1
|
Diaz-Perez JA, Kerr DA. Gene of the month: DDIT3. J Clin Pathol 2024; 77:211-216. [PMID: 38053287 DOI: 10.1136/jcp-2023-208963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
DNA damage-inducible transcript 3 (DDIT3) gene, mapped to the human chromosome 12q13.3, encodes a protein that belongs to the CCAAT/enhancer-binding protein family of transcription factors. DDIT3 is involved in the proliferative control that responds to endoplasmic reticulum stress in normal conditions, dimerising other transcription factors with basic leucine zipper (bZIP) structural motifs. DDIT3 plays a significant role during cell differentiation, especially adipogenesis, arresting the maturation of adipoblasts. In disease, FUS/EWSR1::DDIT3 fusion is the pathogenic event that drives the development of myxoid liposarcoma. The amplification of DDIT3 in other adipocytic neoplasms mediates the presence of adipoblast-like elements. Another fusion, GLI1::DDIT3, has rarely been documented in other tumours. This paper reviews the structure and function of DDIT3, its role in disease-particularly cancer-and its use and pitfalls in diagnostic testing, including immunohistochemistry as a tissue-based marker.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
2
|
Benavides-Huerto MA, Páramo-Figueroa L, Moreno-Páramo D, Lagunas-Rangel FA. Primary Orbital Myxoid Liposarcoma. Med Sci (Basel) 2023; 11:72. [PMID: 37987327 PMCID: PMC10660850 DOI: 10.3390/medsci11040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Although liposarcoma is the most prevalent soft tissue sarcoma in adults, head and neck liposarcomas are rare and account for less than 5% of all liposarcomas. The primary orbital location is even more exceptional, with fewer than 100 cases documented in the medical literature. Given the scarcity of cases of orbital liposarcoma and the limited familiarity of physicians and pathologists with this pathology, there is an increased risk of non-diagnosis or misdiagnosis, which may lead to inappropriate patient management. To address these challenges, we present a case of primary orbital myxoid liposarcoma and subsequently discuss the primary findings of this case based on the evidence documented in the medical literature. This comprehensive text is designed to serve as a valuable resource for healthcare professionals and pathologists, with the goal of promoting both clinical suspicion and accurate diagnosis and treatment of this rare condition in future cases.
Collapse
Affiliation(s)
| | | | | | - Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
- Department of Surgical Sciences, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
3
|
Ren Y, Guo W, Qiao B. Abnormal expression of CEBPB promotes the progression of renal cell carcinoma through regulating the generation of IL-6. Heliyon 2023; 9:e20175. [PMID: 37767481 PMCID: PMC10520310 DOI: 10.1016/j.heliyon.2023.e20175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Background The CCAAT/enhancer-binding protein beta (CEBPB), a transcription factor regulating immune and inflammatory responses, has been implicated in the pathogenesis of various malignancies. However, its specific regulatory mechanism in renal cell carcinoma (RCC) remains poorly understood. Methods The expression of CEBPB was detected in RCC cells and tissues using qRT-PCR, western blotting and immunohistochemistry. ELISA assay was used to detect the immune factors regulated by CEBPB in supernatants. Additionally, western blotting was employed to measure the phosphorylation level of STAT3 and the expression levels of its downstream target genes. Results CEBPB was found to be overexpressed in both RCC tissues and cell lines, and its higher expression was associated with a lower survival rate. In RCC cells, CEBPB enhances the expression of IL6, consequently promoting the phosphorylation of STAT3 and the expression of its downstream target genes. This mechanism ultimately facilitates tumor progression. Conclusions The dysregulated expression of CEBPB facilitates RCC progression through the IL6/STAT3 pathway. CEBPB is a potential diagnostic markers and a novel effective therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Yaoqiang Ren
- Departments of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenke Guo
- Department of Thyroid Surgery, Fenyang Hospital of Shanxi Province, Lüliang, Shanxi, China
| | - Baoping Qiao
- Departments of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Fusion protein-driven IGF-IR/PI3K/AKT signals deregulate Hippo pathway promoting oncogenic cooperation of YAP1 and FUS-DDIT3 in myxoid liposarcoma. Oncogenesis 2022; 11:20. [PMID: 35459264 PMCID: PMC9033823 DOI: 10.1038/s41389-022-00394-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Myxoid liposarcoma (MLS) represents a common subtype of liposarcoma molecularly characterized by a recurrent chromosomal translocation that generates a chimeric FUS-DDIT3 fusion gene. The FUS-DDIT3 oncoprotein has been shown to be crucial in MLS pathogenesis. Acting as a transcriptional dysregulator, FUS-DDIT3 stimulates proliferation and interferes with adipogenic differentiation. As the fusion protein represents a therapeutically challenging target, a profound understanding of MLS biology is elementary to uncover FUS-DDIT3-dependent molecular vulnerabilities. Recently, a specific reliance on the Hippo pathway effector and transcriptional co-regulator YAP1 was detected in MLS; however, details on the molecular mechanism of FUS-DDIT3-dependent YAP1 activation, and YAP1´s precise mode of action remain unclear. In elaborate in vitro studies, employing RNA interference-based approaches, small-molecule inhibitors, and stimulation experiments with IGF-II, we show that FUS-DDIT3-driven IGF-IR/PI3K/AKT signaling promotes stability and nuclear accumulation of YAP1 via deregulation of the Hippo pathway. Co-immunoprecipitation and proximity ligation assays revealed nuclear co-localization of FUS-DDIT3 and YAP1/TEAD in FUS-DDIT3-expressing mesenchymal stem cells and MLS cell lines. Transcriptome sequencing of MLS cells demonstrated that FUS-DDIT3 and YAP1 co-regulate oncogenic gene signatures related to proliferation, cell cycle progression, apoptosis, and adipogenesis. In adipogenic differentiation assays, we show that YAP1 critically contributes to FUS-DDIT3-mediated adipogenic differentiation arrest. Taken together, our study provides mechanistic insights into a complex FUS-DDIT3-driven network involving IGF-IR/PI3K/AKT signals acting on Hippo/YAP1, and uncovers substantial cooperative effects of YAP1 and FUS-DDIT3 in the pathogenesis of MLS.
Collapse
|
5
|
Dai X, Cheng H, Chen X, Li T, Zhang J, Jin G, Cai D, Huang Z. FOXA1 is Prognostic of Triple Negative Breast Cancers by Transcriptionally Suppressing SOD2 and IL6. Int J Biol Sci 2019; 15:1030-1041. [PMID: 31182923 PMCID: PMC6535797 DOI: 10.7150/ijbs.31009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Having markers feasible for breast cancer subtyping, especially for triple negative breast cancer identification is crucial for improving the treatment outcome of such cancers. Here we explore the role of FOXA1 in characterizing triple negative breast cancers and the driving mechanisms. Through in vitro examination of the expression pattern at both transcriptional and translational levels, patient relapse-free survival analysis, immunohistochemistry staining and prediction power assessment using clinical samples, as well as functional studies, we systematically compared the role of FOXA1 in identifying triple negative and luminal type of breast cancers and explored the mechanisms driving such functionalities. We report that FOXA1 under-expression can lead to increased malignancy and cancer stemness, and is a subtyping marker identifying triple negative breast cancers rather than the luminal subtype by transcriptionally suppressing the expression of SOD2 and IL6. We are the first to systematically address the significance of FOXA1 in triple negative breast cancer identification as a biomarker and elucidate the mechanism at the molecular level, through a sequential bioinformatics analysis and experimental validations both in vitro and in clinics. Our discoveries compliment the current biomarker modalities once verified using larger clinical cohorts and improve the precision on characterizing breast cancer heterogeneity.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hongye Cheng
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao Chen
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ting Li
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jia Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Guoyin Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Abstract
Senescence, a state of permanent cell cycle arrest, can be induced by DNA damage. This process, which was initially described in fibroblasts, is now recognized to occur in stem cells. It has been well characterized in cell lines, but there is currently very limited data available on human senescence in vivo. We recently reported that the expression of transposable elements (TE), including endogenous retroviruses, was up-regulated along with inflammatory genes in human senescent hematopoietic stem and progenitor cells (HSPCs) in vivo. The mechanism of regulation of TE expression is not completely understood, but changes in DNA methylation and chromatin modifications are known to alter their expression. In order to elucidate the molecular mechanisms for TE up-regulation after senescence of HSPCs, we employed whole-genome bisulfite sequencing in paired senescent and active human HSPCs in vivo from healthy subjects. We found that the senescent HSPCs exhibited hypomethylated regions in the genome, which were enriched for TEs. This is the first report characterizing the methylome of senescent human HSPCs.
