1
|
Fujisawa S, Takagi K, Yamaguchi-Tanaka M, Sato A, Miki Y, Miyashita M, Tada H, Ishida T, Suzuki T. Clinicopathological significance of hyaluronan and hyaluronidase 2 (HYAL2) in breast cancer. Pathol Res Pract 2024; 260:155434. [PMID: 38991455 DOI: 10.1016/j.prp.2024.155434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Hyaluronan (HA), as a component of extracellular matrix, has pivotal roles in both physiological and pathological condition. In breast cancer, while high molecular weight HA is produced by hyaluronan synthase, it is degraded by hyaluronidases (hyaluronidase-1 (HYAL1) and hyaluronidase-2 (HYAL2)) into low molecular weight HA (LMW HA), which is considered to have pro-tumorigenic effects in human malignancies. However, HA and HYAL2, the rate-limiting enzyme of HA degradation, have not been comprehensively examined in breast cancer and clinicopathological significance of LMW HA remains to be elucidated in breast cancer. We therefore histochemically localized HA as well as HYAL2 in 116 breast cancer tissues. In addition, we examined size-dependent function of HA on breast cancer cell proliferation and migration using MCF-7 and MDA-MB-231 breast cancer cell lines. HA was localized in both the stroma and breast carcinoma cells, while HYAL2 was predominantly localized in breast carcinoma cells. HA was significantly correlated with cell proliferation and invasion ability as well as increased risk of recurrence especially in HYAL2 positive group. On the other hand, HYAL2 was correlated with breast cancer cell proliferation and increased risk of recurrence. In addition, in vitro analyses revealed that lower molecular weight HA increased sphere forming ability and migration in MCF-7 and MDA-MB-231, whereas higher molecular weight HA inhibited them. It was concluded that HA needs to be degraded by HYAL2 to exert pro-tumorigenic effects and comprehensive HA/HYAL2 status serves as a potent prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Shiori Fujisawa
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Mio Yamaguchi-Tanaka
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Personalized Medicine Center and Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pathology, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
2
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|
3
|
Jin Z, Zhang G, Liu Y, He Y, Yang C, Du Y, Gao F. The suppressive role of HYAL1 and HYAL2 in the metastasis of colorectal cancer. J Gastroenterol Hepatol 2019; 34:1766-1776. [PMID: 30972813 DOI: 10.1111/jgh.14660] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hyaluronidases (HAases), enzymes that degrade hyaluronan, have been widely investigated in cancer biology. However, whether HAases serve as tumor promoters or suppressors has been controversial in different cancers, and the exact role of HAases in colorectal cancer (CRC) has not been elucidated. METHODS The expression levels of HYAL1, HYAL2, and HYAL3 in cancer and corresponding normal tissues from CRC patients were examined via immunohistochemistry. Then the correlation between HAases levels and pathological characteristics of CRC patients was analyzed. To verify the clinical data, HYAL1 and HYAL2 were downregulated or overexpressed in colon cancer cells LOVO and HCT116 to observe their influences on cell invasion and migration. For the mechanism study, we investigated the effects of HYAL1 and HYAL2 on the expression of matrix metalloproteases (MMPs)/tissue inhibitor of metalloproteases (TIMPs) and distribution of F-actin. RESULTS All the three HAases were abnormally elevated in cancer tissues. Interestingly, HYAL1 and HYAL2, but not HYAL3, were negatively correlated with lymphatic metastasis and TNM stage. When HYAL1 and HYAL2 were knocked down, the invasion and migration abilities of colon cancer cells were accelerated, whereas overexpression of HYAL1 and HYAL2 had the opposite effects. In addition, colon cancer cells with HYAL1 and HYAL2 downregulation showed increased levels of MMP2 and MMP9, decreased levels of TIMP1 and TIMP2, and more intense F-actin stress fibers. CONCLUSIONS Our study suggests that HYAL1 and HYAL2 suppress CRC metastasis through regulating MMPs/TIMPs balance and rearranging F-actin distribution, further inhibiting invasion and migration of cancer cells.
