovascular Membrane in Age-Related Macular Degeneration: A Pilot Study. Eur J Ophthalmol 2018. [DOI: 10.1177/112067210601600119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose To evaluate the efficacy and safety of hypericin-enhanced argon laser photocoagulation (H-ALP) in the treatment of subfoveal choroidal neovascular membrane (CNM) secondary to age-related macular degeneration (ARMD). Methods After preliminary studies for definition of parameters, argon-green laser was administered 4 hours after single dose of oral 1800 mg hypericin (Saint-John's wort tablets, 0.3%, 300 mg) with a subthreshold light fluence, 24 J/cm2 in 34 eyes (20 with subfoveal classical and 14 with subfoveal occult CNM). Additionally, histopathologic examination was done in two eyes destined for enucleation and exenteration. Maintenance therapy (one tablet, twice a day) was performed for the following 6 months. Anatomic (complete closure of CNM) and functional success (improvement of final visual acuity in three or more Snellen lines) were analyzed with minimum 6-month follow-ups. Results Histopathologic examinations revealed photothrombosed choriocapillaries together with minimal retinal pigment epithelial disruption in H-ALP exposed areas. One to four (mean 1.88±0.91) treatment sessions were applied in 6 to 29 months (mean 12.2±5.1 months) follow-up period. Twenty-three (67.6%) eyes had 12 months follow-up. Two eyes in each group had functional success (20% in subfoveal classical and 14.3% in subfoveal occult CNM), which had a minimum 12-month follow-up. Anatomic success was achieved in 16 of 20 (80%) eyes with subfoveal classical and 10 of 14 (71.4%) eyes with subfoveal occult CNM. Severe gastric irritation was noted in 1 (2.9%) and pigment epithelial rupture in 2 (5.9%) patients. Conclusions H-ALP is a novel and low-cost treatment for subfoveal CNM secondary to ARMD. It seems its efficacy depends on the photodynamic and antiproliferative properties of hypericin. Comparative studies are required to apply this new technique in ophthalmic practice.
Collapse
Affiliation(s)
- G. Sobaci
- Department of Ophthalmology, Gülhane Military Medical Academy and Medical School (GMMA-MS), Ankara -Turkey
| | - M.Z. Bayraktar
- Department of Ophthalmology, Gülhane Military Medical Academy and Medical School (GMMA-MS), Ankara -Turkey
| | - Y. Karslioğlu
- Department of Pathology, Gülhane Military Medical Academy and Medical School (GMMA-MS), Ankara -Turkey
| | - A.H. Durukan
- Department of Ophthalmology, Gülhane Military Medical Academy and Medical School (GMMA-MS), Ankara -Turkey
| | - V. Hurmeriç
- Department of Ophthalmology, Gülhane Military Medical Academy and Medical School (GMMA-MS), Ankara -Turkey
| | - S. Aykaş
- Department of Ophthalmology, Gülhane Military Medical Academy and Medical School (GMMA-MS), Ankara -Turkey
| |
Collapse
|
13
|
Huntosova V, Novotova M, Nichtova Z, Balogova L, Maslanakova M, Petrovajova D, Stroffekova K. Assessing light-independent effects of hypericin on cell viability, ultrastructure and metabolism in human glioma and endothelial cells. Toxicol In Vitro 2017; 40:184-195. [DOI: 10.1016/j.tiv.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/01/2016] [Accepted: 01/09/2017] [Indexed: 01/26/2023]
|
14
|
Hypericin in the Dark: Foe or Ally in Photodynamic Therapy? Cancers (Basel) 2016; 8:cancers8100093. [PMID: 27754424 PMCID: PMC5082383 DOI: 10.3390/cancers8100093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
Photosensitizers (PSs) in photodynamic therapy (PDT) are, in most cases, administered systemically with preferential accumulation in malignant tissues; however, exposure of non-malignant tissues to PS may also be clinically relevant, when PS molecules affect the pro-apoptotic cascade without illumination. Hypericin (Hyp) as PS and its derivatives have long been studied, regarding their photodynamic and photocytotoxic characteristics. Hyp and its derivatives have displayed light-activated antiproliferative and cytotoxic effects in many tumor cell lines without cytotoxicity in the dark. However, light-independent effects of Hyp have emerged. Contrary to the acclaimed Hyp minimal dark cytotoxicity and preferential accumulation in tumor cells, it was recently been shown that non-malignant and malignant cells uptake Hyp at a similar level. In addition, Hyp has displayed light-independent toxicity and anti-proliferative effects in a wide range of concentrations. There are multiple mechanisms underlying Hyp light-independent effects, and we are still missing many details about them. In this paper, we focus on Hyp light-independent effects at several sub-cellular levels—protein distribution and synthesis, organelle ultrastructure and function, and Hyp light-independent effects regarding reactive oxygen species (ROS). We summarize work from our laboratories and that of others to reveal an intricate network of the Hyp light-independent effects. We propose a schematic model of pro- and anti-apoptotic protein dynamics between cell organelles due to Hyp presence without illumination. Based on our model, Hyp can be explored as an adjuvant therapeutic drug in combination with chemo- or radiation cancer therapy.
