1
|
Sánchez ML, Rodríguez FD, Coveñas R. Neuropeptide Y Peptide Family and Cancer: Antitumor Therapeutic Strategies. Int J Mol Sci 2023; 24:9962. [PMID: 37373115 DOI: 10.3390/ijms24129962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Currently available data on the involvement of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) and their receptors (YRs) in cancer are updated. The structure and dynamics of YRs and their intracellular signaling pathways are also studied. The roles played by these peptides in 22 different cancer types are reviewed (e.g., breast cancer, colorectal cancer, Ewing sarcoma, liver cancer, melanoma, neuroblastoma, pancreatic cancer, pheochromocytoma, and prostate cancer). YRs could be used as cancer diagnostic markers and therapeutic targets. A high Y1R expression has been correlated with lymph node metastasis, advanced stages, and perineural invasion; an increased Y5R expression with survival and tumor growth; and a high serum NPY level with relapse, metastasis, and poor survival. YRs mediate tumor cell proliferation, migration, invasion, metastasis, and angiogenesis; YR antagonists block the previous actions and promote the death of cancer cells. NPY favors tumor cell growth, migration, and metastasis and promotes angiogenesis in some tumors (e.g., breast cancer, colorectal cancer, neuroblastoma, pancreatic cancer), whereas in others it exerts an antitumor effect (e.g., cholangiocarcinoma, Ewing sarcoma, liver cancer). PYY or its fragments block tumor cell growth, migration, and invasion in breast, colorectal, esophageal, liver, pancreatic, and prostate cancer. Current data show the peptidergic system's high potential for cancer diagnosis, treatment, and support using Y2R/Y5R antagonists and NPY or PYY agonists as promising antitumor therapeutic strategies. Some important research lines to be developed in the future will also be suggested.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
2
|
Serum Exosomal lncRNA AC007099.1 Regulates the Expression of Neuropeptide-Related FAP, as a Potential Biomarker for Hepatocarcinogenesis. DISEASE MARKERS 2022; 2022:9501008. [PMID: 35186170 PMCID: PMC8853759 DOI: 10.1155/2022/9501008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022]
Abstract
Neuropeptide-associated fibroblast activation protein (FAP) may be an important risk factor for neurovascular metastasis in hepatocellular carcinoma. Analysis of The Cancer Genome Atlas (TCGA) database showed that FAP mRNA was highly expressed in most human tumor tissues. The HPA database then verified that FAP was highly expressed in tumor tissues following protein translation. Survival analysis then showed that the level of FAP expression significantly affected the overall survival (OS), progress free interval (PFI), and disease specific survival (DSS) of patients with hepatocellular carcinoma. A high expression of FAP in tumor tissue is associated with poor patient prognosis. According to the results of spearman correlation, AC009099 and FAP were negatively correlated with miR-7152 expression, while AC009099 and FAP expression were positively correlated. The lncRNA AC007099.1, which may serve as a potential target for the treatment of hepatocellular carcinoma, was associated with liver cancer. AC007099.1/miR-7152/FAP was found to be associated with immune infiltration in patients with hepatocellular carcinoma. Enrichment analysis suggests that the AC009099/miR-7152/FAP ceRNA regulatory network is associated with neuropeptide functional pathways. In conclusion, a neuropeptide-related AC009099/miR-7152/FAP ceRNA regulatory network was constructed in this study.
Collapse
|
3
|
Wang Y, Cao Y, Jiang Z, Li Y, Yuan B, Xing J, Li M, Gao Q, Xu K, Akakuru OU, Wu A, Li J. The Neuropeptide Y 1 Receptor Ligand-Modified Cell Membrane Promotes Targeted Photodynamic Therapy of Zeolitic Imidazolate Frameworks for Breast Cancer. J Phys Chem Lett 2021; 12:11280-11287. [PMID: 34767373 DOI: 10.1021/acs.jpclett.1c03562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs), widely regarded as promising materials for application in catalysis and separation, hold an increasingly significant position in drug delivery systems for their high drug loading capacity. Focused specifically on the rational design of targeting and bioresponsive nanovehicles, a neuropeptide Y1 receptor ligand (Y1L)-modified cell membrane camouflaged bioresponsive ZIF system (Y1L-RBC@ZIF-90@Ce6) was constructed for targeted photodynamic therapy of breast cancer. The biomimetic ZIF-based nanocarrier enhanced tumor accumulation by both neuropeptide Y1 receptor-targeted guidance and long-term stability. Y1L served as a good ligand-mediated selective targeting molecule for breast cancer, and red blood cell membrane-camouflaged nanocomposites displayed favorable biocompatibility. With the dual response of the ZIF to pH and adenosine triphosphate, the stimulus responsive photosensitizer Chlorin e6 delivery system effectively suppressed tumors in vivo. This work offers a platform for developing much safer and more efficient photodynamic therapy for the treatment of Y1R-overexpressed breast cancer.