Collapse
|
7
|
Casadei L, Calore F, Creighton CJ, Guescini M, Batte K, Iwenofu OH, Zewdu A, Braggio DA, Bill KL, Fadda P, Lovat F, Lopez G, Gasparini P, Chen JL, Kladney RD, Leone G, Lev D, Croce CM, Pollock RE. Exosome-Derived miR-25-3p and miR-92a-3p Stimulate Liposarcoma Progression. Cancer Res 2017; 77:3846-3856. [PMID: 28588009 DOI: 10.1158/0008-5472.can-16-2984] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/23/2017] [Accepted: 05/24/2017] [Indexed: 11/16/2022]
Abstract
Despite the development of combined modality treatments against liposarcoma in recent years, a significant proportion of patients respond only modestly to such approaches, possibly contributing to local or distant recurrence. Early detection of recurrent or metastatic disease could improve patient prognosis by triggering earlier clinical intervention. However, useful biomarkers for such purposes are lacking. Using both patient plasma samples and cell lines, we demonstrate here that miR-25-3p and miR-92a-3p are secreted by liposarcoma cells through extracellular vesicles and may be useful as potential biomarkers of disease. Both miR-25-3p and miR-92a-3p stimulated secretion of proinflammatory cytokine IL6 from tumor-associated macrophages in a TLR7/8-dependent manner, which in turn promoted liposarcoma cell proliferation, invasion, and metastasis via this interaction with the surrounding microenvironment. Our findings provide novel and previously unreported insight into liposarcoma progression, identifying communication between liposarcoma cells and their microenvironment as a process critically involved in liposarcoma progression. This study establishes the possibility that the pattern of circulating miRNAs may identify recurrence prior to radiological detectability while providing insight into disease outcome and as a possible approach to monitor treatment efficacy. Cancer Res; 77(14); 3846-56. ©2017 AACR.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Federica Calore
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Houston, Texas
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Kara Batte
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - O Hans Iwenofu
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Abeba Zewdu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Danielle A Braggio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kate Lynn Bill
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Paolo Fadda
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Francesca Lovat
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gonzalo Lopez
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - James L Chen
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Raleigh D Kladney
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Molecular Genetics, College of Biological Sciences, The Ohio State University (OSU), Columbus, Ohio.,Comprehensive Cancer Center, Columbus, Ohio
| | - Gustavo Leone
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Molecular Genetics, College of Biological Sciences, The Ohio State University (OSU), Columbus, Ohio.,Comprehensive Cancer Center, Columbus, Ohio
| | - Dina Lev
- Department of Surgery 'B', Sheba Medical Center and The Tel Aviv University, Tel Aviv, Israel
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. .,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
8
|
Qi Y, Hu Y, Yang H, Zhuang R, Hou Y, Tong H, Feng Y, Huang Y, Jiang Q, Ji Q, Gu Q, Zhang Z, Tang X, Lu W, Zhou Y. Establishing a patient-derived xenograft model of human myxoid and round-cell liposarcoma. Oncotarget 2017; 8:54320-54330. [PMID: 28903344 PMCID: PMC5589583 DOI: 10.18632/oncotarget.17352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
Abstract
Myxoid and round cell liposarcoma (MRCL) is a common type of soft tissue sarcoma. The lack of patient-derived tumor xenograft models that are highly consistent with human tumors has limited the drug experiments for this disease. Hence, we aimed to develop and validate a patient-derived tumor xenograft model of MRCL. A tumor sample from a patient with MRCL was implanted subcutaneously in an immunodeficient mouse shortly after resection to establish a patient-derived tumor xenograft model. After the tumor grew, it was resected and divided into several pieces for re-implantation and tumor passage. After passage 1, 3, and 5 (i.e. P1, P3, and P5, respectively), tumor morphology and the presence of the FUS-DDIT3 gene fusion were consistent with those of the original patient tumor. Short tandem repeat analysis demonstrated consistency from P1 to P5. Whole exome sequencing also showed that P5 tumors harbored many of the same gene mutations present in the original patient tumor, one of which was a PIK3CA mutation. PF-04691502 significantly inhibited tumor growth in P5 models (tumor volumes of 492.62 ± 652.80 vs 3303.81 ± 1480.79 mm3, P < 0.001, in treated vs control tumors, respectively) after 29 days of treatment. In conclusion, we have successfully established the first patient-derived xenograft model of MRCL. In addition to surgery, PI3K/mTOR inhibitors could potentially be used for the treatment of PIK3CA-positive MRCLs.
Collapse
Affiliation(s)
- Yiming Qi
- Departments of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Hu
- Departments of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Yang
- Departments of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongyuan Zhuang
- Departments of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Departments of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanxing Tong
- Departments of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Feng
- Departments of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Huang
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quan Jiang
- Departments of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qunsheng Ji
- Oncology BU, Research Service Division, WuXi AppTec, Shanghai, China
| | - Qingyang Gu
- Oncology BU, Research Service Division, WuXi AppTec, Shanghai, China
| | - Zhixiang Zhang
- Oncology BU, Research Service Division, WuXi AppTec, Shanghai, China
| | - Xuzhen Tang
- Oncology BU, Research Service Division, WuXi AppTec, Shanghai, China
| | - Weiqi Lu
- Departments of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhong Zhou
- Departments of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Urakami K, Shimoda Y, Ohshima K, Nagashima T, Serizawa M, Tanabe T, Saito J, Usui T, Watanabe Y, Naruoka A, Ohnami S, Ohnami S, Mochizuki T, Kusuhara M, Yamaguchi K. Next generation sequencing approach for detecting 491 fusion genes from human cancer. Biomed Res 2016; 37:51-62. [PMID: 26912140 DOI: 10.2220/biomedres.37.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Next-generation DNA sequencing (NGS) of the genomes of cancer cells is contributing to new discoveries that illuminate the mechanisms of tumorigenesis. To this end, the International Cancer Genome Consortium and The Cancer Genome Atlas are investigating novel alterations of genes that will define the pathways and mechanisms of the development and growth of cancers. These efforts contribute to the development of innovative pharmaceuticals as well as to the introduction of genome sequencing as a component of personalized medicine. In particular, chromosomal translocations that fuse coding sequences serve as important pharmaceutical targets and diagnostic markers given their association with tumorigenesis. Although increasing numbers of fusion genes are being discovered using NGS, the methodology used to identify such fusion genes is complicated, expensive, and requires relatively large samples. Here, to address these problems, we describe the design and development of a panel of 491 fusion genes that performed well in the analysis of cultured human cancer cell lines and 600 clinical tumor specimens.
Collapse
Affiliation(s)
- Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Safavi S, Järnum S, Vannas C, Udhane S, Jonasson E, Tomic TT, Grundevik P, Fagman H, Hansson M, Kalender Z, Jauhiainen A, Dolatabadi S, Stratford EW, Myklebost O, Eriksson M, Stenman G, Schneider-Stock R, Ståhlberg A, Åman P. HSP90 inhibition blocks ERBB3 and RET phosphorylation in myxoid/round cell liposarcoma and causes massive cell death in vitro and in vivo. Oncotarget 2016; 7:433-45. [PMID: 26595521 PMCID: PMC4808009 DOI: 10.18632/oncotarget.6336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022] Open
Abstract
Myxoid sarcoma (MLS) is one of the most common types of malignant soft tissue tumors. MLS is characterized by the FUS-DDIT3 or EWSR1-DDIT3 fusion oncogenes that encode abnormal transcription factors. The receptor tyrosine kinase (RTK) encoding RET was previously identified as a putative downstream target gene to FUS-DDIT3 and here we show that cultured MLS cells expressed phosphorylated RET together with its ligand Persephin. Treatment with RET specific kinase inhibitor Vandetanib failed to reduce RET phosphorylation and inhibit cell growth, suggesting that other RTKs may phosphorylate RET. A screening pointed out EGFR and ERBB3 as the strongest expressed phosphorylated RTKs in MLS cells. We show that ERBB3 formed nuclear and cytoplasmic complexes with RET and both RTKs were previously reported to form complexes with EGFR. The formation of RTK hetero complexes could explain the observed Vandetanib resistence in MLS. EGFR and ERBB3 are clients of HSP90 that help complex formation and RTK activation. Treatment of cultured MLS cells with HSP90 inhibitor 17-DMAG, caused loss of RET and ERBB3 phosphorylation and lead to rapid cell death. Treatment of MLS xenograft carrying Nude mice resulted in massive necrosis, rupture of capillaries and hemorrhages in tumor tissues. We conclude that complex formation between RET and other RTKs may cause RTK inhibitor resistance. HSP90 inhibitors can overcome this resistance and are thus promising drugs for treatment of MLS/RCLS.
Collapse
Affiliation(s)
- Setareh Safavi
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Järnum
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christoffer Vannas
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sameer Udhane
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emma Jonasson
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tajana Tesan Tomic
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Grundevik
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Hansson
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zeynep Kalender
- Mathematical Statistics, Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, Göteborg, Sweden
| | - Alexandra Jauhiainen
- Mathematical Statistics, Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, Göteborg, Sweden
| | - Soheila Dolatabadi
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Wessel Stratford
- Department of Tumour Biology, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Ola Myklebost
- Department of Tumour Biology, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Mikael Eriksson
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | - Göran Stenman
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University of Erlangen-Nürnberg, Ulmenweg Erlangen, Germany
| | - Anders Ståhlberg
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Åman P, Dolatabadi S, Svec D, Jonasson E, Safavi S, Andersson D, Grundevik P, Thomsen C, Ståhlberg A. Regulatory mechanisms, expression levels and proliferation effects of the FUS-DDIT3 fusion oncogene in liposarcoma. J Pathol 2016; 238:689-99. [PMID: 26865464 DOI: 10.1002/path.4700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/06/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022]
Abstract
Fusion oncogenes are among the most common types of oncogene in human cancers. The gene rearrangements result in new combinations of regulatory elements and functional protein domains. Here we studied a subgroup of sarcomas and leukaemias characterized by the FET (FUS, EWSR1, TAF15) family of fusion oncogenes, including FUS-DDIT3 in myxoid liposarcoma (MLS). We investigated the regulatory mechanisms, expression levels and effects of FUS-DDIT3 in detail. FUS-DDIT3 showed a lower expression than normal FUS at both the mRNA and protein levels, and single-cell analysis revealed a lack of correlation between FUS-DDIT3 and FUS expression. FUS-DDIT3 transcription was regulated by the FUS promotor, while its mRNA stability depended on the DDIT3 sequence. FUS-DDIT3 protein stability was regulated by protein interactions through the FUS part, rather than the leucine zipper containing DDIT3 part. In addition, in vitro as well as in vivo FUS-DDIT3 protein expression data displayed highly variable expression levels between individual MLS cells. Combined mRNA and protein analyses at the single-cell level showed that FUS-DDIT3 protein expression was inversely correlated to the expression of cell proliferation-associated genes. We concluded that FUS-DDIT3 is uniquely regulated at the transcriptional as well as the post-translational level and that its expression level is important for MLS tumour development. The FET fusion oncogenes are potentially powerful drug targets and detailed knowledge about their regulation and functions may help in the development of novel treatments.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Half-Life
- Humans
- Liposarcoma, Myxoid/genetics
- Liposarcoma, Myxoid/metabolism
- Liposarcoma, Myxoid/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Processing, Post-Translational
- Protein Stability
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Pierre Åman
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Soheila Dolatabadi
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - David Svec
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Emma Jonasson
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Setareh Safavi
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Daniel Andersson
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Pernilla Grundevik
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Christer Thomsen
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| |
Collapse
|
12
|
Guan Z, Yu X, Wang H, Wang H, Zhang J, Li G, Cao J, Teng L. Advances in the targeted therapy of liposarcoma. Onco Targets Ther 2015; 8:125-36. [PMID: 25609980 PMCID: PMC4293924 DOI: 10.2147/ott.s72722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Liposarcoma (LPS) is the most common type of soft-tissue sarcoma. Complete surgical resection is the only curative means for localized disease; however, both radiation and conventional cytotoxic chemotherapy remain controversial for metastatic or unresectable disease. An increasing number of trials with novel targeted therapy of LPS have provided encouraging data during recent years. This review will provide an overview of the advances in our understanding of LPS and summarize the results of recent trials with novel therapies targeting different genetic and molecular aberrations for different subtypes of LPS.