Collapse
|
15
|
Jendželovská Z, Jendželovský R, Kuchárová B, Fedoročko P. Hypericin in the Light and in the Dark: Two Sides of the Same Coin. FRONTIERS IN PLANT SCIENCE 2016; 7:560. [PMID: 27200034 PMCID: PMC4859072 DOI: 10.3389/fpls.2016.00560] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Hypericin (4,5,7,4',5',7'-hexahydroxy-2,2'-dimethylnaphtodianthrone) is a naturally occurring chromophore found in some species of the genus Hypericum, especially Hypericum perforatum L. (St. John's wort), and in some basidiomycetes (Dermocybe spp.) or endophytic fungi (Thielavia subthermophila). In recent decades, hypericin has been intensively studied for its broad pharmacological spectrum. Among its antidepressant and light-dependent antiviral actions, hypericin is a powerful natural photosensitizer that is applicable in the photodynamic therapy (PDT) of various oncological diseases. As the accumulation of hypericin is significantly higher in neoplastic tissue than in normal tissue, it can be used in photodynamic diagnosis (PDD) as an effective fluorescence marker for tumor detection and visualization. In addition, light-activated hypericin acts as a strong pro-oxidant agent with antineoplastic and antiangiogenic properties, since it effectively induces the apoptosis, necrosis or autophagy of cancer cells. Moreover, a strong affinity of hypericin for necrotic tissue was discovered. Thus, hypericin and its radiolabeled derivatives have been recently investigated as potential biomarkers for the non-invasive targeting of tissue necrosis in numerous disorders, including solid tumors. On the other hand, several light-independent actions of hypericin have also been described, even though its effects in the dark have not been studied as intensively as those of photoactivated hypericin. Various experimental studies have revealed no cytotoxicity of hypericin in the dark; however, it can serve as a potential antimetastatic and antiangiogenic agent. On the contrary, hypericin can induce the expression of some ABC transporters, which are often associated with the multidrug resistance (MDR) of cancer cells. Moreover, the hypericin-mediated attenuation of the cytotoxicity of some chemotherapeutics was revealed. Therefore, hypericin might represent another St. John's wort metabolite that is potentially responsible for negative herb-drug interactions. The main aim of this review is to summarize the benefits of photoactivated and non-activated hypericin, mainly in preclinical and clinical applications, and to uncover the "dark side" of this secondary metabolite, focusing on MDR mechanisms.
Collapse
|
16
|
Li Y, Zhang J, Wang B, Shen Y, Ouahab A. Co-delivery of siRNA and hypericin into cancer cells by hyaluronic acid modified PLGA-PEI nanoparticles. Drug Dev Ind Pharm 2015; 42:737-46. [PMID: 26472259 DOI: 10.3109/03639045.2015.1091469] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Malignant tumors cause more death because of the resistance of the hypoxic cancer cell toward radiotherapy. Targeting for hypoxic cancer area and gene silencing to overcome the hypoxia are two kinds of important therapeutic strategies for treating tumors. OBJECTIVE In order to explore the combined effects of gene therapy and hypericin (Hy) on tumor cells, hypoxia-inducible factor 1 alpha (HIF-1α) small interfering ribonucleic acid (siRNA) was transfected into the hypoxic human nasopharyngeal carcinoma (CNE2) cells using Hy-encapsulated nanocomplexes (Hy-HPP NPs) as a carrier which would achieve dual targeting to the tumor necrosis area. MATERIALS AND METHODS NPs were prepared by emulsion-diffusion-evaporation method. Formulations were evaluated by conducting in vitro physicochemical studies, electrophoresis, in vivo study, and biochemical studies. RESULTS AND DISCUSSIONS Hy-loaded nanoparticles with a mean size of around 160 nm was able to enhance the accumulation in the tumors by enhanced permeability and retention effect. The electrophoresis confirmed the good stability of siRNA/Hy-HPP NPs in the presence of phosphate-buffered saline (pH 7.4), competitive heparin, and RNase. The results of transfection showed that the uptake of siRNA was significantly increased up to 50% in CNE2 cells. The level of the HIF-1α with Hy-encapsulated nanocomplexes was significantly reduced to 30% in the transfected CNE2 cells. In vivo studies, the carrier exhibited higher intensity at the tumor tissue cells and higher affinity toward the necrotic tumor tissue. CONCLUSION Results demonstrated that Hy-HPP NPs could significantly enhance the tranfection efficiency of siRNA, suggesting Hy-encapsulated nanoparticle as an efficient gene carrier. The co-delivery of HIF-1α siRNA (siHIF-1α) and Hy could efficiently decrease the level of HIF-1α and increase the affinity toward necrotic tissues. Hence, this is a promising strategy for further application in radiotherapy.