Collapse
Affiliation(s)
- Yinjie Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yi Cao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Yuan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingli Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qianqian Gao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Kaiwei Xu
- Department of Radiology, Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo 315010, P. R. China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| |
Collapse
|
4
|
Wanka L, Behr V, Beck-Sickinger AG. Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biol Chem 2021; 403:133-149. [PMID: 34036761 DOI: 10.1515/hsz-2021-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 01/14/2023]
Abstract
The internalization of G protein-coupled receptors (GPCRs) is an important mechanism regulating the signal strength and limiting the opportunity of receptor activation. Based on the importance of GPCRs, the detailed knowledge about the regulation of signal transduction is crucial. Here, current knowledge about the agonist-induced, arrestin-dependent internalization process of rhodopsin-like GPCRs is reviewed. Arrestins are conserved molecules that act as key players within the internalization process of many GPCRs. Based on highly conserved structural characteristics within the rhodopsin-like GPCRs, the identification of arrestin interaction sites in model systems can be compared and used for the investigation of internalization processes of other receptors. The increasing understanding of this essential regulation mechanism of receptors can be used for drug development targeting rhodopsin-like GPCRs. Here, we focus on the neuropeptide Y receptor family, as these receptors transmit various physiological processes such as food intake, energy homeostasis, and regulation of emotional behavior, and are further involved in pathophysiological processes like cancer, obesity and mood disorders. Hence, this receptor family represents an interesting target for the development of novel therapeutics requiring the understanding of the regulatory mechanisms influencing receptor mediated signaling.
Collapse
Affiliation(s)
- Lizzy Wanka
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| |
Collapse
|
5
|
Ziffert I, Kaiser A, Hoppenz P, Mörl K, Beck‐Sickinger AG. Shuttling of Peptide-Drug Conjugates by G Protein-Coupled Receptors Is Significantly Improved by Pulsed Application. ChemMedChem 2021; 16:164-178. [PMID: 32700391 PMCID: PMC7818256 DOI: 10.1002/cmdc.202000490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptors (GPCRs) can be used to shuttle peptide-drug conjugates into cells. But, for efficient therapy, a high concentration of cargo needs to be delivered. To explore this, we studied the pharmacologically interesting neuropeptide Y1 receptor (Y1 R) in one recombinant and three oncogenic cell systems that endogenously express the receptor. We demonstrate that recycled receptors behave identically to newly synthesized receptors with respect to ligand binding and internalization pathways. Depending on the cell system, biosynthesis, recycling efficiency, and peptide uptake differ partially, but shuttling was efficient in all systems. However, by comparing continuous application of the ligand for four hours to four cycles of internalization and recycling in between, a significantly higher amount of peptide uptake was achieved in the pulsed application (150-250 % to 300-400 %). Accordingly, in this well-suited drug shuttle system pulsed application is superior under all investigated conditions and should be considered for innovative, targeted drug delivery in general.
Collapse
Affiliation(s)
- Isabelle Ziffert
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigBrüderstraße 3404103LeipzigGermany
| | - Anette Kaiser
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigBrüderstraße 3404103LeipzigGermany
| | - Paul Hoppenz
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigBrüderstraße 3404103LeipzigGermany
| | - Karin Mörl
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigBrüderstraße 3404103LeipzigGermany
| | - Annette G. Beck‐Sickinger
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigBrüderstraße 3404103LeipzigGermany
| |
Collapse
|
6
|
Zhang Y, Zhu X, Qiao X, Sun L, Tian Y, Yang Y, Zhao Y, Liu C. FSIP2 can serve as a predictive biomarker for Clear Cell Renal Cell Carcinoma prognosis. Int J Med Sci 2020; 17:2819-2825. [PMID: 33162809 PMCID: PMC7645329 DOI: 10.7150/ijms.48971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: To characterize the role of fibrous sheath interacting protein 2 (FSIP2) in the survival outcomes and prognosis of clear cell renal cell carcinoma (ccRCC) patients, which is currently not well understood. Methods: The Oncomine and CCLE databases were used to investigate the differential expression of FSIP2 in ccRCC versus other cancer types. Levels of FSIP2 in 85 ccRCC patients were assessed by immunohistochemical analysis; clinicopathological features related to FSIP2 expression were examined in these patients finally, disease-free survival and overall survival were estimated by survival analysis to elucidate the impact of FSIP2 expression in ccRCC patients. Results: Analysis using the Oncomine database revealed significant upregulation of the FSIP2 gene in papillary RCC, compared to that in normal tissues. Additionally, FSIP2 expression was found to be significantly associated with abnormal platelet count, positive distant metastasis, and death as the incidence of distant metastasis and death were higher in patients with FSIP2 expression compared to those without FSIP2 expression. Survival analysis revealed that FSIP2 expression was significantly related to shorter disease-free survival and overall survival. Meanwhile, patients with FSIP2 expression had worse prognosis than those without FSIP2 expression. Conclusions: FSIP2 expression is associated with poor survival outcomes and poor prognosis in ccRCC patients. FSIP2 may therefore serve as a potential predictive biomarker of ccRCC prognosis.