Collapse
Affiliation(s)
- Zhonghai Guan
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Xiongfei Yu
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Haohao Wang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Haiyong Wang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Jing Zhang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Guangliang Li
- Department of Medicine Oncology, Zhejiang Cancer Hospital, Zhejiang, People's Republic of China
| | - Jiang Cao
- Clinical Research Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
Ståhlberg A, Kåbjörn Gustafsson C, Engtröm K, Thomsen C, Dolatabadi S, Jonasson E, Li CY, Ruff D, Chen SM, Åman P. Normal and functional TP53 in genetically stable myxoid/round cell liposarcoma. PLoS One 2014; 9:e113110. [PMID: 25393000 PMCID: PMC4231113 DOI: 10.1371/journal.pone.0113110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/20/2014] [Indexed: 12/30/2022] Open
Abstract
Myxoid/round-cell liposarcoma (MLS/RCLS) is characterized by either the fusion gene FUS-DDIT3 or the less commonly occurring EWSR1-DDIT3 and most cases carry few or no additional cytogenetic changes. There are conflicting reports concerning the status and role of TP53 in MLS/RCLS. Here we analysed four MLS/RCLS derived cell lines for TP53 mutations, expression and function. Three SV40 transformed cell lines expressed normal TP53 proteins. Irradiation caused normal posttranslational modifications of TP53 and induced P21 expression in two of these cell lines. Transfection experiments showed that the FUS-DDIT3 fusion protein had no effects on irradiation induced TP53 responses. Ion Torrent AmpliSeq screening, using the Cancer Hotspot panel, showed no dysfunctional or disease associated alleles/mutations. In conclusion, our results suggest that most MLS/RCLS cases carry functional TP53 genes and this is consistent with the low numbers of secondary mutations observed in this tumor entity.
Collapse
Affiliation(s)
- Anders Ståhlberg
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Christina Kåbjörn Gustafsson
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Engtröm
- Department of Oncology, Institute of Medical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Christer Thomsen
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Soheila Dolatabadi
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Jonasson
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Chieh-Yuan Li
- Genetic, Medical and Applied Sciences division, Life Science Group, Thermo Fisher Scientific, South San Francisco, CA, United States of America
| | - David Ruff
- Genetic, Medical and Applied Sciences division, Life Science Group, Thermo Fisher Scientific, South San Francisco, CA, United States of America
| | - Shiaw-Min Chen
- Genetic, Medical and Applied Sciences division, Life Science Group, Thermo Fisher Scientific, South San Francisco, CA, United States of America
| | - Pierre Åman
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
14
|
Li J, Shan F, Xiong G, Chen X, Guan X, Wang JM, Wang WL, Xu X, Bai Y. EGF-induced C/EBPβ participates in EMT by decreasing the expression of miR-203 in esophageal squamous cell carcinoma cells. J Cell Sci 2014; 127:3735-44. [PMID: 24994936 DOI: 10.1242/jcs.148759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental program that is associated with esophageal squamous cell carcinoma (ESCC) progression and metastasis. Recently, C/EBPβ has been reported to be an EMT inducer in cancer. However, the detailed molecular mechanisms remain unclear. Here, we report for the first time, that the truncated CCAAT-enhancer-binding protein β (C/EBPβ) LIP isoform is abnormally overexpressed and correlated with cancer metastasis in clinical specimens of human ESCC. Furthermore, we demonstrate that C/EBPβ LIP mediates epithelial growth factor (EGF)-induced EMT and increases migration and invasion of esophageal cancer cells in a manner that is dependent on miR-203 inactivation. Finally, we identified miR-203 as a direct target of C/EBPβ LIP. Disruption of C/EBPβ LIP attenuated the EGF-mediated decrease in miR-203, whereas overexpression of C/EBPβ LIP alone markedly suppressed miR-203. In addition, we demonstrated that C/EBPβ LIP inhibited miR-203 transcription by directly interacting with a conserved distal regulatory element upstream of the miR-203 locus, and in doing so, orchestrated chromatin remodeling. In conclusion, our results have revealed a new regulatory mechanism that involves C/EBPβ-LIP-mediated downregulation of miR-203, which plays a key role in EMT and metastasis.
Collapse
Affiliation(s)
- Junxia Li
- Department of Medical Genetics, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Fabo Shan
- Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Gang Xiong
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Xuedan Chen
- Department of Medical Genetics, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Xingying Guan
- Department of Medical Genetics, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Lin Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Xueqing Xu
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Yun Bai
- Department of Medical Genetics, Third Military Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
15
|
Cell senescence in myxoid/round cell liposarcoma. Sarcoma 2014; 2014:208786. [PMID: 25093008 PMCID: PMC4095996 DOI: 10.1155/2014/208786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 11/18/2022] Open
Abstract
Myxoid/round cell liposarcoma (MLS/RCLS) is the second most common liposarcoma type and characterized by the fusion oncogenes FUS-DDIT3 or EWSR1-DDIT3. Previous analysis of cell cycle regulatory proteins revealed a prominent expression of G1-cyclins, cyclin dependent kinases, and their inhibitors but very few cells progressing through the G1/S boundary. Here, we extend the investigation to proteins involved in cell senescence in an immunohistochemistry based study of 17 MLS/RCLS cases. Large subpopulations of tumor cells expressed the RBL2 pocket protein and senescence associated heterochromatin 1γ and IL8 receptor β. We conclude that MLS/RCLS tissues contain major populations of senescent tumor cells and this may explain the slow growth rate of this tumor type.
Collapse
|
16
|
Rodriguez R, Tornin J, Suarez C, Astudillo A, Rubio R, Yauk C, Williams A, Rosu-Myles M, Funes JM, Boshoff C, Menendez P. Expression of FUS-CHOP fusion protein in immortalized/transformed human mesenchymal stem cells drives mixoid liposarcoma formation. Stem Cells 2014; 31:2061-72. [PMID: 23836491 DOI: 10.1002/stem.1472] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/22/2013] [Accepted: 06/08/2013] [Indexed: 12/11/2022]
Abstract
Increasing evidence supports that mesenchymal stromal/stem cells (MSCs) may represent the target cell for sarcoma development. Although different sarcomas have been modeled in mice upon expression of fusion oncogenes in MSCs, sarcomagenesis has not been successfully modeled in human MSCs (hMSCs). We report that FUS-CHOP, a hallmark fusion gene in mixoid liposarcoma (MLS), has an instructive role in lineage commitment, and its expression in hMSC sequentially immortalized/transformed with up to five oncogenic hits (p53 and Rb deficiency, hTERT over-expression, c-myc stabilization, and H-RAS(v12) mutation) drives the formation of serially transplantable MLS. This is the first model of sarcoma based on the expression of a sarcoma-associated fusion protein in hMSC, and allowed us to unravel the differentiation processes and signaling pathways altered in the MLS-initiating cells. This study will contribute to test novel therapeutic approaches and constitutes a proof-of-concept to use hMSCs as target cell for modeling other fusion gene-associated human sarcomas.