Collapse
Affiliation(s)
- Yanan Li
- a Department of Pharmaceutics , State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University , Nanjing , China
| | - Junling Zhang
- b Department of Oncology , Subei People's Hospital , Yangzhou , China , and
| | - Buhai Wang
- b Department of Oncology , Subei People's Hospital , Yangzhou , China , and
| | - Yan Shen
- a Department of Pharmaceutics , State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University , Nanjing , China
| | - Ammar Ouahab
- c Department of Pharmacy , Institute of Medical Sciences, Batna Elhadj Lakhdar University , Batna , Algeria
| |
Collapse
|
17
|
Hammer KDP, Birt DF. Evidence for contributions of interactions of constituents to the anti-inflammatory activity of Hypericum perforatum. Crit Rev Food Sci Nutr 2014; 54:781-9. [PMID: 24345048 DOI: 10.1080/10408398.2011.607519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hypericum perforatum (Hp) extracts contain many different classes of constituents including flavonoids and biflavonoids, phloroglucinols, naphthodianthrones, caffeic acid derivatives, and unknown and/or unidentified compounds. Many constituents may be responsible for the anti-inflammatory activity of Hp including quercetin and derivatives, hyperforin, pseudohypericin, and amentoflavone. In line with antidepressant data, it appears that the interactions of constituents may be important for the anti-inflammatory activity of Hp. Interactions of constituents, tested in bioavailability models, may explain why synergistic mechanisms have been found to be important for antidepressant and antiproliferative bioactivities. This review highlights the relationship among individual constituents and the anti-inflammatory activity of Hp extracts and proposes that interactions of constituents may be important for the anti-inflammatory activity of botanical extracts, although the exact mechanisms of the interactions are still unclear.
Collapse
Affiliation(s)
- Kimberly D P Hammer
- a Center for Research on Botanical Dietary Supplements , Iowa State University , Ames , Iowa , USA
| | | |
Collapse
|
18
|
Kleemann B, Loos B, Scriba TJ, Lang D, Davids LM. St John's Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS One 2014; 9:e103762. [PMID: 25076130 PMCID: PMC4116257 DOI: 10.1371/journal.pone.0103762] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022] Open
Abstract
Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT Mel-1) caspase-dependent apoptotic modes of cell death, as well as a caspase-independent apoptotic mode that did not involve apoptosis-inducing factor (501 mel). Further research is needed to shed more light on these mechanisms.
Collapse
Affiliation(s)
- Britta Kleemann
- Redox Laboratory and Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Benjamin Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Thomas J. Scriba
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dirk Lang
- Redox Laboratory and Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lester M. Davids
- Redox Laboratory and Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
19
|
Photosensitizing effects of hypericin on head neck squamous cell carcinoma in vitro. Eur Arch Otorhinolaryngol 2014; 272:711-8. [PMID: 24687800 DOI: 10.1007/s00405-014-2984-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/24/2014] [Indexed: 01/22/2023]
Abstract
Clinical outcome of patients suffering from head neck squamous cell carcinomas is still poor due to recurrent disease and surgical limitations. There is still a demand for multimodality approaches and new therapeutic options. Hypericin is a promising phototoxic drug which was investigated for its effects on head neck squamous cell carcinoma cells in vitro. FaDu cells incubated with or without hypericin were illuminated (450-700 nm, 50,000 lx) for different time periods. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide- and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay were used to score metabolic and apoptotic activity. Even after the shortest illumination FaDu cells incubated with hypericin showed massive reduction of metabolism and excessive apoptosis. This was present even with the lowest hypericin concentration. Cells without hypericin or without illumination were not affected. These photosensitizing effects of hypericin could be suitable for clinical application and could lead to the development of an intraoperative photodynamic therapy of head neck squamous cell carcinomas.