Collapse
Affiliation(s)
- Yixiao Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Xudong Zhu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Xinbo Qiao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Lisha Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Ye Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.,College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, 110169, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning Province, 116023, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| |
Collapse
|
7
|
18F-labelled triazolyl-linked argininamides targeting the neuropeptide Y Y 1R for PET imaging of mammary carcinoma. Sci Rep 2019; 9:12990. [PMID: 31506520 PMCID: PMC6736837 DOI: 10.1038/s41598-019-49399-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide Y Y1 receptors (Y1R) have been found to be overexpressed in a number of different tumours, such as breast, ovarian or renal cell cancer. In mammary carcinoma the high Y1R density together with its high incidence of 85% in primary human breast cancers and 100% in breast cancer derived lymph node metastases attracted special attention. Therefore, the aim of this study was the development of radioligands for Y1R imaging by positron emission tomography (PET) with a special emphasis on imaging agents with reduced lipophilicity to provide a PET ligand with improved biodistribution in comparison with previously published tracers targeting the Y1R. Three new radioligands based on BIBP3226, bearing an 18F-fluoroethoxy linker (12), an 18F-PEG-linker (13) or an 18F-fluoroglycosyl moiety (11) were radiosynthesised in high radioactivity yields. The new radioligands displayed Y1R affinities of 2.8 nM (12), 29 nM (13) and 208 nM (11) and were characterised in vitro regarding binding to human breast cancer MCF-7-Y1 cells and slices of tumour xenografts. In vivo, small animal PET studies were conducted in nude mice bearing MCF-7-Y1 tumours. The binding to tumours, solid tumour slices and tumour cells correlated well with the Y1R affinities. Although 12 and 13 showed displaceable and specific binding to Y1R in vitro and in vivo, the radioligands still need to be optimised to achieve higher tumour-to-background ratios for Y1R imaging by PET. Yet the present study is another step towards an optimized PET radioligand for imaging of Y1R in vivo.
Collapse
|
8
|
Kufka R, Rennert R, Kaluđerović GN, Weber L, Richter W, Wessjohann LA. Synthesis of a tubugi-1-toxin conjugate by a modulizable disulfide linker system with a neuropeptide Y analogue showing selectivity for hY1R-overexpressing tumor cells. Beilstein J Org Chem 2019; 15:96-105. [PMID: 30680044 PMCID: PMC6334802 DOI: 10.3762/bjoc.15.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Tubugi-1 is a small cytotoxic peptide with picomolar cytotoxicity. To improve its cancer cell targeting, it was conjugated using a universal, modular disulfide derivative. This allowed conjugation to a neuropeptide-Y (NPY)-inspired peptide [K4(C-βA-),F7,L17,P34]-hNPY, acting as NPY Y1 receptor (hY1R)-targeting peptide, to form a tubugi-1–SS–NPY disulfide-linked conjugate. The cytotoxic impacts of the novel tubugi-1–NPY peptide–toxin conjugate, as well as of free tubugi-1, and tubugi-1 bearing the thiol spacer (liberated from tubugi-1–NPY conjugate), and native tubulysin A as reference were investigated by in vitro cell viability and proliferation screenings. The tumor cell lines HT-29, Colo320 (both colon cancer), PC-3 (prostate cancer), and in conjunction with RT-qPCR analyses of the hY1R expression, the cell lines SK-N-MC (Ewing`s sarcoma), MDA-MB-468, MDA-MB-231 (both breast cancer) and 184B5 (normal breast; chemically transformed) were investigated. As hoped, the toxicity of tubugi-1 was masked, with IC50 values decreased by ca. 1,000-fold compared to the free toxin. Due to intracellular linker cleavage, the cytotoxic potency of the liberated tubugi-1 that, however, still bears the thiol spacer (tubugi-1-SH) was restored and up to 10-fold higher compared to the entire peptide–toxin conjugate. The conjugate shows toxic selectivity to tumor cell lines overexpressing the hY1R receptor subtype like, e.g., the hard to treat triple-negative breast cancer MDA-MB-468 cells.