Collapse
Affiliation(s)
- Zhiming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Zahreddine HA, Culjkovic-Kraljacic B, Emond A, Pettersson F, Midura R, Lauer M, Del Rincon S, Cali V, Assouline S, Miller WH, Hascall V, Borden KL. The eukaryotic translation initiation factor eIF4E harnesses hyaluronan production to drive its malignant activity. eLife 2017; 6:29830. [PMID: 29111978 PMCID: PMC5705209 DOI: 10.7554/elife.29830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023] Open
Abstract
The microenvironment provides a functional substratum supporting tumour growth. Hyaluronan (HA) is a major component of this structure. While the role of HA in malignancy is well-defined, the mechanisms driving its biosynthesis in cancer are poorly understood. We show that the eukaryotic translation initiation factor eIF4E, an oncoprotein, drives HA biosynthesis. eIF4E stimulates production of enzymes that synthesize the building blocks of HA, UDP-Glucuronic acid and UDP-N-Acetyl-Glucosamine, as well as hyaluronic acid synthase which forms the disaccharide chain. Strikingly, eIF4E inhibition alone repressed HA levels as effectively as directly targeting HA with hyaluronidase. Unusually, HA was retained on the surface of high-eIF4E cells, rather than being extruded into the extracellular space. Surface-associated HA was required for eIF4E’s oncogenic activities suggesting that eIF4E potentiates an oncogenic HA program. These studies provide unique insights into the mechanisms driving HA production and demonstrate that an oncoprotein can co-opt HA biosynthesis to drive malignancy.
Collapse
Affiliation(s)
- Hiba Ahmad Zahreddine
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Biljana Culjkovic-Kraljacic
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Audrey Emond
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Québec, Canada
| | - Filippa Pettersson
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Québec, Canada
| | - Ronald Midura
- Orthopaedic Research Center, The Cleveland Clinic Foundation, Cleveland, United States.,Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, United States
| | - Mark Lauer
- Orthopaedic Research Center, The Cleveland Clinic Foundation, Cleveland, United States.,Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, United States
| | - Sonia Del Rincon
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Québec, Canada
| | - Valbona Cali
- Orthopaedic Research Center, The Cleveland Clinic Foundation, Cleveland, United States.,Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, United States
| | - Sarit Assouline
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Québec, Canada
| | - Wilson H Miller
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Québec, Canada
| | - Vincent Hascall
- Orthopaedic Research Center, The Cleveland Clinic Foundation, Cleveland, United States.,Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, United States
| | - Katherine Lb Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| |
Collapse
|
5
|
Mareschal S, Dubois S, Viailly PJ, Bertrand P, Bohers E, Maingonnat C, Jaïs JP, Tesson B, Ruminy P, Peyrouze P, Copie-Bergman C, Fest T, Jo Molina T, Haioun C, Salles G, Tilly H, Lecroq T, Leroy K, Jardin F. Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B-cell lymphoma. Genes Chromosomes Cancer 2015; 55:251-67. [PMID: 26608593 DOI: 10.1002/gcc.22328] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the many efforts already spent to enumerate somatic mutations in diffuse large B-cell lymphoma (DLBCL), previous whole-genome and whole-exome studies conducted on patients of mixed outcomes failed at characterizing the 30% of patients who will relapse or resist current immunochemotherapies. To address this issue, we performed whole-exome sequencing of normal/tumoral DNA pairs in 14 relapsed/refractory (R/R) patients subclassified by full-transcriptome arrays (six activated B-cell like, three germinal center B-cell like, and five primary mediastinal B-cell lymphomas), from the LNH-03 LYSA clinical trial program. Aside from well-known DLBCL features, gene and pathway level recurrence analyses proposed several interesting leads including TBL1XR1 and activating mutations in IRF4 or in the insulin regulation pathway. Sequencing-based copy number analysis defined 23 short recurrently altered regions involving genes such as REL, CDKN2A, HYAL2, and TP53. Moreover, it highlighted mutations in genes such as GNA13, CARD11, MFHAS1, and PCLO as associated with secondary variant allele amplification events. The five primary mediastinal B-cell lymphomas (PMBL), while unexpected in a R/R cohort, showed a significantly higher mutation rate (P = 0.003) and provided many insights on this classical Hodgkin lymphoma related subtype. Novel genes such as XPO1, MFHAS1, and ITPKB were found particularly mutated, along with various cytokine-based signaling pathways. Among these analyses, somatic events in the NF-κB pathway were found preponderant in the three DLBCL subtypes, confirming its major implication in DLBCL aggressiveness and pinpointing several new candidate genes.