Collapse
|
20
|
Kazemi SY, Abedirad SM. Effect of glutathione on peroxyoxalate chemiluminescence of hypericin as the fluorophore. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:782-786. [PMID: 24152863 DOI: 10.1016/j.saa.2013.07.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/03/2013] [Accepted: 07/21/2013] [Indexed: 06/02/2023]
Abstract
Herein, the effect of amino acid Glutathione (GSH) on Peroxyoxalate Chemiluminescence was studied for the first time. Hypericin (HYP) was employed as the efficient fluorophore. The investigated parameters included rise and fall rate constant for the chemiluminescence burst, theoretical and experimental maximum intensity, the time-needed to reach maximum intensity and the total light yield emission which theoretically was evaluated using the pooled intermediate model by a computerized non-linear least-squares curve fitting program (KINFIT). Furthermore, based on observed quenching effect of GSH, the Stern-Volmer plot in quencher concentration range of 2.8×10(-6) to 3.4×10(-5)M with KQ value of 1.59×10(4) was calculated. The bimolecular quenching rate constant (Kq) was also estimated about 2.8×10(12) and M(-1) S(-1). Moreover the system was applied successfully to determine glutathione in biological samples.
Collapse
Affiliation(s)
- Sayed Yahya Kazemi
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari, Iran
| | | |
Collapse
|
21
|
Feinweber D, Verwanger T, Brüggemann O, Teasdale I, Krammer B. Applicability of new degradable hypericin–polymer-conjugates as photosensitizers: principal mode of action demonstrated by in vitro models. Photochem Photobiol Sci 2014; 13:1607-20. [DOI: 10.1039/c4pp00251b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Novel degradable polymers are shown to be promising carriers for the delivery of hypericin for PDT, significantly enhancing solubility of the free drug without compromising the photoactivity.
Collapse
Affiliation(s)
- Daniela Feinweber
- Division of Molecular Tumor Biology
- Department of Molecular Biology
- University of Salzburg
- 5020 Salzburg, Austria
| | - Thomas Verwanger
- Division of Molecular Tumor Biology
- Department of Molecular Biology
- University of Salzburg
- 5020 Salzburg, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry
- Johannes Kepler University Linz
- 4060 Leonding, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry
- Johannes Kepler University Linz
- 4060 Leonding, Austria
| | - Barbara Krammer
- Division of Molecular Tumor Biology
- Department of Molecular Biology
- University of Salzburg
- 5020 Salzburg, Austria
| |
Collapse
|
22
|
Ritz R, Scheidle C, Noell S, Roser F, Schenk M, Dietz K, Strauss WSL. In vitro comparison of hypericin and 5-aminolevulinic acid-derived protoporphyrin IX for photodynamic inactivation of medulloblastoma cells. PLoS One 2012; 7:e51974. [PMID: 23251668 PMCID: PMC3522623 DOI: 10.1371/journal.pone.0051974] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/12/2012] [Indexed: 11/25/2022] Open
Abstract
Background Hypericin (HYP) is a naturally occurring photosensitizer. Cellular uptake and photodynamic inactivation after incubation with this photosensitizer have neither been examined in medulloblastoma cells in vitro, nor compared with 5-aminolevulinic acid-derived protoporphyrin IX (5-ALA-derived PpIX). Methods In 3 medulloblastoma cell lines (D283 Med, Daoy, and D341 Med) the time- and concentration-dependent intracellular accumulation of HYP and 5-ALA-derived PpIX was analyzed by fluorescence microscopy (FM) and FACS. Photocytotoxicity was measured after illumination at 595 nm (HYP) and 635 nm (5-ALA-derived PpIX) in D283 Med cells and compared to U373 MG glioma cells. Results All medulloblastoma cell lines exhibited concentration- and time-dependent uptake of HYP. Incubation with HYP up to 10 µM resulted in a rapid increase in fluorescence intensity, which peaked between 2 and 4 hours. 5-ALA-derived PpIX accumulation increased in D283 Med cells by 22% over baseline after 5-ALA incubation up to 1.2 mM. Photocytotoxicity of 5-ALA-derived PpIX was higher in D283 Med medulloblastoma compared to U373MG glioma. The [lethal dose (light dose that is required to reduce cell survival to 50% of control)] of 5-ALA-derived PpIX was 3.8 J/cm2 in D283 Med cells versus 5.7 J/cm2 in U373MG glioma cells. Photocytotoxicity of HYP in D283 Med cells was determined at 2.5 µM after an incubation time of 2 h and an illumination wavelength of 595 nm. The value was 0.47 J/cm2. Conclusion By its 5-fold increase in fluorescence over autofluorescence levels HYP has excellent properties for tumor visualization in medulloblastomas. The high photocytotoxicity of HYP, compared to 5-ALA-derived PpIX, is convincingly demonstrated by its 8- to 13-fold lower . Therefore HYP might be a promising molecule for intraoperative visualization and photodynamic treatment of medulloblastomas.