Collapse
Affiliation(s)
- Rainer Kufka
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.,OntoChem GmbH, Blücherstr. 24, D-06120 Halle (Saale), Germany
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Lutz Weber
- OntoChem GmbH, Blücherstr. 24, D-06120 Halle (Saale), Germany
| | | | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Lengkeek NA, Roberts MP, Zhang L, Lee ICJ, Fookes CJR, Dikic B, Herzog H, Katsifis A, Greguric I. Synthesis and Binding Affinity of Fluorine Containing NG-acyl and -sulfonyl BIBP3226 Derivatives: Ligands for the NPY Y1 Receptor. Aust J Chem 2016. [DOI: 10.1071/ch15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The neuropeptide Y (NPY) receptors are abundant in a range of tumours hence are a molecular target for tumour imaging and therapy, particularly by the use of radiolabelled molecules. NG-Substituted derivatives of the NPY receptor antagonist, BIBP3226, were prepared aiming to improve its current usability and to incorporate a positron-emitting radioisotope for development in positron emission tomography (PET) radiopharmaceuticals. The BIBP3226 derivatives were prepared in seven steps while retaining the critically important amino acid chirality. The acyl derivative retained acceptable ligand binding, however the sulfonyl derivatives lost almost all binding affinity.
Collapse
|
10
|
Li J, Tian Y, Wu A. Neuropeptide Y receptors: a promising target for cancer imaging and therapy. Regen Biomater 2015; 2:215-9. [PMID: 26816643 PMCID: PMC4669009 DOI: 10.1093/rb/rbv013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide Y (NPY) was first identified from porcine brain in 1982, and plays its biological functions in humans through NPY receptors (Y1, Y2, Y4 and Y5). NPY receptors are known to mediate various physiological functions and involve in a majority of human diseases, such as obesity, hypertension, epilepsy and metabolic disorders. Recently, NPY receptors have been found to be overexpressed in many cancers, so they emerged as promising target in cancer diagnosis and therapy. This review focuses on the latest research about NPY and NPY receptors, and summarizes the current knowledge on NPY receptors expression in cancers, selective ligands for NPY receptors and their application in cancer imaging and therapy.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuchen Tian
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Aiguo Wu
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
11
|
Frank R, Ahrens V, Boehnke S, Hofmann S, Kellert M, Saretz S, Pandey S, Sárosi M, Bartók Á, Beck-Sickinger AG, Hey-Hawkins E. Carbaboranes – more than just phenyl mimetics. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2014-1006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractDicarba-closo-dodecaboranes(12) (C2B10H12, carbaboranes) are highly hydrophobic and stable icosahedral carbon-containing boron clusters. The cage framework of these clusters can be modified with a variety of substituents, both at the carbon and at the boron atoms. Substituted carbaboranes are of interest in medicine as boron neutron capture therapy (BNCT) agents or as pharmacophores. High and selective accumulation in tumour cells is an important requirement for a BNCT agent and is achieved by incorporating boron-rich, water-soluble carbaborane derivatives into breast tumour-selective modified neuropeptide Y, [F7, P34]-NPY. Preliminary studies showed that the receptor binding affinity and signal transduction of the boron-modified peptides were very well retained. Use of carbaboranes as pharmacophores was shown by replacement of Bpa32 (Bpa=benzoylphenylalanine) in the reduced-size NPY analogue [Pro30, Nle31, Bpa32, Leu34]-NPY 28–36 by ortho-carbaboranyl propanoic acid. The inclusion of the carbaborane derivative resulted in a short NPY agonist with an interesting hY2R/hY4R preference. This might be a promising approach in the field of anti-obesity drug development.
Collapse
Affiliation(s)
- René Frank
- 1Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Verena Ahrens
- 2Institute of Biochemistry, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Solveig Boehnke
- 1Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Sven Hofmann
- 2Institute of Biochemistry, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Martin Kellert
- 1Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Stefan Saretz
- 1Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Souvik Pandey
- 1Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Menyhárt Sárosi
- 1Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Ágota Bartók
- 1Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | | | - Evamarie Hey-Hawkins
- 1Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
12
|
Ahrens VM, Frank R, Boehnke S, Schütz CL, Hampel G, Iffland DS, Bings NH, Hey-Hawkins E, Beck-Sickinger AG. Receptor-Mediated Uptake of Boron-Rich Neuropeptide Y Analogues for Boron Neutron Capture Therapy. ChemMedChem 2014; 10:164-72. [DOI: 10.1002/cmdc.201402368] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 12/31/2022]
|
13
|
Morgat C, Hindié E, Mishra AK, Allard M, Fernandez P. Gallium-68: chemistry and radiolabeled peptides exploring different oncogenic pathways. Cancer Biother Radiopharm 2013; 28:85-97. [PMID: 23461410 DOI: 10.1089/cbr.2012.1244] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract Early and specific tumor detection and also therapy selection and response evaluation are some challenges of personalized medicine. This calls for high sensitive and specific molecular imaging such as positron emission tomography (PET). The use of peptides for PET molecular imaging has undeniable advantages: possibility of targeting through peptide-receptor interaction, small size and low-molecular weight conferring good penetration in the tissue or at cellular level, low toxicity, no antigenicity, and possibility of wide choice for radiolabeling. Among β(+)-emitter radioelements, Gallium-68 is a very attractive positron-emitter compared with carbon-11 or fluorine-18 taking into account its easy production via a (68)Ge/(68)Ga generator and well established radiochemistry. Gallium-68 chemistry is based on well-defined coordination complexes with macrocycle or chelates having strong binding properties, particularly suitable for linking peptides that allow resistance to in vivo transchelation of the metal ion. Understanding specific and nonspecific molecular mechanisms involved in oncogenesis is one major key to develop new molecular imaging tools. The present review focuses on peptide signaling involved in different oncogenic pathways. This peptide signalization might be common for tumoral and non-tumoral processes or could be specific of an oncological process. This review describes gallium chemistry and different (68)Ga-radiolabeled peptides already in use or under development aiming at developing molecular PET imaging of different oncological processes.