Collapse
Affiliation(s)
| | | | - Pierre-Julien Viailly
- INSERM U918, Centre Henri Becquerel, Rouen, France.,LITIS, INSA EA 4108, Saint-Etienne-du-Rouvray, France
| | | | | | | | | | | | | | - Pauline Peyrouze
- Plate-Forme De Génomique Fonctionnelle Et Structurale, Université De Lille 2, Lille, France
| | | | | | | | - Corinne Haioun
- AP-HP Hôpital Henri Mondor, Unité Hémopathies Lymphoïdes, Créteil, France
| | - Gilles Salles
- CNRS UMR 5239, Hospices Civils De Lyon, Lyon, France
| | - Hervé Tilly
- INSERM U918, Centre Henri Becquerel, Rouen, France
| | | | - Karen Leroy
- AP-HP Hôpital Henri Mondor, INSERM U955, IMRB, Créteil, France
| | | |
Collapse
|
6
|
Schmaus A, Bauer J, Sleeman JP. Sugars in the microenvironment: the sticky problem of HA turnover in tumors. Cancer Metastasis Rev 2015; 33:1059-79. [PMID: 25324146 DOI: 10.1007/s10555-014-9532-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The properties and behavior of tumor cells are closely regulated by their microenvironment. Accordingly, stromal cells and extracellular matrix components can have a pronounced effect on cancer initiation, growth, and progression. The linear glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix. Altered synthesis and degradation of HA in the tumor context has been implicated in many aspects of tumor biology. In particular, the accumulation of small HA oligosaccharides (sHA) in the tumor interstitial space may play a decisive role, due to the ability of sHA to activate a number of biological processes that are not modulated by high molecular weight (HMW)-HA. In this article, we review the normal physiological role and metabolism of HA and then survey the evidence implicating HA in tumor growth and progression, focusing in particular on the potential contribution of sHA to these processes.
Collapse
Affiliation(s)
- Anja Schmaus
- Institut für Toxikologie und Genetik, Karlsruhe Institute for Technology (KIT), Campus Nord, Postfach 3640, 76021, Karlsruhe, Germany
| | | | | |
Collapse
|
7
|
Xing G, Ren M, Verma A. Divergent Temporal Expression of Hyaluronan Metabolizing Enzymes and Receptors with Craniotomy vs. Controlled-Cortical Impact Injury in Rat Brain: A Pilot Study. Front Neurol 2014; 5:173. [PMID: 25309501 PMCID: PMC4161003 DOI: 10.3389/fneur.2014.00173] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 08/26/2014] [Indexed: 01/16/2023] Open
Abstract
Traumatic brain injury (TBI) triggers many secondary changes in tissue biology, which ultimately determine the extent of injury and clinical outcome. Hyaluronan [hyaluronic acid (HA)] is a protective cementing gel present in the intercellular spaces whose degradation has been reported as a causative factor in tissue damage. Yet little is known about the expression and activities of genes involved in HA catabolism after TBI. Young adult male Sprague-Dawley rats were assigned to three groups: naïve control, craniotomy, and controlled-cortical impact-induced TBI (CCI-TBI). Four animals per group were sacrificed at 4 h, 1, 3, and 7 days post-CCI. The mRNA expression of hyaluronan synthases (HAS1-3), hyaluronidases (enzymes for HA degradation, HYAL 1–4, and PH20), and CD44 and RHAMM (membrane receptors for HA signaling and removal) were determined using real-time PCR. Compared to the naïve controls, expression of HAS1 and HAS2 mRNA, but not HAS3 mRNA increased significantly following craniotomy alone and following CCI with differential kinetics. Expression of HAS2 mRNA increased significantly in the ipsilateral brain at 1 and 3 days post-CCI. HYAL1 mRNA expression also increased significantly in the craniotomy group and in the contralateral CCI at 1 and 3 days post-CCI. CD44 mRNA expression increased significantly in the ipsilateral CCI at 4 h, 1, 3, and 7 days post-CCI (up to 25-fold increase). These data suggest a dynamic regulation and role for HA metabolism in secondary responses to TBI.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Ming Ren
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Ajay Verma
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
8
|
Guney S, Jardin F, Bertrand P, Mareschal S, Parmentier F, Picquenot JM, Tilly H, Bastard C. Several mechanisms lead to the inactivation of the CDKN2A (P16), P14ARF, or CDKN2B (P15) genes in the GCB and ABC molecular DLBCL subtypes. Genes Chromosomes Cancer 2012; 51:858-67. [DOI: 10.1002/gcc.21970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 11/07/2022] Open
|
9
|
Cordo Russo RI, Ernst G, Lompardía S, Blanco G, Álvarez É, Garcia MG, Hajos S. Increased hyaluronan levels and decreased dendritic cell activation are associated with tumor invasion in murine lymphoma cell lines. Immunobiology 2011; 217:842-50. [PMID: 22304941 DOI: 10.1016/j.imbio.2011.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 12/15/2011] [Indexed: 12/24/2022]
Abstract
Hyaluronan (HA), a component of the extracellular matrix surrounding tumors, modulates tumor progression and the immune response. Dendritic cells (DC) may tolerize or stimulate immunity against cancer. In this report, we study the association between tumor progression, HA levels and DC activation in a lymphoma model. Mice injected with the cells with highest invasive capacity (LBR-) presented increased HA in serum and lymph nodes, and decreased DC activation in infiltrated lymph nodes and liver. These findings could be related to lack of an effective antitumor immune response and suggest that serum HA levels could have a prognostic value in hematological malignancies.