Collapse
Affiliation(s)
- Rainer Ritz
- Department of Neurosurgery, Eberhard Karls University Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Dinçalp H, Kızılok Ş, Birel ÖH, İçli S. Synthesis and G-quadruplex binding study of a novel full visible absorbing perylene diimide dye. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Degradation of HIF-1alpha under hypoxia combined with induction of Hsp90 polyubiquitination in cancer cells by hypericin: a unique cancer therapy. PLoS One 2011; 6:e22849. [PMID: 21949677 PMCID: PMC3176203 DOI: 10.1371/journal.pone.0022849] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/30/2011] [Indexed: 01/01/2023] Open
Abstract
The perihydroxylated perylene quinone hypericin has been reported to possess potent anti-metastatic and antiangiogenic activities, generated by targeting diverse crossroads of cancer-promoting processes via unique mechanisms. Hypericin is the only known exogenous reagent that can induce forced poly-ubiquitination and accelerated degradation of heat shock protein 90 (Hsp90) in cancer cells. Hsp90 client proteins are thereby destabilized and rapidly degraded. Hsp70 client proteins may potentially be also affected via preventing formation of hsp90-hsp70 intermediate complexes. We show here that hypericin also induces enhanced degradation of hypoxia-inducible factor 1α (HIF-1α) in two human tumor cell lines, U87-MG glioblastoma and RCC-C2VHL−/− renal cell carcinoma and in the non-malignant ARPE19 retinal pigment epithelial cell line. The hypericin-accelerated turnover of HIF-1α, the regulatory precursor of the HIF-1 transcription factor which promotes hypoxic stress and angiogenic responses, overcomes the physiologic HIF-1α protein stabilization which occurs in hypoxic cells. The hypericin effect also eliminates the high HIF-1α levels expressed constitutively in the von-Hippel Lindau protein (pVHL)-deficient RCC-C2VHL−/− renal cell carcinoma cell line. Unlike the normal ubiquitin-proteasome pathway-dependent turnover of HIF-α proteins which occurs in normoxia, the hypericin-induced HIF-1α catabolism can occur independently of cellular oxygen levels or pVHL-promoted ubiquitin ligation of HIF-1α. It is mediated by lysosomal cathepsin-B enzymes with cathepsin-B activity being optimized in the cells through hypericin-mediated reduction in intracellular pH. Our findings suggest that hypericin may potentially be useful in preventing growth of tumors in which HIF-1α plays pivotal roles, and in pVHL ablated tumor cells such as renal cell carcinoma through elimination of elevated HIF-1α contents in these cells, scaling down the excessive angiogenesis which characterizes these tumors.
Collapse
|
25
|
Corral JM, Molins MP, Aliyu OM, Sharbel TF. Isolation and characterization of microsatellite loci from apomictic Hypericum perforatum (Hypericaceae). AMERICAN JOURNAL OF BOTANY 2011; 98:e167-e169. [PMID: 21730329 DOI: 10.3732/ajb.1100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY Microsatellite markers were developed to study the origins and evolution of apomictic Hypericum perforatum, a polyploid invasive perennial herb indigenous to Europe that produces compounds of medicinal/pharmaceutical importance. METHODS AND RESULTS Eleven primer sets were developed using a non-radioactive protocol. All loci were polymorphic, showing from 2 to 9 alleles per locus. Observed and expected heterozygosity averaged 0.861 and 0.772, respectively, across four studied populations. Most primers also amplified successfully in eight other Hypericum species. CONCLUSIONS Markers developed in this study provide genetic tools for studies of apomixis and invasiveness, both on the intra- and interspecific levels.
Collapse
Affiliation(s)
- Jose M Corral
- Apomixis Research Group, Department of Cytogenetics and Genome Analysis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, Germany 06466.
| | | | | | | |
Collapse
|
26
|
Hypericins as potential leads for new therapeutics. Int J Mol Sci 2010; 11:562-94. [PMID: 20386655 PMCID: PMC2852855 DOI: 10.3390/ijms11020562] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 12/22/2022] Open
Abstract
70 years have passed since the first isolation of the naphthodianthrones hypericin and pseudohypericin from Hypericum perforatum L. Today, they continue to be one of the most promising group of polyphenols, as they fascinate with their physical, chemical and important biological properties which derive from their unique chemical structure. Hypericins and their derivatives have been extensively studied mainly for their antitumor, antiviral and antidepressant properties. Notably, hypericin is one of the most potent naturally occurring photodynamic agents. It is able to generate the superoxide anion and a high quantum yield of singlet oxygen that are considered to be primarily responsible for its biological effects. The prooxidant photodynamic properties of hypericin have been exploited for the photodynamic therapy of cancer (PDT), as hypericin, in combination with light, very effectively induces apoptosis and/or necrosis of cancer cells. The mechanism by which these activities are expressed continues to be a main topic of discussion, but according to scientific data, different modes of action (generation of ROS & singlet oxygen species, antiangiogenesis, immune responces) and multiple molecular pathways (intrinsic/extrinsic apoptotic pathway, ERK inhibition) possibly interrelating are implicated. The aim of this review is to analyse the most recent advances (from 2005 and thereof) in the chemistry and biological activities (in vitro and in vivo) of the pure naphthodianthrones, hypericin and pseudohypericin from H. perforatum. Extracts from H. perforatum were not considered, nor pharmakokinetic or clinical data. Computerised literature searches were performed using the Medline (PubMed), ChemSciFinder and Scirus Library databases. No language restrictions were imposed.