Collapse
Affiliation(s)
- Rene Rodriguez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Khan YM, Kirkham P, Barnes PJ, Adcock IM. Brd4 is essential for IL-1β-induced inflammation in human airway epithelial cells. PLoS One 2014; 9:e95051. [PMID: 24759736 PMCID: PMC3997389 DOI: 10.1371/journal.pone.0095051] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/23/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Chronic inflammation and oxidative stress are key features of chronic obstructive pulmonary disease (COPD). Oxidative stress enhances COPD inflammation under the control of the pro-inflammatory redox-sensitive transcription factor nuclear factor-kappaB (NF-κB). Histone acetylation plays a critical role in chronic inflammation and bromodomain and extra terminal (BET) proteins act as "readers" of acetylated histones. Therefore, we examined the role of BET proteins in particular Brd2 and Brd4 and their inhibitors (JQ1 and PFI-1) in oxidative stress- enhanced inflammation in human bronchial epithelial cells. METHODS Human primary epithelial (NHBE) cells and BEAS-2B cell lines were stimulated with IL-1β (inflammatory stimulus) in the presence or absence of H2O2 (oxidative stress) and the effect of pre-treatment with bromodomain inhibitors (JQ1 and PFI-1) was investigated. Pro-inflammatory mediators (CXCL8 and IL-6) were measured by ELISA and transcripts by RT-PCR. H3 and H4 acetylation and recruitment of p65 and Brd4 to the native IL-8 and IL-6 promoters was investigated using chromatin immunoprecipitation (ChIP). The impact of Brd2 and Brd4 siRNA knockdown on inflammatory mediators was also investigated. RESULT H2O2 enhanced IL1β-induced IL-6 and CXCL8 expression in NHBE and BEAS-2B cells whereas H2O2 alone did not have any affect. H3 acetylation at the IL-6 and IL-8 promoters was associated with recruitment of p65 and Brd4 proteins. Although p65 acetylation was increased this was not directly targeted by Brd4. The BET inhibitors JQ1 and PFI-1 significantly reduced IL-6 and CXCL8 expression whereas no effect was seen with the inactive enantiomer JQ1(-). Brd4, but not Brd2, knockdown markedly reduced IL-6 and CXCL8 release. JQ1 also inhibited p65 and Brd4 recruitment to the IL-6 and IL-8 promoters. CONCLUSION Oxidative stress enhanced IL1β-induced IL-6 and CXCL8 expression was significantly reduced by Brd4 inhibition. Brd4 plays an important role in the regulation of inflammatory genes and provides a potential novel anti-inflammatory target.
Collapse
Affiliation(s)
- Younis M. Khan
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Paul Kirkham
- School of Applied Sciences, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Peter J. Barnes
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M. Adcock
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Comparison of reverse transcription quantitative real-time PCR, flow cytometry, and immunohistochemistry for detection of monoclonality in lymphomas. ISRN ONCOLOGY 2014; 2014:796210. [PMID: 24649374 PMCID: PMC3932212 DOI: 10.1155/2014/796210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/24/2013] [Indexed: 11/18/2022]
Abstract
In healthy humans, 60–70% of the B lymphocytes produce kappa light chains, while the remaining cells produce lambda light chains. Malignant transformation and clonal expansion of B lymphocytes lead to an altered kappa : lambda expression ratio, which is an important diagnostic criteria of lymphomas. Here, we compared three methods for clonality determination of suspected B cell lymphomas. Tumor biopsies from 55 patients with B cell malignancies, 5 B-lymphoid tumor cell lines, and 20 biopsies from patients with lymphadenitis were analyzed by immunohistochemistry, flow cytometry, and reverse transcription quantitative real-time PCR. Clonality was determined by immunohistochemistry in 52/53 cases, flow cytometry in 30/39 cases, and reverse transcription quantitative real-time PCR in 33/55 cases. In conclusion, immunohistochemistry was superior to flow cytometry and reverse transcription quantitative real-time PCR for clonality identification. Flow cytometry and reverse transcription quantitative real-time PCR analysis has complementary values. In a considerable number of cases tumor cells produced both kappa and lambda light chain transcripts, but only one type of light chain peptide was produced.
Collapse
|
19
|
Patil N, Ahmed Kabeer Rasheed S, Abba M, Hendrik Leupold J, Schwarzbach M, Allgayer H. A mechanistic study on the metastasis inducing function of FUS-CHOP fusion protein in liposarcoma. Int J Cancer 2013; 134:2808-19. [PMID: 24285420 DOI: 10.1002/ijc.28638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/16/2013] [Accepted: 11/07/2013] [Indexed: 11/06/2022]
Abstract
The FUS-CHOP fusion protein has been found to be instrumental for specific oncogenic processes in liposarcoma, but its ability to induce metastasis and the underlying mechanisms by which this can be achieved remain unknown. To dissect its functional role in this context, we stably overexpressed this protein in SW872 liposarcoma and HT1080 fibrosarcoma cell lines, and were able to demonstrate that forced expression of FUS-CHOP significantly increases migration and invasion, as well as enhances lung and liver metastasis in the in vivo chicken chorioallantoic membrane (CAM) model, that is proliferation independent. Additionally, FUS-CHOP enhances the expression of matrix-metalloproteinases -2 and -9, and transactivates their promoters in vitro. Mutational analysis showed that C/EBP-β- (-769/-755), NF-κB (-525/-516) and CREB/AP-1 (-218/-207) sites were important for MMP-2 and NF-κB (-604/-598), AP-1 (-539/-532) and AP-1 (-81/-72) for MMP-9 transactivation. Moreover, a direct in vivo interaction of FUS-CHOP was observed in case of the MMP-2 promoter within region (-769/-207). siRNA data revealed that MMP-2 expression is essential in the FUS-CHOP induced metastatic phenotype. MMP-2-mRNA and protein expression correlated significantly with FUS-CHOP positivity in 46 resected patient liposarcoma tissues. We have for the first time provided substantial evidence for the FUS-CHOP oncoprotein as an inducer of metastasis that is due to the transcriptional induction of specific tumor-associated proteases. Insights gained from this study not only support a deeper understanding of the mechanistic properties of FUS-CHOP, but also open up new avenues for targeted therapy.
Collapse
Affiliation(s)
- Nitin Patil
- Department of Experimental Surgery and Molecular Oncology of Solid Tumors, Medical Faculty Mannheim, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Molecular detection and targeting of EWSR1 fusion transcripts in soft tissue tumors. Med Oncol 2013; 30:412. [PMID: 23329308 PMCID: PMC3586390 DOI: 10.1007/s12032-012-0412-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 12/11/2022]
Abstract
Soft tissue tumors are a heterogeneous group of tumors, traditionally classified according to morphology and histogenesis. Molecular classification divides sarcomas into two main categories: (a) sarcomas with specific genetic alterations and (b) sarcomas showing multiple complex karyotypic abnormalities without any specific pattern. Most chromosomal alterations are represented by translocations which are increasingly detected. The identification of fusion transcripts, in fact, not only support the diagnosis but also provides the basis for the development of new therapeutic strategies aimed at blocking aberrant activity of the chimeric proteins. One of the genes most susceptible to breakage/translocation in soft tissue tumors is represented by Ewing sarcoma breakpoint region 1 (EWSR1). This gene has a large number of fusion partners, mainly associated with the pathogenesis of Ewing's sarcoma but with other soft tissue tumors too. In this review, we illustrate the characteristics of this gene/protein, both in normal cellular physiology and in carcinogenesis. We describe the different fusion partners of EWSR1, the molecular pathways in which is involved and the main molecular biology techniques for the identification of fusion transcripts and for their inhibition.
Collapse
|
21
|
Myxoid liposarcoma-associated EWSR1-DDIT3 selectively represses osteoblastic and chondrocytic transcription in multipotent mesenchymal cells. PLoS One 2012; 7:e36682. [PMID: 22570737 PMCID: PMC3343026 DOI: 10.1371/journal.pone.0036682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/11/2012] [Indexed: 12/25/2022] Open
Abstract
Background Liposarcomas are the most common class of soft tissue sarcomas, and myxoid liposarcoma is the second most common liposarcoma. EWSR1-DDIT3 is a chimeric fusion protein generated by the myxoid liposarcoma-specific chromosomal translocation t(12;22)(q13;q12). Current studies indicate that multipotent mesenchymal cells are the origin of sarcomas. The mechanism whereby EWSR1-DDIT3 contributes to the phenotypic selection of target cells during oncogenic transformation remains to be elucidated. Methodology/Principal Findings Reporter assays showed that the EWSR1-DDIT3 myxoid liposarcoma fusion protein, but not its wild-type counterparts EWSR1 and DDIT3, selectively repressed the transcriptional activity of cell lineage-specific marker genes in multipotent mesenchymal C3H10T1/2 cells. Specifically, the osteoblastic marker Opn promoter and chondrocytic marker Col11a2 promoter were repressed, while the adipocytic marker Ppar-γ2 promoter was not affected. Mutation analyses, transient ChIP assays, and treatment of cells with trichostatin A (a potent inhibitor of histone deacetylases) or 5-Aza-2′-deoxycytidine (a methylation-resistant cytosine homolog) revealed the possible molecular mechanisms underlying the above-mentioned selective transcriptional repression. The first is a genetic action of the EWSR1-DDIT3 fusion protein, which results in binding to the functional C/EBP site within Opn and Col11a2 promoters through interaction of its DNA-binding domain and subsequent interference with endogenous C/EBPβ function. Another possible mechanism is an epigenetic action of EWSR1-DDIT3, which enhances histone deacetylation, DNA methylation, and histone H3K9 trimethylation at the transcriptional repression site. We hypothesize that EWSR1-DDIT3-mediated transcriptional regulation may modulate the target cell lineage through target gene-specific genetic and epigenetic conversions. Conclusions/Significance This study elucidates the molecular mechanisms underlying EWSR1-DDIT3 fusion protein-mediated phenotypic selection of putative target multipotent mesenchymal cells during myxoid liposarcoma development. A better understanding of this process is fundamental to the elucidation of possible direct lineage reprogramming in oncogenic sarcoma transformation mediated by fusion proteins.