Collapse
|
14
|
Hofmann S, Frank R, Hey-Hawkins E, Beck-Sickinger AG, Schmidt P. Manipulating Y receptor subtype activation of short neuropeptide Y analogs by introducing carbaboranes. Neuropeptides 2013; 47:59-66. [PMID: 23352609 DOI: 10.1016/j.npep.2012.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 12/23/2022]
Abstract
Short selective neuropeptide Y (NPY) analogs are highly attractive because of their facile synthesis. Based on the reduced-size NPY analog [Pro(30), Nle(31), Bpa(32), Leu(34)]NPY 28-36 position 32 was identified as a key position to alter the preferential activation pattern of the human neuropeptide Y receptors (hYRs). By replacing benzoylphenylalanine (Bpa) by a biphenylalanine (Bip) the photostability was first improved while the biological activity was maintained. SAR-studies showed that both aromatic rings have a high influence on the preferential hYR subtype activation. Interestingly, replacement of Bpa(32) by a strongly hydrophobic moiety changed the hYR subtype preference of the analog. Whereas the parent compound is able to activate the human neuropeptide Y1 receptor (hY1R) subtype, the introduction of an N(ε)-ortho-carbaboranyl propionic acid modified lysine resulted in a loss of activity at the hY1R but in an increased activity at both the hY2R and the hY4R. However, subsequent receptor internalization studies with this novel analog revealed that receptor internalization can neither be triggered at the hY2R nor at the hY4R suggesting a biased ligand. Surprisingly, investigations by (1)H NMR spectroscopy revealed structural changes in the side chains of residues Pro(30) and Leu(34) which nicely correlates with the shift from hY1R/hY4R to hY2R/hY4R activation preference. Thus, position 32 has been identified to switch the bioactive conformation and subsequently influences receptor subtype activation behavior.
Collapse
Affiliation(s)
- S Hofmann
- Universität Leipzig, Institute of Biochemistry, Leipzig, Germany
| | | | | | | | | |
Collapse
|
15
|
Chatenet D, Cescato R, Waser B, Erchegyi J, Rivier JE, Reubi JC. Novel dimeric DOTA-coupled peptidic Y1-receptor antagonists for targeting of neuropeptide Y receptor-expressing cancers. EJNMMI Res 2011; 1:21. [PMID: 22214201 PMCID: PMC3250963 DOI: 10.1186/2191-219x-1-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several peptide hormone receptors were identified that are specifically over-expressed on the cell surface of certain human tumors. For example, high incidence and density of the Y1 subtype of neuropeptide Y (NPY) receptors are found in breast tumors. Recently, we demonstrated that the use of potent radiolabeled somatostatin or bombesin receptor antagonists considerably improved the sensitivity of in vivo imaging when compared to agonists. We report here on the first DOTA-coupled peptidic Y1 receptor affine dimer antagonists. METHODS Based on a Y1 affine dimeric peptide scaffold previously reported to competitively antagonize NPY-mediated processes, we have developed new dimeric DOTA-coupled Y1 receptor affine antagonists for scintigraphy and radiotherapy. These dimeric peptides were tested for their specific binding to Y1 expressed in SK-N-MC cells and Y2 expressed in SH-SY5Y as well as for their ability to mediate cAMP production in SK-N-MC cells. RESULTS Introduction of two DOTA moieties at the N-termini of the dimeric NPY analogs as well as the double Asn29 replacement by Dpr(DOTA) or Lys(DOTA) (6 and 10) moiety dramatically reduced binding affinity. However, asymmetric introduction of the DOTA moiety in one segment of the peptidic heterodimer (8 and 11) resulted in suitable antagonists for receptor targeting with high binding affinity for Y1. All compounds were devoid of Y2 binding affinity. CONCLUSIONS The design and the in vitro characterization of the first DOTA-coupled dimeric NPY receptor antagonist with high affinity and selectivity for Y1 over Y2 are described. This compound may be an excellent candidate for the imaging of Y1-positive tumors and their treatment.