Collapse
|
27
|
Stupáková V, Varinská L, Mirossay A, Sarisský M, Mojzis J, Dankovcík R, Urdzík P, Ostró A, Mirossay L. Photodynamic effect of hypericin in primary cultures of human umbilical endothelial cells and glioma cell lines. Phytother Res 2009; 23:827-32. [PMID: 19173218 DOI: 10.1002/ptr.2681] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypericin is the most powerful naturally occurring photosensitizer and as such there is renaissant interest in the potentials of this compound for anticancer photodynamic therapy (PDT). The purpose of this study was to investigate the hypericin-mediated photodynamic therapy effects on normal human umbilical endothelial cells (HUVECs) in comparison with cancer human glioma cell lines U-87 MG and U-373 MG, in in vitro conditions. The data suggest that endothelial cells as well as glioma cell lines are sensitive only to photoactivated hypericin. The inhibitory effects of photoactivated hypericin did not differ in endothelial compared with tumor cells in cytotoxicity MTT and DNA fragmentation assays. However, an important difference in sensitivity was found between the above mentioned cell types in migration and metalloproteinases inhibition assays performed as cell function tests. The findings in both function tests were supported by the high sensitivity of endothelial cells in an additional angiogenesis test of tubular formation in vitro.
Collapse
Affiliation(s)
- Viktória Stupáková
- Department of Pharmacology, Faculty of Medicine, University of P. J. Safárik, Kosice, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cooks T, Arazi L, Efrati M, Schmidt M, Marshak G, Kelson I, Keisari Y. Interstitial wires releasing diffusing alpha emitters combined with chemotherapy improved local tumor control and survival in squamous cell carcinoma-bearing mice. Cancer 2009; 115:1791-801. [PMID: 19197995 DOI: 10.1002/cncr.24191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The objective of this study was to examine the combined effect of diffusing alpha-emitter radiation therapy (DART) together with the chemotherapeutic agent cisplatin on tumor development. METHODS BALB/c mice bearing squamous cell carcinoma tumors were treated with radium 224 ((224)Ra-)-loaded stainless steel wires, releasing short-lived, alpha-emitting atoms from their surface. A concomitant regimen of cisplatin doses (5 mg/kg per dose) was given intravenously for the evaluation of the combined effect. Animals were monitored for tumor growth and survival. RESULTS First, the authors observed that alpha particles and cisplatin inhibited SQ2 cell proliferation in vitro and promoted apoptosis. Treatment of tumor-bearing mice indicated that, when a regimen of 2 separate doses of cisplatin was given concomitantly with a single intratumoral (224)Ra-loaded wire, there was moderate tumor growth inhibition relative to what was observed from each treatment alone. When tumors were treated with 2 radioactive wires positioned near the tumor base and a similar drug administration, the growth arrest effect intensified, and there also was a significant increase in survival rates. The combined treatment reduced both local tumor growth and metastatic spread to the lungs. CONCLUSIONS Antitumor activity and overall survival of metastatic tumor-bearing mice were improved significantly by the combined treatment. These results highlight the potential benefit of alpha radiation-based radiotherapy in combination with chemotherapeutic drugs for anticancer treatment.
Collapse
Affiliation(s)
- Tomer Cooks
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
29
|
Hillwig ML, Hammer KDP, Birt DF, Wurtele ES. Characterizing the metabolic fingerprint and anti-inflammatory activity of Hypericum gentianoides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4359-66. [PMID: 18512936 PMCID: PMC2701219 DOI: 10.1021/jf800411v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this paper we characterize the metabolic fingerprint and first reported anti-inflammatory activity of Hypericum gentianoides. H. gentianoides has a history of medical use by Native Americans, but it has been studied very little for biological activity. High-performance liquid chromatography (HPLC) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analyses of a methanol extract show that H. gentianoides contains a family of over nine related compounds that have retention times, mass spectra, and a distinctive UV absorption spectra characteristic of certain acyl-phloroglucinols. These metabolites are abundant relative to other secondary products present in H. gentianoides, accounting for approximately 0.2 g per gram of dry plant tissue. H. gentianoides methanol extracts and a specific semipreparative HPLC fraction from these extracts containing the putative acyl-phloroglucinols reduce prostaglandin E 2 synthesis in mammalian macrophages.