Collapse
|
22
|
Jauhiainen A, Thomsen C, Strömbom L, Grundevik P, Andersson C, Danielsson A, Andersson MK, Nerman O, Rörkvist L, Ståhlberg A, Åman P. Distinct cytoplasmic and nuclear functions of the stress induced protein DDIT3/CHOP/GADD153. PLoS One 2012; 7:e33208. [PMID: 22496745 PMCID: PMC3322118 DOI: 10.1371/journal.pone.0033208] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 02/10/2012] [Indexed: 11/29/2022] Open
Abstract
DDIT3, also known as GADD153 or CHOP, encodes a basic leucine zipper transcription factor of the dimer forming C/EBP family. DDIT3 is known as a key regulator of cellular stress response, but its target genes and functions are not well characterized. Here, we applied a genome wide microarray based expression analysis to identify DDIT3 target genes and functions. By analyzing cells carrying tamoxifen inducible DDIT3 expression constructs we show distinct gene expression profiles for cells with cytoplasmic and nuclear localized DDIT3. Of 175 target genes identified only 3 were regulated by DDIT3 in both cellular localizations. More than two thirds of the genes were downregulated, supporting a role for DDIT3 as a dominant negative factor that could act by either cytoplasmic or nuclear sequestration of dimer forming transcription factor partners. Functional annotation of target genes showed cell migration, proliferation and apoptosis/survival as the most affected categories. Cytoplasmic DDIT3 affected more migration associated genes, while nuclear DDIT3 regulated more cell cycle controlling genes. Cell culture experiments confirmed that cytoplasmic DDIT3 inhibited migration, while nuclear DDIT3 caused a G1 cell cycle arrest. Promoters of target genes showed no common sequence motifs, reflecting that DDIT3 forms heterodimers with several alternative transcription factors that bind to different motifs. We conclude that expression of cytoplasmic DDIT3 regulated 94 genes. Nuclear translocation of DDIT3 regulated 81 additional genes linked to functions already affected by cytoplasmic DDIT3. Characterization of DDIT3 regulated functions helps understanding its role in stress response and involvement in cancer and degenerative disorders.
Collapse
Affiliation(s)
- Alexandra Jauhiainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Christer Thomsen
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Linda Strömbom
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Grundevik
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Carola Andersson
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Anna Danielsson
- Department of Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mattias K. Andersson
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Olle Nerman
- Department of Mathematical Statistics, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Statistics, University of Gothenburg, Gothenburg, Sweden
| | - Linda Rörkvist
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
23
|
Abstract
Sarcomas are a group of heterogeneous tumours with varying genetic basis. Cytogenetic abnormalities range from distinct genomic rearrangements such as pathognomonic translocation events and common chromosomal amplification or loss, to more complex rearrangements involving multiple chromosomes. The different subtypes of liposarcoma are spread across this spectrum and constitute an interesting tumour type for molecular review. This paper will outline molecular pathogenesis of the three main subtypes of liposarcoma: well-differentiated/dedifferentiated, myxoid/round cell, and pleomorphic liposarcoma. Both the molecular basis and future avenues for therapeutic intervention will be discussed.
Collapse
|
24
|
Willems SM, Schrage YM, Bruijn IHBD, Szuhai K, Hogendoorn PCW, Bovée JVMG. Kinome profiling of myxoid liposarcoma reveals NF-kappaB-pathway kinase activity and casein kinase II inhibition as a potential treatment option. Mol Cancer 2010; 9:257. [PMID: 20863376 PMCID: PMC2955617 DOI: 10.1186/1476-4598-9-257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/23/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Myxoid liposarcoma is a relatively common malignant soft tissue tumor, characterized by a (12;16) translocation resulting in a FUS-DDIT3 fusion gene playing a pivotal role in its tumorigenesis. Treatment options in patients with inoperable or metastatic myxoid liposarcoma are relatively poor though being developed and new hope is growing. RESULTS Using kinome profiling and subsequent pathway analysis in two cell lines and four primary cultures of myxoid liposarcomas, all of which demonstrated a FUS-DDIT3 fusion gene including one new fusion type, we aimed at identifying new molecular targets for systemic treatment. Protein phosphorylation by activated kinases was verified by Western Blot and cell viability was measured before and after treatment of the myxoid liposarcoma cells with kinase inhibitors. We found kinases associated with the atypical nuclear factor-kappaB and Src pathways to be the most active in myxoid liposarcoma. Inhibition of Src by the small molecule tyrosine kinase inhibitor dasatinib showed only a mild effect on cell viability of myxoid liposarcoma cells. In contrast, inhibition of the nuclear factor-kappaB pathway, which is regulated by the FUS-DDIT3 fusion product, in myxoid liposarcoma cells using casein kinase 2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) showed a significant decrease in cell viability, decreased phosphorylation of nuclear factor-kappaB pathway proteins, and caspase 3 mediated apoptosis. Combination of dasatinib and TBB showed an enhanced effect. CONCLUSION Kinases associated with activation of the atypical nuclear factor-kappaB and the Src pathways are the most active in myxoid liposarcoma in vitro and inhibition of nuclear factor-kappaB pathway activation by inhibiting casein kinase 2 using TBB, of which the effect is enhanced by Src inhibition using dasatinib, offers new potential therapeutic strategies for myxoid liposarcoma patients with advanced disease.
Collapse
Affiliation(s)
- Stefan M Willems
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Willems SM, van Remoortere A, van Zeijl R, Deelder AM, McDonnell LA, Hogendoorn PCW. Imaging mass spectrometry of myxoid sarcomas identifies proteins and lipids specific to tumour type and grade, and reveals biochemical intratumour heterogeneity. J Pathol 2010; 222:400-9. [DOI: 10.1002/path.2771] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Germano G, Frapolli R, Simone M, Tavecchio M, Erba E, Pesce S, Pasqualini F, Grosso F, Sanfilippo R, Casali PG, Gronchi A, Virdis E, Tarantino E, Pilotti S, Greco A, Nebuloni M, Galmarini CM, Tercero JC, Mantovani A, D'Incalci M, Allavena P. Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res 2010; 70:2235-44. [PMID: 20215499 DOI: 10.1158/0008-5472.can-09-2335] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inflammatory mediators present in the tumor milieu may promote cancer progression and are considered promising targets of novel biological therapies. We previously reported that the marine antitumor agent trabectedin, approved in Europe in 2007 for soft tissue sarcomas and in 2009 for ovarian cancer, was able to downmodulate the production of selected cytokines/chemokines in immune cells. Patients with myxoid liposarcoma (MLS), a subtype characterized by the expression of the oncogenic transcript FUS-CHOP, are highly responsive to trabectedin. The drug had marked antiproliferative effects on MLS cell lines at low nanomolar concentrations. We tested the hypothesis that trabectedin could also affect the inflammatory mediators produced by cancer cells. Here, we show that MLS express several cytokines, chemokines, and growth factors (CCL2, CCL3, CCL5, CXCL8, CXCL12, MIF, VEGF, SPARC) and the inflammatory and matrix-binder protein pentraxin 3 (PTX3), which build up a prominent inflammatory environment. In vitro treatment with noncytotoxic concentrations of trabectedin selectively inhibited the production of CCL2, CXCL8, IL-6, VEGF, and PTX3 by MLS primary tumor cultures and/or cell lines. A xenograft mouse model of human MLS showed marked reduction of CCL2, CXCL8, CD68+ infiltrating macrophages, CD31+ tumor vessels, and partial decrease of PTX3 after trabectedin treatment. Similar findings were observed in a patient tumor sample excised after several cycles of therapy, indicating that the results observed in vitro might have in vivo relevance. In conclusion, trabectedin has dual effects in liposarcoma: in addition to direct growth inhibition, it affects the tumor microenvironment by reducing the production of key inflammatory mediators.
Collapse
Affiliation(s)
- Giovanni Germano
- Department of Immunology and Inflammation, IRCCS Istituto Clinico Humanitas, Rozzano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bento C, Andersson MK, Aman P. DDIT3/CHOP and the sarcoma fusion oncoprotein FUS-DDIT3/TLS-CHOP bind cyclin-dependent kinase 2. BMC Cell Biol 2009; 10:89. [PMID: 20017906 PMCID: PMC2804592 DOI: 10.1186/1471-2121-10-89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 12/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background The DDIT3 gene encodes a transcription factor belonging to the CCAAT/enhancer binding protein (C/EBP) family. It is normally expressed at very low levels but is activated by cellular stress conditions and induces G1 arrest and, in some cell types, apoptosis. DDIT3 is found as a part of the fusion oncogene FUS-DDIT3 that is causal for the development of myxoid/round-cell liposarcomas (MLS/RCLS). Results In the present study, we searched for putative interaction partners of DDIT3 and the oncogenic FUS-DDIT3 among G1 cyclins and cyclin-dependent kinases. We found that FUS-DDIT3 and the normal DDIT3 bind CDK2. In addition, CDK2 showed an increased affinity for cytoskeletal proteins in cells expressing FUS-DDIT3 and DDIT3. Conclusions We conclude that DDIT3 binds CDK2 and that many of the observed biological effects of DDIT3 may involve interaction with CDK2.