Collapse
Affiliation(s)
- Rosalia I Cordo Russo
- Department of Immunology, School of Pharmacy and Biochemistry, University of Buenos Aires, IDEHU-CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
10
|
Choi KY, Saravanakumar G, Park JH, Park K. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces 2011; 99:82-94. [PMID: 22079699 DOI: 10.1016/j.colsurfb.2011.10.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/13/2011] [Accepted: 10/15/2011] [Indexed: 01/01/2023]
Abstract
The therapeutic efficacy of most drugs is greatly depends on their ability to cross the cellular barrier and reach their intracellular target sites. To transport the drugs effectively through the cellular membrane and to deliver them into the intracellular environment, several interesting smart carrier systems based on both synthetic or natural polymers have been designed and developed. In recent years, hyaluronic acid (HA) has emerged as a promising candidate for intracellular delivery of various therapeutic and imaging agents because of its innate ability to recognize specific cellular receptors that overexpressed on diseased cells. The aim of this review is to highlight the significance of HA in cancer, and to explore the recent advances of HA-based drug carriers towards cancer imaging and therapeutics.
Collapse
Affiliation(s)
- Ki Young Choi
- Purdue University, Department of Biomedical Engineering, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
11
|
de Sá VK, Olivieri E, Parra ER, Ab'Saber AM, Takagaki T, Soares FA, Carraro D, Carvalho L, Capelozzi VL. Hyaluronidase splice variants are associated with histology and outcome in adenocarcinoma and squamous cell carcinoma of the lung. Hum Pathol 2011; 43:675-83. [PMID: 21992818 DOI: 10.1016/j.humpath.2011.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 11/18/2022]
Abstract
Heterogeneity of hyaluronidase (HYAL) expression has been identified in tumors and shows promise as an indicator of disease progression. The expression profile of alternatively spliced forms of HYAL was evaluated in tumors and normal lung tissue from 69 resected tumors of patients with adenocarcinomas and squamous cell carcinomas. HYAL1-wild-type (wt) and variants 1 to 5, HYAL2-wt, and HYAL3-wt, and variants 1 to 3 were identified by polymerase chain reaction and direct sequencing. Different proportions of the 3 HYAL-wt and variants were expressed in tumor and normal lung tissues. HYAL1-wt was associated with a poorer prognosis and HYAL3-v1 with a better prognosis. HYAL splice variants are associated with histology and outcome, suggesting that strategies aimed at modulating their levels may be effective for lung cancer treatment.
Collapse
Affiliation(s)
- Vanessa Karen de Sá
- Department of Pathology, Universidade de Sao Paulo, 01246903 São Paulo, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guney S, Bertrand P, Jardin F, Ruminy P, Pierre Kerckaert J, Tilly H, Bastard C. Molecular characterization of 9p21 deletions shows a minimal common deleted region removing CDKN2A exon 1 and CDKN2B exon 2 in diffuse large b-cell lymphomas. Genes Chromosomes Cancer 2011; 50:715-25. [DOI: 10.1002/gcc.20893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/28/2011] [Indexed: 01/07/2023] Open
|
13
|
Nykopp TK, Rilla K, Sironen R, Tammi MI, Tammi RH, Hämäläinen K, Heikkinen AM, Komulainen M, Kosma VM, Anttila M. Expression of hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in serous ovarian carcinomas: inverse correlation between HYAL1 and hyaluronan content. BMC Cancer 2009; 9:143. [PMID: 19435493 PMCID: PMC2689240 DOI: 10.1186/1471-2407-9-143] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 05/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hyaluronan, a tumor promoting extracellular matrix polysaccharide, is elevated in malignant epithelial ovarian tumors, and associates with an unfavorable prognosis. To explore possible contributors to the accumulation of hyaluronan, we examined the expression of hyaluronan synthases (HAS1, HAS2 and HAS3) and hyaluronidases (HYAL1 and HYAL2), correlated with hyaluronidase enzyme activity hyaluronan content and HAS1-3 immunoreactivity. METHODS Normal ovaries (n = 5) and 34 serous epithelial ovarian tumors, divided into 4 groups: malignant grades 1+2 (n = 10); malignant grade 3 (n = 10); borderline (n = 4) and benign epithelial tumors (n = 10), were analyzed for mRNA by real-time RT-PCR and compared to hyaluronidase activity, hyaluronan staining, and HAS1-3 immunoreactivity in tissue sections of the same specimens. RESULTS The levels of HAS2 and HAS3 mRNA (HAS1 was low or absent), were not consistently increased in the carcinomas, and were not significantly correlated with HAS protein or hyaluronan accumulation in individual samples. Instead, the median of HYAL1 mRNA level was 69% lower in grade 3 serous ovarian cancers compared to normal ovaries (P = 0.01). The expression of HYAL1, but not HYAL2, significantly correlated with the enzymatic activity of tissue hyaluronidases (r = 0.5; P = 0.006). An inverse correlation was noted between HYAL1 mRNA and the intensity of hyaluronan staining of the corresponding tissue sections (r = -0.4; P = 0.025). CONCLUSION The results indicate that in serous epithelial ovarian malignancies HAS expression is not consistently elevated but HYAL1 expression is significantly reduced and correlates with the accumulation of hyaluronan. (233 words).