Collapse
Affiliation(s)
- Matthew L. Hillwig
- To whom correspondence should be addressed. Phone: (515) 294-3509. E-mail: or
| | | | | | - Eve Syrkin Wurtele
- To whom correspondence should be addressed. Phone: (515) 294-3509. E-mail: or
| |
Collapse
|
30
|
Fonge H, Van de Putte M, Huyghe D, Bormans G, Ni Y, de Witte P, Verbruggen A. Evaluation of tumor affinity of mono-[(123)I]iodohypericin and mono-[(123)I]iodoprotohypericin in a mouse model with a RIF-1 tumor. CONTRAST MEDIA & MOLECULAR IMAGING 2008; 2:113-9. [PMID: 17546702 DOI: 10.1002/cmmi.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study we have compared the tumour-seeking properties of mono-[(123)I]iodoprotohypericin and mono-[(123)I]iodohypericin in C3H mice with a subcutaneous radiation-induced fibrosarcoma-1 tumor. After intravenous injection, both tracers were rapidly cleared from all organs and were retained by the tumors. There was no significant difference in tumor uptake of the two tracers at all studied time points (p > 0.05). To study the plausible mechanism of hypericin and mono-iodohypericin uptake in tumor, their plasma binding profile was investigated. Both agents show high affinity for low-density lipoproteins and to a lesser extent high-density lipoproteins and other heavy proteins. Mono-[(123)I]iodohypericin appears to be more promising as a tumor diagnostic agent, given its faster clearance from all organs.
Collapse
Affiliation(s)
- Humphrey Fonge
- Laboratory of Radiopharmacy, Faculty of Pharmaceutical Sciences, KU Leuven, Herestraat 49, Box 821, B-3000, Leuven
| | | | | | | | | | | | | |
Collapse
|
31
|
Cooks T, Arazi L, Schmidt M, Marshak G, Kelson I, Keisari Y. Growth retardation and destruction of experimental squamous cell carcinoma by interstitial radioactive wires releasing diffusing alpha-emitting atoms. Int J Cancer 2007; 122:1657-64. [DOI: 10.1002/ijc.23268] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Arazi L, Cooks T, Schmidt M, Keisari Y, Kelson I. Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters. Phys Med Biol 2007; 52:5025-42. [PMID: 17671351 DOI: 10.1088/0031-9155/52/16/021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new method utilizing alpha particles to treat solid tumors is presented. Tumors are treated with interstitial radioactive sources which continually release short-lived alpha emitting atoms from their surface. The atoms disperse inside the tumor, delivering a high dose through their alpha decays. We implement this scheme using thin wire sources impregnated with (224)Ra, which release by recoil (220)Rn, (216)Po and (212)Pb atoms. This work aims to demonstrate the feasibility of our method by measuring the activity patterns of the released radionuclides in experimental tumors. Sources carrying (224)Ra activities in the range 10-130 kBq were used in experiments on murine squamous cell carcinoma tumors. These included gamma spectroscopy of the dissected tumors and major organs, Fuji-plate autoradiography of histological tumor sections and tissue damage detection by Hematoxylin-Eosin staining. The measurements focused on (212)Pb and (212)Bi. The (220)Rn/(216)Po distribution was treated theoretically using a simple diffusion model. A simplified scheme was used to convert measured (212)Pb activities to absorbed dose estimates. Both physical and histological measurements confirmed the formation of a 5-7 mm diameter necrotic region receiving a therapeutic alpha-particle dose around the source. The necrotic regions shape closely corresponded to the measured activity patterns. (212)Pb was found to leave the tumor through the blood at a rate which decreased with tumor mass. Our results suggest that the proposed method, termed DART (diffusing alpha-emitters radiation therapy), may potentially be useful for the treatment of human patients.
Collapse
Affiliation(s)
- L Arazi
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
33
|
Gupta V, Su YS, Wang W, Kardosh A, Liebes LF, Hofman FM, Schönthal AH, Chen TC. Enhancement of glioblastoma cell killing by combination treatment with temozolomide and tamoxifen or hypericin. Neurosurg Focus 2006; 20:E20. [PMID: 16709026 DOI: 10.3171/foc.2006.20.4.13] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECT The chemotherapeutic agent temozolomide has demonstrated antitumor activity in patients with recurrent malignant glioma. Because responses are not enduring and recurrence is nearly universal, further improvements are urgently needed. METHODS In an effort to increase the clinical activity of temozolomide, the authors investigated whether its antitumor activity could be enhanced by adding tamoxifen or hypericin, two drugs that are known to inhibit the activity of protein kinase C. Human glioblastoma multiforme cell lines A172 and LA567 were treated with combinations of temozolomide and tamoxifen or hypericin in vitro, and cell survival was analyzed using various methods. Tamoxifen and hypericin were able to greatly increase the growth-inhibitory and apoptosis-stimulatory potency of temozolomide via the downregulation of critical cell cycle-regulatory and prosurvival components. Furthermore, with the use of an in vivo xenograft mouse model, the authors demonstrated that hypericin was able to enhance the antiglioma effects of temozolomide in the in vivo setting as well. CONCLUSIONS Taken together, analysis of the results indicated that combination therapy involving temozolomide and tamoxifen or hypericin potently inhibited tumor growth by inducing apoptosis and provided an effective means of treating malignant glioma.