Collapse
Affiliation(s)
- Christoffer Bento
- Lundberg Laboratory for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
28
|
Anastasov N, Bonzheim I, Rudelius M, Klier M, Dau T, Angermeier D, Duyster J, Pittaluga S, Fend F, Raffeld M, Quintanilla-Martinez L. C/EBPβ expression in ALK-positive anaplastic large cell lymphomas is required for cell proliferation and is induced by the STAT3 signaling pathway. Haematologica 2009; 95:760-7. [PMID: 20015877 DOI: 10.3324/haematol.2009.014050] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma is characterized by the t(2;5) chromosomal translocation, resulting in the expression of a fusion protein formed of nucleophosmin (NPM) and ALK. Recently, we reported the abnormal expression of the transcription factor CCAAT/enhancer binding protein-beta (C/EBPbeta) in ALK-positive anaplastic large cell lymphomas, and demonstrated its dependence on NPM-ALK activity. DESIGN AND METHODS In this study, the role of C/EBPbeta in proliferation and survival of ALK-positive anaplastic large cell lymphomas was investigated, as well as the mechanism of its expression and activity. Highly effective short hairpin RNA sequences and/or pharmacological inhibitors were used to abrogate the expression or activity of C/EBPbeta, signal transducer and activator of transcription 3 (STAT3), AKT, extracellular signal-related kinase 1/2 (ERK1/2) and mammalian target of rapamycin (mTOR). RESULTS Interference with C/EBPbeta expression resulted in a dramatic decrease in cell proliferation in ALK-positive anaplastic large cell lymphomas, with a mild induction of apoptosis after 6 days. Down-regulation of STAT3 resulted in a marked decrease in C/EBPbeta mRNA and protein levels with impairment in cell proliferation and viability, underscoring the important role of these two proteins in ALK-mediated oncogenesis. Additionally, we demonstrated that reduction of ERK1/2 activity led to C/EBPbeta Thr(235) dephosphorylation and moderate growth retardation. The AKT/mTOR signaling pathway did not have any influence on C/EBPbeta expression or C/EBPbeta phosphorylation. CONCLUSIONS These findings reveal the convergence of STAT3 and ERK1/2 signaling pathways activated by NPM-ALK in mediating the regulation of C/EBPbeta expression, a transcription factor central to NPM-ALK transformation.
Collapse
Affiliation(s)
- Natasa Anastasov
- Institute of Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Modulation of JC virus transcription by C/EBPbeta. Virus Res 2009; 146:97-106. [PMID: 19747512 DOI: 10.1016/j.virusres.2009.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 11/21/2022]
Abstract
The polyomavirus JC (JCV) causes the demyelinating disease progressive multifocal leukoencephalopathy (PML). Infection by JCV is very common in childhood after which the virus enters a latent state, which is poorly understood. Under conditions of severe immunosuppression, especially AIDS, JCV may reactivate to cause PML. Expression of JC viral proteins is regulated by the JCV non-coding control region (NCCR), which contains an NF-kappaB binding site previously shown to activate transcription. We now report that C/EBPbeta inhibits basal and NF-kappaB-stimulated JCV transcription via the same site. Gel shift analysis showed C/EBPbeta bound to this region in vitro and ChIP assays confirmed this binding in vivo. Further, a ternary complex of NF-kappaB/p65, C/EBPbeta-LIP and JCV DNA could be detected in co-immunoprecipitation experiments. Mutagenesis analysis of the JCV NCCR indicated p65 and C/EBPbeta-LIP bound to adjacent but distinct sites and that both sites regulate basal and p65-stimulated transcription. Thus C/EBPbeta negatively regulates JCV, which together with NF-kappaB activation, may control the balance between JCV latency and activation leading to PML. This balance may be regulated by proinflammatory cytokines in the brain.
Collapse
|
30
|
Yafeng Dong, Weijian Hou, Jiaxue Wei, Weiner CP. Chronic hypoxemia absent bacterial infection is one cause of the fetal inflammatory response syndrome (FIRS). Reprod Sci 2009; 16:650-6. [PMID: 19351964 DOI: 10.1177/1933719109333662] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The object of the investigation was to determine whether chronic fetal hypoxemia triggers a systemic fetal inflammatory response absent bacterial infection. Chronically hypoxemic (10.5% O(2)) and lipopolysaccharide (LPS; 400 microg/kg of maternal body weight) injected intrauterine (but extra-amniotic) treated pregnant guinea pigs were used with appropriate controls. The presence of bacteria in the amniotic cavity was sought using polymerase chain reaction (PCR). Interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) protein levels were measured in fetal sera and amniotic fluid (AF) by a commercially available, sensitive enzyme-linked immunosorbent assay (ELISA; IL-6 and TNF-alpha messenger RNA (mRNA) were also quantified in multiple fetal organs using real-time PCR. Prokaryotic DNA was not amplified from any sample, confirming the animals were not infected. Chronic hypoxemia dramatically increased IL-6 and TNF-alpha proteins in fetal sera and mRNA in lung, heart, and brain. There were no significant changes in either cytokine observed in the AF, fetal membranes, or fetal liver. Intrauterine but extra amniotic LPS also increased IL-6 and TNF-alpha protein in fetal sera and mRNA in lung, heart, and brain, plus increased the levels of both cytokines (protein/mRNA) in AF, fetal membranes, and fetal liver. Thus, an elevation in fetal blood IL-6 is not a specific marker of infection-induced fetal inflammatory response syndrome (FIRS). And in contrast to the fetal blood, an elevation in AF IL-6 seems associated only with LPS-induced FIRS.
Collapse
Affiliation(s)
- Yafeng Dong
- Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | | | | | | |
Collapse
|
31
|
Alvegård T, Hall KS, Bauer H, Rydholm A. The Scandinavian Sarcoma Group: 30 years' experience. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2009; 80:1-104. [PMID: 19919379 DOI: 10.1080/17453690610046602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Daigeler A, Klein-Hitpass L, Stricker I, Müller O, Kuhnen C, Chromik AM, Steinstraesser L, Goertz O, Steinau HU, Lehnhardt M. Malignant fibrous histiocytoma--pleomorphic sarcoma, NOS gene expression, histology, and clinical course. A pilot study. Langenbecks Arch Surg 2009; 395:261-75. [PMID: 19159951 DOI: 10.1007/s00423-009-0465-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/12/2009] [Indexed: 01/14/2023]
Abstract
PURPOSE The new classification of malignant fibrous histiocytoma leaves only a small group of tumors without further line of differentiation, so-called pleomorphic sarcomas, not otherwise specified (NOS) as a pseudo-entity. This study focused on these tumors and analyzed the association of gene expression profiles to clinical outcome. MATERIALS AND METHODS Ten fresh samples of pleomorphic NOS sarcomas were evaluated histopathologically and by means of microarray analysis. Analysis of expression profiles was performed by clustering methods as well as by statistical analysis of primary vs recurrent tumors, irradiated vs nonirradiated tumors, tumors of patients above and below 60 years of age, male and female, and of tumors that developed metastatic or recurrent disease during the clinical course and those that did not. RESULTS Tumor clustering did not correlate to any histopathological or clinical finding. Detailed gene expression analysis showed a variety of genes whose upregulation (platelet-derived growth factor receptor alpha polypeptide, solute carrier family 39 member 14, solute carrier family 2 member 3, pleiotrophin, trophinin, pleckstrin and Sec7 domain containing 3, enolase 2, biglycan, SH3 and cysteine-rich domain, matrix metalloproteinases 16) and whose downregulation (tissue inhibitor of metalloproteinase 4, hairy/enhancer of split related with YRPW motif 2, protein tyrosine phosphatase receptor-type Z polypeptide 1, SH3 domain GRB2-like 2, microtubule-associated protein 7, potassium voltage-gated channel shaker-related subfamily member 1, RUN and FYVE domain containing 3, Sin3A-associated protein 18 kDa, proline-rich 4, calcium/calmodulin-dependent protein kinase ID, myeloid/lymphoid or mixed-lineage leukemia translocated to 3, insulin-like growth factor binding protein 5, nucleoside diphosphate-linked moiety X-type motif 9, NudC domain containing 3, imprinted in Prader-Willi syndrome, TAF6-like RNA polymerase II p300/CBP-associated factor 65 kDa, WD repeat and SOCS box-containing 2, adenosine diphosphate ribosylation factor 3, KRR1, proliferation-associated 2G4; CD36, complement component (3b/4b) receptor 1, solute carrier family 4 sodium bicarbonate cotransporter member 4, lipoprotein lipase (LPL), GATA binding protein 3, LPL, glutathione peroxidase 3, D: -aspartate oxidase, apolipoprotein E, sphingomyelin phosphodiesterase acid-like 3A) were associated with poor clinical outcome in terms of development of metastatic or recurrent disease. CONCLUSIONS The classification of these tumors may undergo further changes in the future. Gene expression profiling can provide additional information to categorize pleomorphic sarcoma (NOS) and reveal potential prognostic factors in this "entity."
Collapse
Affiliation(s)
- Adrien Daigeler
- Department of Plastic Surgery, Burn Center, Hand surgery, Sarcoma Reference Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsuo T, Sugita T, Shimose S, Kubo T, Ishikawa M, Yasunaga Y, Ochi M. Immunohistochemical expression of promyelocytic leukemia body in soft tissue sarcomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:73. [PMID: 19025608 PMCID: PMC2611968 DOI: 10.1186/1756-9966-27-73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 11/23/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND The function of promyelocytic leukemia (PML) bodies is not well known but plays an important role in controlling cell proliferation, apoptosis and senescence. This study was undertaken to analyze the clinical significance of PML body expression in primary tumor samples from malignant fibrous histiocytoma (MFH) and liposarcoma patients. METHODS We studied MFH and liposarcoma samples from 55 patients for PML bodies. Fluorescent immunostaining of PML bodies was performed in the paraffin-embedded tumor sections. RESULTS PML body immunostaining was identified in 63.9% of MFH and 63.2% of liposarcoma samples. PML body expression rates of all sarcoma cells were 1.5 +/- 1.8% (range: 0-7.0) in MFH and 1.3 +/- 1.4% (0-5.2) in liposarcoma samples. PML body expression (p = 0.0053) and a high rate of PML body expression (p = 0.0012) were significantly greater prognostic risk factors for death than the other clinical factors in MFH patients. All liposarcoma patients without expression of PML were disease free at the end of the study. CONCLUSION Our study suggests that the presence of PML bodies may indicate a poor prognosis for MFH and liposarcoma patients.