Collapse
Affiliation(s)
- David Chatenet
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 N, Torrey Pines Rd,, La Jolla, CA, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Keller M, Bernhardt G, Buschauer A. [3H]UR-MK136: A Highly Potent and Selective Radioligand for Neuropeptide Y Y1 Receptors. ChemMedChem 2011; 6:1566-71. [DOI: 10.1002/cmdc.201100197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Indexed: 11/11/2022]
|
17
|
Gilaberte Y, Roca MJ, Garcia-Prats MD, Coscojuela C, Arbues MD, Vera-Alvarez JJ. Neuropeptide Y expression in cutaneous melanoma. J Am Acad Dermatol 2011; 66:e201-8. [PMID: 21620518 DOI: 10.1016/j.jaad.2011.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/25/2010] [Accepted: 02/15/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neuropeptide Y (NPY) is widely found in the nervous system and has a role in numerous physiologic processes. In addition, NPY receptors are expressed in neuroendocrine tumors, breast cancer, prostate cancer, kidney cancer, and some types of sarcomas. Different neuropeptides, particularly α-melanocyte-stimulating hormone (MSH), seem to play a role in the pathogenesis of melanoma. OBJECTIVE We sought to analyze the expression of NPY in cutaneous melanoma, its association with clinical and histologic features, and its correlation with α-MSH. METHODS This was an observational study of the immunohistochemical expression of NPY and α-MSH in tissue samples of cutaneous melanomas, different types of melanocytic nevi, and melanoma metastases diagnosed from 2004 to 2008 in San Jorge Hospital, Huesca, Spain. RESULTS A total of 184 lesions were studied: 49 primary cutaneous melanomas, 12 melanoma metastases (9 cutaneous and 3 lymphatic), and 123 melanocytic nevi. Immunostaining revealed that levels of NPY and α-MSH were significantly higher in melanomas than in melanocytic nevi (P < .001). Melanoma metastases were negative for both neuropeptides. Nodular melanomas showed the highest median percentage of NPY positive cells (75% [20-95]) followed by superficial spreading melanoma (25% [2-92]), whereas lentigo maligna were negative (0% [0-0]). Significant, direct associations between NPY expression and vertical growth (P = .0141) and presence of metastasis (P = .0196) were observed. NPY and α-MSH were positively correlated in cutaneous melanoma (0.49, P < .001). LIMITATIONS The sample size of melanomas was not very large. CONCLUSION Our study demonstrates that NPY is significantly expressed in melanomas, especially the nodular type, being associated with invasiveness independently of proliferative markers such as thickness, ulceration, and mitotic index.
Collapse
|
18
|
Red-fluorescent argininamide-type NPY Y1 receptor antagonists as pharmacological tools. Bioorg Med Chem 2011; 19:2859-78. [DOI: 10.1016/j.bmc.2011.03.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 11/21/2022]
|
19
|
Körner M, Waser B, Thalmann GN, Reubii JC. High expression of NPY receptors in the human testis. Mol Cell Endocrinol 2011; 337:62-70. [PMID: 21295110 DOI: 10.1016/j.mce.2011.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/04/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
NPY receptors represent novel molecular therapeutic targets in cancer and obesity. However, the extent of NPY receptor expression in normal human tissues is poorly investigated. Based on the role of NPY in reproductive functions, the NPY receptor expression was studied in 25 normal human testes and, additionally, 24 testicular tumors using NPY receptor autoradiography. In the normal testis, Leydig cells strongly expressed NPY receptor subtype Y2, and small arterial blood vessels Y1. Y2 receptors were found to be functional with agonist-stimulated [(35)S]GTPγS binding autoradiography. Full functional integrity of the NPY system was further suggested by the immunohistochemical detection of NPY peptide in nerve fibers directly adjacent to Leydig cells and arteries. Germ cell tumors expressed Y1 and Y2 on tumor cells in 33% and Y1 on intratumoral blood vessels in 50%. Based on its strong NPY receptor expression in Leydig cells and blood vessels, the normal human testis represents a potentially important physiological and pharmalogical NPY target.