Collapse
Affiliation(s)
- Timo K Nykopp
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Kuopio and Kuopio University Hospital, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kaessler A, Nourrisson MR, Duflos M, Jose J. Indole carboxamides inhibit bovine testes hyaluronidase at pH 7.0 and indole acetamides activate the enzyme at pH 3.5 by different mechanisms. J Enzyme Inhib Med Chem 2008; 23:719-27. [DOI: 10.1080/14756360802208152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Andre Kaessler
- Bioanalytics, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Marie-Renee Nourrisson
- Department of Pharmacochemistry, BioCiT UPRES EA1155, Faculty of Pharmacy, Nantes University, Nantes Atlantique Universities, 1 rue Gaston Veil, Nantes Cedex F-44000, France
| | - Muriel Duflos
- Department of Pharmacochemistry, BioCiT UPRES EA1155, Faculty of Pharmacy, Nantes University, Nantes Atlantique Universities, 1 rue Gaston Veil, Nantes Cedex F-44000, France
| | - Joachim Jose
- Bioanalytics, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf 40225, Germany
| |
Collapse
|
15
|
de Sá VK, Canavez FC, Silva IA, Srougi M, Leite KRM. Isoforms of hyaluronidases can be a predictor of a prostate cancer of good prognosis. Urol Oncol 2008; 27:377-81. [PMID: 18639473 DOI: 10.1016/j.urolonc.2008.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/11/2008] [Accepted: 04/17/2008] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Hyaluronidases (HAases) are enzymes related to cancer progression. Isoforms of HAases have been described as products of alternative splicing responsible for differences in enzyme activity. The heterogeneity of HAase expression has been identified in tumors and could be related to the differences in their biological behavior. METHODS Thirty-seven patients subjected to radical prostatectomy for prostate cancer were divided into 2 groups for the analyses: Low (< or =6-18) and high (> or =7-19) Gleason score and tumor behavior; recurrence 15 and nonrecurrence 22, mean follow-up 52.6 months. CONCLUSION A profile of HAase related to low Gleason score and non-tumor recurrence was characterized by expression of HYAL3-v1, HYAL1-v3, and HYAL3-v2. More studies should be made in order to confirm with larger series.
Collapse
Affiliation(s)
- Vanessa K de Sá
- Laboratory of Medical Investigation-LIM55 Medical School, Urology Department, São Paulo University, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
16
|
Simpson MA, Lokeshwar VB. Hyaluronan and hyaluronidase in genitourinary tumors. FRONT BIOSCI-LANDMRK 2008; 13:5664-80. [PMID: 18508614 DOI: 10.2741/3108] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genitourinary cancers are the most frequently diagnosed cancers in men and the fifth most common in women. Management of disease through accurate and cost effective early diagnostic markers, as well as identification of valid prognostic indicators, has contributed significantly to improved treatment outcomes. In this review, we will discuss the function, regulation and clinical utility of hyaluronan (HA), genes encoding its metabolic enzymes and receptors that mediate its cellular effects. Specific HA synthase (HAS) and hyaluronidase (HAase) genes encode the enzymes that produce HA polymers and oligosaccharides, respectively. Differential effects of these enzymes in progression of genitourinary tumors are determined by the relative balance between HAS and HAase levels, as well as the distribution of receptors. The genes are regulated in a complex fashion at the transcriptional and post-translational levels, but also by epigenetic events, alternative mRNA splicing, and subcellular localization. Importantly, the major tumor-derived HAase enzyme, HYAL-1, either alone or together with HA, is an accurate diagnostic and prognostic marker for genitourinary tumors.
Collapse
Affiliation(s)
- Melanie A Simpson
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA
| | | |
Collapse
|
17
|
Lokeshwar VB, Selzer MG. Hyalurondiase: both a tumor promoter and suppressor. Semin Cancer Biol 2008; 18:281-7. [PMID: 18448355 DOI: 10.1016/j.semcancer.2008.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 03/19/2008] [Indexed: 11/26/2022]
Abstract
Originally termed as the "spreading factor", hyaluronidases (HAases) are present in a variety of toxins and venoms. For example, HAase is the virulent factor of beta-hemolytic Streptococci and it is also present in the venoms of snake, bee, wasp, scorpion, etc, where it aids in the spread of these venoms in the body. In mammals, testicular HAase present in the sperm acrosome is necessary for the fertilization of the ovum. Despite a lot of work on bacterial, invertebrate and testicular HAases, a connection between HAase and cancer was unequivocally established just over a decade ago and the functional significance of HAases in cancer was demonstrated just about a year ago. In this part of the review, we will focus on the recent advances in our understanding of the role of HAases in cancer.