Collapse
Affiliation(s)
- Toshihiro Matsuo
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Daigeler A, Klein-Hitpass L, Chromik MA, Müller O, Hauser J, Homann HH, Steinau HU, Lehnhardt M. Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures. BMC Cancer 2008; 8:313. [PMID: 18959781 PMCID: PMC2585096 DOI: 10.1186/1471-2407-8-313] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 10/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doxorubicin is considered one of the most potent established chemotherapeutics in the treatment of liposarcoma; however, the response rates usually below 30%, are still disappointing. This study was performed to identify gene expression changes in liposarcoma after doxorubicin treatment. METHODS Cells of 19 primary human liposarcoma were harvested intraoperatively and brought into cell culture. Cells were incubated with doxorubicin for 24 h, RNA was isolated and differential gene expression was analysed by the microarray technique. RESULTS A variety of genes involved in apoptosis were up and down regulated in different samples revealing a heterogeneous expression pattern of the 19 primary tumor cell cultures in response to doxorubicin treatment. However, more than 50% of the samples showed up-regulation of pro-apoptotic genes such as TRAIL Receptor2, CDKN1A, GADD45A, FAS, CD40, PAWR, NFKBIA, IER3, PSEN1, RIPK2, and CD44. The anti-apoptotic genes TNFAIP3, PEA15, Bcl2A1, NGFB, and BIRC3 were also up-regulated. The pro-apoptotic CD14, TIA1, and ITGB2 were down-regulated in more than 50% of the tumor cultures after treatment with doxorubicin, as was the antiapoptotic YWHAH. CONCLUSION Despite a correlation of the number of differentially regulated genes to the tumor grading and to a lesser extent histological subtype, the expression patterns varied strongly; however, especially among high grade tumors the responses of selected apoptosis genes were similar. The predescribed low clinical response rates of low grade liposarcoma to doxorubicin correspond to our results with only little changes on gene expression level and also divergent findings concerning the up- and down-regulation of single genes in the different sarcoma samples.
Collapse
Affiliation(s)
- Adrien Daigeler
- Department of Plastic Surgery, Burn Center, Hand surgery, Sarcoma Reference Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-kappaB target genes by interaction with NFKBIZ. Oncogene 2008; 28:270-8. [PMID: 18850010 DOI: 10.1038/onc.2008.378] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
FUS (also called TLS), EWSR1 and TAF15 (also called TAF2N) are related genes involved in tumor type-specific fusion oncogenes in human malignancies. The FUS-DDIT3 fusion oncogene results from a t(12;16)(q13;p11) chromosome translocation and has a causative role in the initiation of myxoid/round cell liposarcomas (MLS/RCLS). The FUS-DDIT3 protein induces increased expression of the CAAT/enhancer-binding protein (C/EBP) and nuclear factor-kappaB (NF-kappaB)-controlled gene IL8, and the N-terminal FUS part is required for this activation. Chromatin immunoprecipitation analysis showed that FUS-DDIT3 binds the IL8 promoter. Expression studies of the IL8 promoter harboring a C/EBP-NF-kappaB composite site pinpointed the importance of NF-kappaB for IL8 expression in FUS-DDIT3-expressing cells. We therefore probed for possible interaction of FUS-DDIT3 with members of the NF-kappaB family. The nuclear factor NFKBIZ colocalizes with FUS-DDIT3 in nuclear structures, and immunoprecipitation experiments showed that FUS-DDIT3 binds the C-terminal of NFKBIZ. We also report that additional NF-kappaB-controlled genes are upregulated at the mRNA level in FUS-DDIT3-expressing cell lines and they can be induced by NFKBIZ. Taken together, the results indicate that FUS-DDIT3 deregulates some NF-kappaB-controlled genes through interactions with NFKBIZ. Similar mechanisms may be a part of the transformation process in other tumor types carrying FUS, EWSR1 and TAF15 containing fusion oncogenes.
Collapse
|
36
|
Mukerjee R, Deshmane SL, Darbinian N, Czernik M, Khalili K, Amini S, Sawaya BE. St. John's Wort protein, p27SJ, regulates the MCP-1 promoter. Mol Immunol 2008; 45:4028-35. [PMID: 18649942 DOI: 10.1016/j.molimm.2008.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/29/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
St. John's Wort is commonly known for its antiviral, antidepressant, and cytotoxic properties, but traditionally St. John's Wort has also been used to treat inflammation. In this study, we sought to characterize the mechanisms used by St. John's Wort to treat inflammation by examining the effect of the recently isolated protein from St. John's Wort, p27SJ on the expression of MCP-1. By employing an adenovirus expression vector, we demonstrate that a low concentration of p27SJ upregulates the MCP-1 promoter through the transcription factor C/EBPbeta. In addition, we found that C/EBPbeta-homologous protein (CHOP) or siRNA-C/EBPbeta significantly reduced the ability of p27SJ to activate MCP-1 gene expression. Results from protein-protein interaction studies illustrate the existence of a physical interaction between p27SJ and C/EBPbeta in microglial cells. The use of chromatin immunoprecipitation assay (ChIP) led to the identification of a new cis-element that is responsive to C/EBPbeta within the MCP-1 promoter. Association of C/EBPbeta with MCP-1 DNA was not affected by the presence of p27SJ. The biological activity of MCP-1 produced by cultures of adenovirus-p27SJ transduced cells was increased relative to controls as measured by the transmigration of human Jurkat cells. Thus, we conclude that at high concentration, p27SJ is a potential agent that may be developed as a modulator of MCP-1 leading to the inhibition of the cytokine-mediated inflammatory responses.
Collapse
Affiliation(s)
- Ruma Mukerjee
- Department of Neuroscience & Center for Neurovirology, School of Medicine, Temple University, 1900 North 12th Street, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Pérez-Mancera PA, Bermejo-Rodríguez C, Sánchez-Martín M, Abollo-Jiménez F, Pintado B, Sánchez-García I. FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E. PLoS One 2008; 3:e2569. [PMID: 18596980 PMCID: PMC2434200 DOI: 10.1371/journal.pone.0002569] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/27/2008] [Indexed: 11/24/2022] Open
Abstract
Background FUS-DDIT3 is a chimeric protein generated by the most common chromosomal translocation t(12;16)(q13;p11) linked to liposarcomas, which are characterized by the accumulation of early adipocytic precursors. Current studies indicate that FUS-DDIT3- liposarcoma develops from uncommitted progenitors. However, the precise mechanism whereby FUS-DDIT3 contributes to the differentiation arrest remains to be elucidated. Methodology/Principal Findings Here we have characterized the adipocyte regulatory protein network in liposarcomas of FUS-DITT3 transgenic mice and showed that PPARγ2 and C/EBPα expression was altered. Consistent with in vivo data, FUS-DDIT3 MEFs and human liposarcoma cell lines showed a similar downregulation of both PPARγ2 and C/EBPα expression. Complementation studies with PPARγ but not C/EBPα rescued the differentiation block in committed adipocytic precursors expressing FUS-DDIT3. Our results further show that FUS-DDIT3 interferes with the control of initiation of translation by upregulation of the eukaryotic translation initiation factors eIF2 and eIF4E both in FUS-DDIT3 mice and human liposarcomas cell lines, explaining the shift towards the truncated p30 isoform of C/EBPα in liposarcomas. Suppression of the FUS-DDIT3 transgene did rescue this adipocyte differentiation block. Moreover, eIF4E was also strongly upregulated in normal adipose tissue of FUS-DDIT3 transgenic mice, suggesting that overexpression of eIF4E may be a primary event in the initiation of liposarcomas. Reporter assays showed FUS-DDIT3 is involved in the upregulation of eIF4E in liposarcomas and that both domains of the fusion protein are required for affecting eIF4E expression. Conclusions/Significance Taken together, this study provides evidence of the molecular mechanisms involve in the disruption of normal adipocyte differentiation program in liposarcoma harbouring the chimeric gene FUS-DDIT3.
Collapse
Affiliation(s)
- Pedro A. Pérez-Mancera
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/ Universidad de Salamanca, Salamanca, Spain
| | - Camino Bermejo-Rodríguez
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/ Universidad de Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Genetically Engineered Mouse Facility, SEA, University of Salamanca, Salamanca, Spain
| | - Fernando Abollo-Jiménez
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/ Universidad de Salamanca, Salamanca, Spain
| | - Belén Pintado
- Genetically Engineered Mouse Facility, Centro Nacional de Biotecnología (CNB)- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/ Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
38
|
Oh C, Dong Y, Liu H, Thompson LP. Intrauterine hypoxia upregulates proinflammatory cytokines and matrix metalloproteinases in fetal guinea pig hearts. Am J Obstet Gynecol 2008; 199:78.e1-6. [PMID: 18279828 DOI: 10.1016/j.ajog.2007.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/24/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Intrauterine infection increases proinflammatory cytokines in the fetus. We hypothesize that proinflammatory cytokines and matrix metalloproteinases (MMPs) are upregulated in fetal hearts in response to hypoxic stress. STUDY DESIGN Timed-pregnant guinea pigs were exposed to either hypoxia (10.5% O(2), 14 day) or normoxia (room air). Left ventricles of fetal hearts were excised from anesthetized age-matched fetuses and frozen until ready for study. Messenger RNA of pro- (TNF-alpha, IL-6, IL-1beta) and anti- (IL-4, TGF, IFN-gamma) inflammatory cytokines and MMP2 and 9 was quantified by real-time PCR, MMP proteins by Western analysis, and MMP activity by gel zymography. RESULTS Chronic hypoxia increased (P < .05) TNF-alpha, IL-6, MMP2, and MMP9 mRNA levels but not IL-4, TGF, or IFN-gamma. Hypoxia increased protein levels of MMP9 but not MMP2, despite a hypoxia-induced increase in MMP2 activity. CONCLUSION Intrauterine hypoxia may be an important stimulus in local generation of selected proinflammatory cytokines and MMPs in fetal hearts.