Collapse
Affiliation(s)
- Meike Körner
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Switzerland
| | | | | | | |
Collapse
|
20
|
Correia JDG, Paulo A, Raposinho PD, Santos I. Radiometallated peptides for molecular imaging and targeted therapy. Dalton Trans 2011; 40:6144-67. [DOI: 10.1039/c0dt01599g] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Khan I, Zwanziger D, Böhme I, Javed M, Naseer H, Hyder S, Beck-Sickinger A. Breast-Cancer Diagnosis by Neuropeptide Y Analogues: From Synthesis to Clinical Application. Angew Chem Int Ed Engl 2010; 49:1155-8. [DOI: 10.1002/anie.200905008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
[Lys(DOTA)4]BVD15, a novel and potent neuropeptide Y analog designed for Y1 receptor-targeted breast tumor imaging. Bioorg Med Chem Lett 2010; 20:950-3. [DOI: 10.1016/j.bmcl.2009.12.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/15/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022]
|
23
|
Khan I, Zwanziger D, Böhme I, Javed M, Naseer H, Hyder S, Beck-Sickinger A. Neuropeptid-Y-Analoga zur Brustkrebsdiagnostik: von der Synthese zur klinischen Anwendung. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Zwanziger D, Böhme I, Lindner D, Beck-Sickinger AG. First selective agonist of the neuropeptide Y1-receptor with reduced size. J Pept Sci 2009; 15:856-66. [DOI: 10.1002/psc.1188] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Körner M, Waser B, Reubi JC. High expression of neuropeptide Y1 receptors in ewing sarcoma tumors. Clin Cancer Res 2008; 14:5043-9. [PMID: 18698022 DOI: 10.1158/1078-0432.ccr-07-4551] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Peptide receptors are frequently overexpressed in human tumors, allowing receptor-targeted scintigraphic imaging and therapy with radiolabeled peptide analogues. Neuropeptide Y (NPY) receptors are new candidates for these applications, based on their high expression in specific cancers. Because NPY receptors are expressed in selected sarcoma cell lines and because novel treatment options are needed for sarcomas, this study assessed the NPY receptor in primary human sarcomas. EXPERIMENTAL DESIGN Tumor tissues of 88 cases, including Ewing sarcoma family of tumors (ESFT), synovial sarcomas, osteosarcomas, chondrosarcomas, liposarcomas, angiosarcomas, rhabdomyosarcomas, leiomyosarcomas, and desmoid tumors, were investigated for NPY receptor protein with in vitro receptor autoradiography using (125)I-labeled NPY receptor ligands and for NPY receptor mRNA expression with in situ hybridization. RESULTS ESFT expressed the NPY receptor subtype Y1 on tumor cells in remarkably high incidence (84%) and density (mean, 5,314 dpm/mg tissue). Likewise, synovial sarcomas expressed Y1 on tumor cells in high density (mean, 7,497 dpm/mg; incidence, 40%). The remaining tumors expressed NPY receptor subtypes Y1 or Y2 at lower levels. Moreover, many of the sarcomas showed Y1 expression on intratumoral blood vessels. In situ hybridization for Y1 mRNA confirmed the autoradiography results. CONCLUSIONS NPY receptors are novel molecular markers for human sarcomas. Y1 may inhibit growth of specific sarcomas, as previously shown in an in vivo mouse model of human ESFT. The high Y1 expression on tumor cells of ESFT and synovial sarcomas and on blood vessels in many other sarcomas represents an attractive basis for an in vivo tumor targeting.
Collapse
Affiliation(s)
- Meike Körner
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology of the University of Berne, Murtenstrasse 31, Berne, Switzerland
| | | | | |
Collapse
|
26
|
Neuropeptide Y receptors in primary human brain tumors: overexpression in high-grade tumors. J Neuropathol Exp Neurol 2008; 67:741-9. [PMID: 18648328 DOI: 10.1097/nen.0b013e318180e618] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Peptide receptors are often overexpressed in tumors, and they may be targeted in vivo. We evaluated neuropeptide Y (NPY) receptor expression in 131 primary human brain tumors, including gliomas, embryonal tumors, meningiomas, and pituitary adenomas, by in vitro receptor autoradiography using the 125I-labeled NPY receptor ligand peptide YY in competition with NPY receptor subtype-selective analogs. Receptor functionality was investigated in selected cases using [35S]GTPgammaS-binding autoradiography. World Health Organization Grade IV glioblastomas showed a remarkably high expression of the NPY receptor subtype Y2 with respect to both incidence (83%) and density (mean, 4,886 dpm/mg tissue); astrocytomas World Health Organization Grades I to III and oligodendrogliomas also exhibited high Y2 incidences but low Y2 densities. In glioblastomas, Y2 agonists specifically stimulated [35S]GTPgammaS binding, suggesting that tumoral Y2 receptors were functional. Furthermore, nonneoplastic nerve fibers containing NPY peptide were identified in glioblastomas by immunohistochemistry. Medulloblastomas, primitive neuroectodermal tumors of the CNS, and meningiomas expressed Y1 and Y2 receptor subtypes in moderate incidence and density. In conclusion, Y2 receptors in glioblastomas that are activated by NPY originating from intratumoral nerve fibers might mediate functional effects on the tumor cells. Moreover, identification of the high expression of NPY receptors in high-grade gliomas and embryonal brain tumors provides the basis for in vivo targeting.