Collapse
Affiliation(s)
- Vinata B Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL 33101, USA.
| | | |
Collapse
|
18
|
Almire C, Bertrand P, Ruminy P, Maingonnat C, Wlodarska I, Martín-Subero JI, Siebert R, Tilly H, Bastard C. PVRL2 is translocated to the TRA@ locus in t(14;19)(q11;q13)-positive peripheral T-cell lymphomas. Genes Chromosomes Cancer 2007; 46:1011-8. [PMID: 17696193 DOI: 10.1002/gcc.20490] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Very few recurrent chromosomal abnormalities have been identified in T-cell non-Hodgkin lymphomas. These involve the TRA@/TRD@ gene at chromosome band 14q11 in up to 15% of cases. We recently reported a novel and recurrent translocation, t(14;19)(q11;q13), in peripheral T-cell lymphoma (PTCL). Fluorescence in situ hybridization analysis performed in three cases suggested an involvement of the TRA@/TRD@ locus at 14q11 and of a region telomeric to BCL3 on 19q13. We now report the molecular cloning of these translocations. Sequence analysis confirmed the involvement of the TRA@/TRD@ and indicated that the breakpoints were located mainly in the TRAJ region. On chromosome 19, our results revealed a new clustering of breakpoints outside the region involved in t(14;19)(q32;q13)-positive B-cell malignancies. Remarkably, all three breaks were located downstream or within the PVRL2 gene, in a small 10.3 kb interval, suggesting a nonrandom location of the breakpoints. For two patients, a high mRNA expression of both PVRL2 and BCL3 was found. In conclusion, we identified PVRL2 as a new recurrent partner gene of the TRA@ locus in PTCL. These results suggest that both BCL3 and PVRL2 may participate in the pathogenesis of these PTCLs, but further studies should be undertaken to investigate the precise role of these genes.
Collapse
Affiliation(s)
- Carole Almire
- Groupe d'Etude des Proliférations Lymphoides (GPL), European Institute for Peptides Research (IFRMP23), Centre Henri Becquerel, Rouen, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Deletions of the 3p21.3 region are a frequent and early event in the formation of lung, breast, kidney and other cancers. Intense investigation of allelic losses and the discovery of overlapping homozygous deletions in lung and breast tumour-cell lines have defined a minimal critical 120 kb deletion region containing eight genes and likely to harbor one or more tumour-suppressor genes (TSGs). The candidate genes are HYAL2, FUS1, Ras-associated factor 1 (RASSF1), BLU/ZMYND10, NPR2L, 101F6, PL6 and CACNA2D2. Recent research indicates that several of these genes can suppress the growth of lung and other tumour cells. Furthermore, some genes (RASSF1A and BLU/ZMYND10) are very frequently inactivated by non-classical mechanisms such as promoter hypermethylation resulting in loss of expression. These data indicate that the 120 kb critical deletion region at 3p21.3 may represent a TSG cluster with preferential inactivation of particular genes depending on tumour type. The eight genes within this region and their potential role in cancer will be the focus of this review.
Collapse
Affiliation(s)
- L B Hesson
- Department of Medical and Molecular Genetics, MRC Protein Phosphorylation Unit, College of Life Sciences, Sir James Black Centre, Dow Street, University of Dundee, Dundee, UK.