Collapse
Affiliation(s)
- Vinay Gupta
- Department of Pathology, K. Norris Jr. Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lavie G, Mandel M, Hazan S, Barliya T, Blank M, Grunbaum A, Meruelo D, Solomon A. Anti-angiogenic activities of hypericin in vivo: potential for ophthalmologic applications. Angiogenesis 2005; 8:35-42. [PMID: 16132616 DOI: 10.1007/s10456-005-3828-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
Hypericin, a perihydroxylated dianthraquinone is shown here to be a highly potent inhibitor of angiogenesis in several ocular models examined in rat eyes. Extensive angiogenesis induced in the cornea and iris by intra-ocular administration of FGF-2 was effectively inhibited by a minimum of four dose regimens of hypericin (2 mg/kg) administered via the intraperitoneal route at 48 h intervals. Maximal inhibition was achieved when animal treatment with hypericin was initiated 48 h prior to inoculation of FGF-2. The molecular basis for the hypericin-mediated inhibition of angiogenesis in the anterior eye compartment appears to involve several sites in the cascade leading to angiogenesis. We show that the activating phosphorylation of extracellular signal-regulated MAP kinases (ERK1/2) is inhibited by hypericin in human retinal pigment epithelial cells and in EA.hy926 cells, an endothelial hybridoma expressing endothelial cell properties. ERK1/2 activity is required for the transactivation of hypoxia-inducible factor 1 alpha (HIF-1alpha) and in VEGF-induced blood vessel sprouting. MT1-MMP activity in human microvascular endothelial cells was also inhibited. The findings identify hypericin as a potentially useful agent in the treatment of ophthalmic neovascularization pathogeneses.
Collapse
Affiliation(s)
- Gad Lavie
- Institute of Hematology & Blood Transfusion Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Holstege CP, Mitchell K, Barlotta K, Furbee RB. Toxicity and drug interactions associated with herbal products: ephedra and St. John's Wort. Med Clin North Am 2005; 89:1225-57. [PMID: 16227061 DOI: 10.1016/j.mcna.2005.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Health care providers are being increasingly confronted with the use of herbal medications by their patients. It is imperative that patients be questioned regarding herbal preparation use and that health care providers become familiar with these agents. Research into the active components and mechanisms of action of various herbals is ongoing [350]. Long-range studies need to be performed to follow patients for efficacy or toxicity in chronic use [351,352]. Adverse reactions to herbal remedies should be reported to the FDA MedWatch at http://www.fda.gov/medwatch. As withany therapeutic agent, risk of use must always be weighed against potential benefits.
Collapse
Affiliation(s)
- Christopher P Holstege
- Division of Medical Toxicology, University of Virginia, Charlottesville, VA 22908-0774, USA.
| | | | | | | |
Collapse
|
36
|
Martínez-Poveda B, Quesada AR, Medina MA. Hypericin in the dark inhibits key steps of angiogenesis in vitro. Eur J Pharmacol 2005; 516:97-103. [PMID: 15921677 DOI: 10.1016/j.ejphar.2005.03.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/15/2005] [Accepted: 03/21/2005] [Indexed: 11/18/2022]
Abstract
Photoactivated hypericin has a potent cytotoxic effect over a wide range of cells. However, very recently hypericin has been shown to have antitumoral and antimetastatic effects in the dark. The aim of this study was to test whether hypericin in the dark affects angiogenesis. Different in vitro assays were used to study the potential effects of this compound on key steps of angiogenesis, namely, a colorimetric assay of cell proliferation/viability, a tubular formation on Matrigel assay, zymographic assays for gelatinases and urokinase, a wound assay for migration and a fluorometric assay for invasion through Matrigel. In this report, we show for the first time that hypericin kept in the dark inhibits several key steps of the angiogenic process, namely, bovine endothelial cell proliferation, formation of tubular-like structures on Matrigel, migration and invasion, as well as extracellular matrix degrading urokinase.
Collapse
Affiliation(s)
- Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071-Málaga, Spain
| | | | | |
Collapse
|