Collapse
|
39
|
Hollingshead BD, Beischlag TV, Dinatale BC, Ramadoss P, Perdew GH. Inflammatory signaling and aryl hydrocarbon receptor mediate synergistic induction of interleukin 6 in MCF-7 cells. Cancer Res 2008; 68:3609-17. [PMID: 18483242 DOI: 10.1158/0008-5472.can-07-6168] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pleiotropic cytokine interleukin 6 (IL-6) is involved in immune cell homeostasis. Additionally, IL-6 expression and signaling in tumor cells have been shown to elicit both protumor and antitumor properties. There is a plethora of mechanistic knowledge regarding how IL-6 signal transduction translates to biological responses. However, there is little understanding as to what factors control IL-6 expression within a tumor cell environment. The studies presented herein show that, in MCF-7 breast and ECC-1 endocervical cancer cells, the stimulation of aryl hydrocarbon receptor (AHR) activity, in combination with IL-1beta or phorbol 12-myristate 13-acetate (PMA) treatment, results in a marked synergistic induction of IL-6 levels over what is seen without AHR activation. Chromatin immunoprecipitation experiments suggest that the regulation of IL-6 mRNA expression occurs at the chromatin level, as AHR presence on the IL-6 promoter was observed in response to treatment with AHR ligand. Synergistic induction of IL-6 expression was sustained for 72 hours, with accumulation of IL-6 protein reaching levels 4.8-fold above IL-1beta treatment alone. In addition, transcriptional regulation of the prototypic AHR responsive gene Cyp1a1 was negatively regulated by PMA and IL-1beta treatment. Silencing of RELA expression alleviated IL-1beta-mediated repression of AHR transcriptional activity, whereas PMA-mediated repression was maintained. Additionally, small interfering RNA studies reveal that AHR and RELA are necessary for synergistic induction of IL-6. The findings presented here reveal the AHR as a potential therapeutic target for selective modulation of IL-6 expression in some tumor cell types. The data also suggest a possible previously unrecognized mechanism of AHR-mediated tumor promotion.
Collapse
Affiliation(s)
- Brett D Hollingshead
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
40
|
Fadlelmola FM, Zhou M, de Leeuw RJ, Dosanjh NS, Harmer K, Huntsman D, Lam WL, Banerjee D. Sub-megabase resolution tiling (SMRT) array-based comparative genomic hybridization profiling reveals novel gains and losses of chromosomal regions in Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma cell lines. Mol Cancer 2008; 7:2. [PMID: 18179710 PMCID: PMC2254646 DOI: 10.1186/1476-4598-7-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/07/2008] [Indexed: 01/09/2023] Open
Abstract
Background Hodgkin lymphoma (HL) and Anaplastic Large Cell Lymphoma (ALCL), are forms of malignant lymphoma defined by unique morphologic, immunophenotypic, genotypic, and clinical characteristics, but both overexpress CD30. We used sub-megabase resolution tiling (SMRT) array-based comparative genomic hybridization to screen HL-derived cell lines (KMH2 and L428) and ALCL cell lines (DEL and SR-786) in order to identify disease-associated gene copy number gains and losses. Results Significant copy number gains and losses were observed on several chromosomes in all four cell lines. Assessment of copy number alterations with 26,819 DNA segments identified an average of 20 genetic alterations. Of the recurrent minimally altered regions identified, 11 (55%) were within previously published regions of chromosomal alterations in HL and ALCL cell lines while 9 (45%) were novel alterations not previously reported. HL cell lines L428 and KMH2 shared gains in chromosome cytobands 2q23.1-q24.2, 7q32.2-q36.3, 9p21.3-p13.3, 12q13.13-q14.1, and losses in 13q12.13-q12.3, and 18q21.32-q23. ALCL cell lines SR-786 and DEL, showed gains in cytobands 5p15.32-p14.3, 20p12.3-q13.11, and 20q13.2-q13.32. Both pairs of HL and ALCL cell lines showed losses in 18q21.32-18q23. Conclusion This study is considered to be the first one describing HL and ALCL cell line genomes at sub-megabase resolution. This high-resolution analysis allowed us to propose novel candidate target genes that could potentially contribute to the pathogenesis of HL and ALCL. FISH was used to confirm the amplification of all three isoforms of the trypsin gene (PRSS1/PRSS2/PRSS3) in KMH2 and L428 (HL) and DEL (ALCL) cell lines. These are novel findings that have not been previously reported in the lymphoma literature, and opens up an entirely new area of research that has not been previously associated with lymphoma biology. The findings raise interesting possibilities about the role of signaling pathways triggered by membrane associated serine proteases in HL and aggressive NHL, similar to those described in epithelial tumors.
Collapse
Affiliation(s)
- Faisal M Fadlelmola
- Centre for Translational and Applied Genomics (CTAG), Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, Vancouver Cancer Centre, Vancouver, BC, V5Z 4E6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
When connective tissue undergoes malignant transformation, glioblastomas and sarcomas arise. However, the ancient biochemical mechanisms, which are now operational in sarcomas distorted by mutations and gene fusions in misaligned chromosomes, were originally acquired by those cells that emerged during the Cambrian explosion. Preserved throughout evolution up to the genus Homo, these mechanisms dictate the apoptosis- and senescence-resistant immortality of malignant cells. A 'retroviral paradox' distinguishes human sarcomas from those of the animal world. In contrast to the retrovirally induced sarcomatous transformation of animal (avian, murine, feline and simian) cells, human sarcomas have so far failed to yield a causative retroviral isolate. However, the proto-oncogenes/oncogenes transduced from their host cells by retroviruses of animals are the same that are active in human sarcomas. Since the encoded oncoproteins arise after birth, they are recognized frequently by the immune system of the host. Immune lymphocytes that kill autologous sarcoma cells in vitro commonly fail to do so in vivo. Sarcoma vaccines generate immune T- and natural killer cell reactions; even when vaccinated patients do not show a clinical response, their tumors become more sensitive to chemotherapy. The aim of this review is to lay a solid molecular biological foundation for the conclusion that targeting the sarcoma oncogenes will result in regression of the disease.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- Cancer Institute of St. Joseph's Hospital Affiliated with the HL Moffitt Cancer Center, The University of South Florida College of Medicine, Department of Medical Microbiology and Immunology, Tampa, Florida, USA.
| |
Collapse
|
42
|
Willeke F, Assad A, Findeisen P, Schromm E, Grobholz R, von Gerstenbergk B, Mantovani A, Peri S, Friess HH, Post S, von Knebel Doeberitz M, Schwarzbach MHM. Overexpression of a member of the pentraxin family (PTX3) in human soft tissue liposarcoma. Eur J Cancer 2006; 42:2639-46. [PMID: 16959485 DOI: 10.1016/j.ejca.2006.05.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 05/05/2006] [Accepted: 05/10/2006] [Indexed: 11/21/2022]
Abstract
A unique feature of human soft tissue liposarcoma is a stable (12;16)(q13;p11) translocation observed mainly in myxoid and roundcell liposarcomas. This translocation results in FUS/CHOP fusion transcripts with a corresponding oncogenic protein. We hypothesised that genes downstream of FUS/CHOP might serve as attractive candidates for novel tumour associated antigens. Among a panel of analysed genes, only pentraxin related gene (PTX3) demonstrated high expression in liposarcomas as compared to normal tissues. The analysis of RNA and protein expression demonstrated concordant results. However, the level of RNA and protein overexpression did not correlate in all cases. Finally, PTX3 expression was not related to presence of a FUS/CHOP fusion transcript within the liposarcoma tissues. PTX3 has been associated with adipocyte differentiation and now, additionally, is characterised by a markedly increased expression in human soft tissue liposarcoma. This finding mandates further research efforts to clarify the exact role of PTX3 in liposarcoma oncogenesis.
Collapse
Affiliation(s)
- F Willeke
- Department of Surgery, Mannheim University Clinic, University of Heidelberg, Theodor Kutzer Ufer 1-3, 68135 Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Engström K, Willén H, Kåbjörn-Gustafsson C, Andersson C, Olsson M, Göransson M, Järnum S, Olofsson A, Warnhammar E, Aman P. The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1642-53. [PMID: 16651630 PMCID: PMC1606602 DOI: 10.2353/ajpath.2006.050872] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myxoid/round cell liposarcoma (MLS/RCLS) is the most common subtype of liposarcoma. Most MLS/RCLS carry a t(12;16) translocation, resulting in a FUS-DDIT3 fusion gene. We investigated the role of the FUS-DDIT3 fusion in the development of MLS/RCLS in FUS-DDIT3- and DDIT3-transfected human HT1080 sarcoma cells. Cells expressing FUS-DDIT3 and DDIT3 grew as liposarcomas in severe combined immunodeficient mice and exhibited a capillary network morphology that was similar to networks of MLS/RCLS. Microarray-based comparison of HT1080, the transfected cells, and an MLS/RCLS-derived cell line showed that the FUS-DDIT3- and DDIT3-transfected variants shifted toward an MLS/RCLS-like expression pattern. DDIT3-transfected cells responded in vitro to adipogenic factors by accumulation of fat and transformation to a lipoblast-like morphology. In conclusion, because the fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype when expressed in a primitive sarcoma cell line, MLS/RCLS may develop from cell types other than preadipocytes. This may explain the preferential occurrence of MLS/RCLS in nonadipose tissues. In addition, development of lipoblasts and the typical MLS/RCLS capillary network could be an effect of the DDIT3 transcription factor partner of the fusion oncogene.
Collapse
Affiliation(s)
- Katarina Engström
- Department of Oncology, Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|