| | | | | |
Collapse
|
20
|
Kyoda K. Is low-HYA value in aggressive NHL patients an index of a better clinical course? Int J Cancer 2007; 120:718. [PMID: 17096331 DOI: 10.1002/ijc.22308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Bertrand P, Bastard C, Maingonnat C, Jardin F, Maisonneuve C, Courel MN, Ruminy P, Picquenot JM, Tilly H. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia 2007; 21:515-23. [PMID: 17230227 DOI: 10.1038/sj.leu.2404529] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosomal translocations joining the immunoglobulin (IG) and MYC genes have been extensively reported in Burkitt's and non-Burkitt's lymphomas but data concerning MYC rearrangements with non-IG partners are scarce. In this study, 8q24 breakpoints from 17 B-cell lymphomas involving non-IG loci were mapped by fluorescence in situ hybridization (FISH). In seven cases the breakpoint was inside a small region encompassing MYC: in one t(7;8)(p12;q24) and two t(3;8)(q27;q24), it was telomeric to MYC whereas in four cases, one t(2;8)(p15;q24) and three t(8;9)(q24;p13) it was located in a 85 kb region encompassing MYC. In these seven cases, partner regions identified by FISH contained genes known to be involved in lymphomagenesis, namely BCL6, BCL11A, PAX5 and IKAROS. Breakpoints were cloned in two t(8;9)(q24;p13), 2.5 and 7 kb downstream from MYC and several hundred kb 5' to PAX5 on chromosome 9, joining MYC to ZCCHC7 and to ZBTB5 exon 2, two genes encoding zinc-finger proteins. In these seven cases, MYC expression measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR) was significantly higher when compared to that of patients without 8q24 rearrangement (P=0.006). These results suggest that these rearrangements are the consequence of a non-random process targeting MYC together with non-IG genes involved in lymphocyte differentiation and lymphoma progression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Base Sequence
- Burkitt Lymphoma/genetics
- Carrier Proteins/genetics
- Cell Transformation, Neoplastic/genetics
- Chromosome Breakage
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 2/ultrastructure
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 3/ultrastructure
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Chromosomes, Human, Pair 9/genetics
- Chromosomes, Human, Pair 9/ultrastructure
- DNA-Binding Proteins/genetics
- Female
- Genes, myc
- Humans
- Ikaros Transcription Factor/genetics
- In Situ Hybridization, Fluorescence
- Karyotyping
- Lymphoma, B-Cell/genetics
- Male
- Middle Aged
- Molecular Sequence Data
- Nuclear Proteins/genetics
- PAX5 Transcription Factor/genetics
- Proto-Oncogene Proteins c-bcl-6
- Repressor Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- P Bertrand
- Groupe d'Etude des Proliférations Lymphoïdes, Centre Henri Becquerel, INSERM U614, IFRMP23, Rouen, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Glycosaminoglycans are unbranched polysaccharides composed of repeating units of alternating uronic acids and amino sugars. Most glycosaminoglycans are covalently attached to core proteins to form proteoglycans. Posttranslational modifications result in specific motifs that bind to a large variety of ligands, thus regulating growth factor signaling, cellular behavior, inflammation, angiogenesis, and the proteolytic environment. Dysregulated expression of glycosaminoglycans is present in cancer and reported to correlate with clinical prognosis in several malignant neoplasms. Recent knowledge on the biological roles of these molecules in cancer biology, tumor angiogenesis, and metastasis has promoted the development of drugs targeting them. Pharmaceutical approaches include the use of chemically modified heparins and glycosaminoglycans with defined structures, combination of inhibitors of glycosaminoglycan biosynthesis and polyamine depletion, and biologically active glycosaminoglycan-binding peptides. In addition, glycosaminoglycans are used as tumor-specific delivery and targeting vehicles for toxins and chemotherapeutics. Encouraging results in animal studies and clinical trials show the clinical relevance of glycosaminoglycan-based drugs and the use of glycosaminoglycans as therapeutic targets.
Collapse
Affiliation(s)
- George W Yip
- Department of Anatomy, National University of Singapore, Singapore
| | | | | |
Collapse
|
23
|
Lyng H, Brøvig RS, Svendsrud DH, Holm R, Kaalhus O, Knutstad K, Oksefjell H, Sundfør K, Kristensen GB, Stokke T. Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genomics 2006; 7:268. [PMID: 17054779 PMCID: PMC1626467 DOI: 10.1186/1471-2164-7-268] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/20/2006] [Indexed: 12/26/2022] Open
Abstract
Background A better understanding of the development of metastatic disease and the identification of molecular markers for cancer spread would be useful for the design of improved treatment strategies. This study was conducted to identify gene expressions associated with metastatic phenotypes of locally advanced cervical carcinomas and investigate whether gains or losses of these genes could play a role in regulation of the transcripts. Gene expressions and copy number changes were determined in primary tumors from 29 patients with and 19 without diagnosed lymph node metastases by use of cDNA and genomic microarray techniques, respectively. Results Thirty-one genes that differed in expression between the node positive and negative tumors were identified. Expressions of eight of these genes (MRPL11, CKS2, PDK2, MRPS23, MSN, TBX3, KLF3, LSM3) correlated with progression free survival in univariate analysis and were therefore more strongly associated with metastatic phenotypes than the others. Immunohistochemistry data of CKS2 and MSN showed similar relationships to survival. The prognostic genes clustered into two groups, suggesting two major metastatic phenotypes. One group was associated with rapid proliferation, oxidative phosphorylation, invasiveness, and tumor size (MRPS23, MRPL11, CKS2, LSM3, TBX3, MSN) and another with hypoxia tolerance, anaerobic metabolism, and high lactate content (PDK2, KLF3). Multivariate analysis identified tumor volume and PDK2 expression as independent prognostic variables. Gene copy number changes of the differentially expressed genes were not frequent, but correlated with the expression level for seven genes, including MRPS23, MSN, and LSM3. Conclusion Gene expressions associated with known metastatic phenotypes of cervical cancers were identified. Our findings may indicate molecular mechanisms underlying development of these phenotypes and be useful as markers of cancer spread. Gains or losses of the genes may be involved in development of the metastatic phenotypes in some cases, but other mechanisms for transcriptional regulation are probably important in the majority of tumors.