Collapse
|
27
|
Zwanziger D, Khan IU, Neundorf I, Sieger S, Lehmann L, Friebe M, Dinkelborg L, Beck-Sickinger AG. Novel Chemically Modified Analogues of Neuropeptide Y for Tumor Targeting. Bioconjug Chem 2008; 19:1430-8. [DOI: 10.1021/bc7004297] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Denise Zwanziger
- Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany, and Bayer Schering Pharma, Global Drug Discovery, Berlin, Germany
| | - Irfan Ullah Khan
- Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany, and Bayer Schering Pharma, Global Drug Discovery, Berlin, Germany
| | - Ines Neundorf
- Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany, and Bayer Schering Pharma, Global Drug Discovery, Berlin, Germany
| | - Stephanie Sieger
- Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany, and Bayer Schering Pharma, Global Drug Discovery, Berlin, Germany
| | - Lutz Lehmann
- Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany, and Bayer Schering Pharma, Global Drug Discovery, Berlin, Germany
| | - Matthias Friebe
- Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany, and Bayer Schering Pharma, Global Drug Discovery, Berlin, Germany
| | - Ludger Dinkelborg
- Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany, and Bayer Schering Pharma, Global Drug Discovery, Berlin, Germany
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany, and Bayer Schering Pharma, Global Drug Discovery, Berlin, Germany
| |
Collapse
|
28
|
Stillebroer AB, Oosterwijk E, Oyen WJG, Mulders PFA, Boerman OC. Radiolabeled antibodies in renal cell carcinoma. Cancer Imaging 2007; 7:179-88. [PMID: 18055291 PMCID: PMC2151324 DOI: 10.1102/1470-7330.2007.0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is a radio- and chemotherapy resistant tumor, which has a very high morbidity and mortality when metastasized. The current treatment options demonstrate limited efficacy and severe side-effects. Therefore, there is a need for new therapeutic strategies for RCC. As for other malignancies, monoclonal antibodies (mAbs) targeting tumor-associated antigens have been developed for RCC. One of these, mAb G250, targets the MN/CAIX/G250 antigen, which is ubiquitously expressed in clear cell RCC (ccRCC). ccRCC is the most common form of RCC with a prevalence of 80%. Expression of G250 in normal tissue is restricted to the gastrointestinal mucosa and related structures, thereby making it a suitable candidate for targeting ccRCC. In several clinical studies the efficient accumulation of mAb G250 in ccRCC has been demonstrated, resulting in high contrast images. G250-imaging could prove to be a valuable tool in diagnosing metastases in patients with a G250-antigen positive primary tumor and/or in the differential diagnosis of suspect kidney lesions. Furthermore, the therapeutic efficacy of radiolabeled G250 has been investigated in a series of studies. Thus far, most efforts have been devoted to G250 labeled with high doses of 131I. Other radionuclides which may enhance the therapeutic index of this radiolabeled mAb are currently under investigation. In our institution, an activity dose escalation study is currently ongoing to investigate the therapeutic potential of 177Lu-labeled G250 in metastatic ccRCC patients. In this review, the current status of the diagnostic and therapeutic properties of radiolabeled antibodies in RCC is described.
Collapse
Affiliation(s)
- Alexander B Stillebroer
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Abstract
We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
30
|
Körner M, Reubi JC. NPY receptors in human cancer: a review of current knowledge. Peptides 2007; 28:419-25. [PMID: 17223228 DOI: 10.1016/j.peptides.2006.08.037] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/20/2006] [Indexed: 11/26/2022]
Abstract
Many peptide hormone receptors are over-expressed in human cancer, permitting an in vivo targeting of tumors for diagnostic and therapeutic purposes. NPY receptors are novel and promising candidates in this field. Using in vitro receptor autoradiography, Y1 and Y2 receptors have been found to be expressed in breast carcinomas, adrenal gland and related tumors, renal cell carcinomas, and ovarian cancers in both tumor cells and tumor-associated blood vessels. Pathophysiologically, tumoral NPY receptors may be activated by endogenous NPY released from intratumoral nerve fibers or tumor cells themselves, and mediate NPY effects on tumor cell proliferation and tumoral blood supply. Clinically, tumoral NPY receptors may be targeted with NPY analogs coupled with adequate radionuclides or cytotoxic agents for a scintigraphic tumor imaging and/or tumor therapy.
Collapse
Affiliation(s)
- Meike Körner
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Bern, Murtenstrasse 31, PO Box 62, CH-3010 Bern, Switzerland
| | | |
Collapse
|