Collapse
Affiliation(s)
- Heidi Lyng
- Department of Radiation Biology, Health Enterprise Rikshospitalet – Radiumhospitalet, Oslo, Norway
| | - Runar S Brøvig
- Department of Radiation Biology, Health Enterprise Rikshospitalet – Radiumhospitalet, Oslo, Norway
| | - Debbie H Svendsrud
- Department of Radiation Biology, Health Enterprise Rikshospitalet – Radiumhospitalet, Oslo, Norway
| | - Ruth Holm
- Department of Pathology, Health Enterprise Rikshospitalet – Radiumhospitalet, Oslo, Norway
| | - Olav Kaalhus
- Department of Radiation Biology, Health Enterprise Rikshospitalet – Radiumhospitalet, Oslo, Norway
| | - Kjetil Knutstad
- Department of Roentgenology, Health Enterprise Rikshospitalet – Radiumhospitalet, Oslo, Norway
| | - Halldis Oksefjell
- Department of Gynecologic Oncology, Health Enterprise Rikshospitalet – Radiumhospitalet, Oslo, Norway
| | - Kolbein Sundfør
- Department of Gynecologic Oncology, Health Enterprise Rikshospitalet – Radiumhospitalet, Oslo, Norway
| | - Gunnar B Kristensen
- Department of Gynecologic Oncology, Health Enterprise Rikshospitalet – Radiumhospitalet, Oslo, Norway
- Department of Medical Informatics, University of Oslo, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Health Enterprise Rikshospitalet – Radiumhospitalet, Oslo, Norway
| |
Collapse
|
24
|
Wegrowski Y, Maquart FX. Chondroitin Sulfate Proteoglycans in Tumor Progression. CHONDROITIN SULFATE: STRUCTURE, ROLE AND PHARMACOLOGICAL ACTIVITY 2006; 53:297-321. [PMID: 17239772 DOI: 10.1016/s1054-3589(05)53014-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yanusz Wegrowski
- CNRS UMR 6198, Faculty of Medicine, IFR-53, 51095 Reims Cedex, France
| | | |
Collapse
|
25
|
Lokeshwar VB, Cerwinka WH, Isoyama T, Lokeshwar BL. HYAL1 hyaluronidase in prostate cancer: a tumor promoter and suppressor. Cancer Res 2005; 65:7782-9. [PMID: 16140946 DOI: 10.1158/0008-5472.can-05-1022] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyaluronidases degrade hyaluronic acid, which promotes metastasis. HYAL1 type hyaluronidase is an independent prognostic indicator of prostate cancer progression and a biomarker for bladder cancer. However, it is controversial whether hyaluronidase (e.g., HYAL1) functions as a tumor promoter or as a suppressor. We stably transfected prostate cancer cells, DU145 and PC-3 ML, with HYAL1-sense (HYAL1-S), HYAL1-antisense (HYAL1-AS), or vector DNA. HYAL1-AS transfectants were not generated for PC-3 ML because it expresses little HYAL1. HYAL1-S transfectants produced < or = 42 milliunits (moderate overproducers) or > or = 80 milliunits hyaluronidase activity (high producers). HYAL1-AS transfectants produced <10% hyaluronidase activity when compared with vector transfectants (18-24 milliunits). Both blocking HYAL1 expression and high HYAL1 production resulted in a 4- to 5-fold decrease in prostate cancer cell proliferation. HYAL1-AS transfectants had a G2-M block due to decreased cyclin B1, cdc25c, and cdc2/p34 expression and cdc2/p34 kinase activity. High HYAL1 producers had a 3-fold increase in apoptotic activity and mitochondrial depolarization when compared with vector transfectants and expressed activated proapoptotic protein WOX1. Blocking HYAL1 expression inhibited tumor growth by 4- to 7-fold, whereas high HYAL1 producing transfectants either did not form tumors (DU145) or grew 3.5-fold slower (PC-3 ML). Whereas vector and moderate HYAL1 producers generated muscle and blood vessel infiltrating tumors, HYAL1-AS tumors were benign and contained smaller capillaries. Specimens of high HYAL1 producers were 99% free of tumor cells. This study shows that, depending on the concentration, HYAL1 functions as a tumor promoter and as a suppressor and provides a basis for anti-hyaluronidase and high-hyaluronidase treatments for cancer.
Collapse
Affiliation(s)
- Vinata B Lokeshwar
- Department of Urology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA.
| | | | | | | |
Collapse
|