1
|
Wang J, Zhang T, Wan C, Lai Z, Li J, Chen L, Li M. The effect of theabrownins on the amino acid composition and antioxidant properties of hen eggs. Poult Sci 2023; 102:102717. [PMID: 37734359 PMCID: PMC10518584 DOI: 10.1016/j.psj.2023.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 09/23/2023] Open
Abstract
Pu-erh tea theabrownins (TBs) exert beneficial effect on egg quality and antioxidant properties of eggs, but the underlying mechanisms behind this response are unclear. In this study, we investigate the effect of TBs on egg antioxidative activity, amino acid and fatty acid profiles, and the underlying relationship between the TBs and oxidant-sensitive Nrf2 signaling pathway in laying hens. Eighty layers were fed a basal diet (control) and 400 mg/kg of TBs supplemented diet for 12 wk. TBs led to an increase in albumen height and Haugh unit (P < 0.05). The albumen lysine, valine, and tryptophan were higher in layers fed TBs, whereas yolk tryptophan, methionine, vitamin A, and α-tocopherol content were enhanced by TBs (P < 0.05). Eggs albumen and yolk showed higher total antioxidant capacity (T-AOC), reducing power (RP), and the scavenging rate of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH), and lower MDA content than those of eggs from the control group (P < 0.05). Also, magnum Nrf2, hemeoxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), and Bcl2 expression were up-regulated by TBs, whereas magnum proapoptotic gene (Bax, caspase 3, Cyt C) were down-regulated by TBs (P < 0.05). Our findings suggest that TBs improved egg albumen quality and antioxidant activity, and the Nrf2-ARE pathway were found to be involved in this process.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhangfeng Lai
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Li
- Tea Science Research Institute, Xiushui, Jiujiang, 332400, China
| | - Luojun Chen
- Tea Science Research Institute, Xiushui, Jiujiang, 332400, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
2
|
KAEWKOD T, SANGBOONRUANG S, KHACHA-ANANDA S, CHAROENRAK S, BOVONSOMBUT S, TRAGOOLPUA Y. Combinations of traditional kombucha tea with medicinal plant extracts for enhancement of beneficial substances and activation of apoptosis signaling pathways in colorectal cancer cells. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.107521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Tong F, Ye Y, Chen B, Gao J, Liu L, Ou J, van Hest JCM, Liu S, Peng F, Tu Y. Bone-Targeting Prodrug Mesoporous Silica-Based Nanoreactor with Reactive Oxygen Species Burst for Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34630-34642. [PMID: 32635715 DOI: 10.1021/acsami.0c08992] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer remains a primary threat to human lives. Recently, amplification of tumor-associated reactive oxygen species (ROS) has been used as a boosting strategy to improve tumor therapy. Here, we report on a bone-targeting prodrug mesoporous silica-based nanoreactor for combined photodynamic therapy (PDT) and enhanced chemotherapy for osteosarcoma. Because of surface modification of a bone-targeting biphosphate moiety and the enhanced permeability and retention effect, the formed nanoreactor shows efficient accumulation in osteosarcoma and exhibits long-term retention in the tumor microenvironment. Upon laser irradiation, the loaded photosensitizer chlorin e6 (Ce6) produces in situ ROS, which not only works for PDT but also functions as a trigger for controlled release of doxorubicin (DOX) and doxycycline (DOXY) from the prodrugs based on a thioketal (TK) linkage. The released DOXY further promotes ROS production, thus perpetuating subsequent DOX/DOXY release and ROS burst. The ROS amplification induces long-term high oxidative stress, which increases the sensitivity of the osteosarcoma to chemotherapy, therefore resulting in enhanced tumor cell inhibition and apoptosis. The as-developed nanoreactor with combined PDT and enhanced chemotherapy based on ROS amplification shows significant promise as a potential platform for cancer treatment.
Collapse
Affiliation(s)
- Fei Tong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Junbin Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lu Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Juanfeng Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jan C M van Hest
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Zhu H, Chen Z, Ma Z, Tan H, Xiao C, Tang X, Zhang B, Wang Y, Gao Y. Tanshinone IIA Protects Endothelial Cells from H₂O₂-Induced Injuries via PXR Activation. Biomol Ther (Seoul) 2017; 25:599-608. [PMID: 28173640 PMCID: PMC5685429 DOI: 10.4062/biomolther.2016.179] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/08/2016] [Accepted: 11/03/2016] [Indexed: 01/11/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is a pharmacologically active substance extracted from the rhizome of Salvia miltiorrhiza Bunge (also known as the Chinese herb Danshen), and is widely used to treat atherosclerosis. The pregnane X receptor (PXR) is a nuclear receptor that is a key regulator of xenobiotic and endobiotic detoxification. Tan IIA is an efficacious PXR agonist that has a potential protective effect on endothelial injuries induced by xenobiotics and endobiotics via PXR activation. Previously numerous studies have demonstrated the possible effects of Tan IIA on human umbilical vein endothelial cells, but the further mechanism for its exerts the protective effect is not well established. To study the protective effects of Tan IIA against hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVECs), we pretreated cells with or without different concentrations of Tan IIA for 24 h, then exposed the cells to 400 μM H2O2 for another 3 h. Therefore, our data strongly suggests that Tan IIA may lead to increased regeneration of glutathione (GSH) from the glutathione disulfide (GSSG) produced during the GSH peroxidase-catalyzed decomposition of H2O2 in HUVECs, and the PXR plays a significant role in this process. Tan IIA may also exert protective effects against H2O2-induced apoptosis through the mitochondrial apoptosis pathway associated with the participation of PXR. Tan IIA protected HUVECs from inflammatory mediators triggered by H2O2 via PXR activation. In conclusion, Tan IIA protected HUVECs against H2O2-induced cell injury through PXR-dependent mechanisms.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China.,Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhiwu Chen
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Zengchun Ma
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongling Tan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chengrong Xiao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xianglin Tang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuguang Wang
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China.,Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yue Gao
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China.,Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
5
|
Hajiaghaalipour F, Kanthimathi MS, Sanusi J, Rajarajeswaran J. White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chem 2014; 169:401-10. [PMID: 25236244 DOI: 10.1016/j.foodchem.2014.07.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022]
Abstract
Tea (Camellia sinensis) is one of the most consumed beverages in the world. White tea is made from the buds and young leaves of the tea plant which are steamed and dried, whilst undergoing minimal oxidation. The MTT assay was used to test the extract on the effect of the proliferation of the colorectal cancer cell line, HT-29. The extract inhibited the proliferation of HT-29 cells with an IC50 of 87μg/ml. The extract increased the levels of caspase-3, -8, and -9 activity in the cells. DNA damage in 3T3-L1 normal cells was detected by using the comet assay. The extract protected 3T3-L1 cells against H2O2-induced DNA damage. The results from this study show that white tea has antioxidant and antiproliferative effects against cancer cells, but protect normal cells against DNA damage. Regular intake of white tea can help to maintain good health and protect the body against disease.
Collapse
Affiliation(s)
- Fatemeh Hajiaghaalipour
- Department of Molecular Medicine, University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - M S Kanthimathi
- Department of Molecular Medicine, University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Junedah Sanusi
- Department of Anatomy, Neuroscience Research Group, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jayakumar Rajarajeswaran
- Department of Molecular Medicine, University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
7
|
Dey SK, Bose D, Hazra A, Naskar S, Nandy A, Munda RN, Das S, Chatterjee N, Mondal NB, Banerjee S, Saha KD. Cytotoxic activity and apoptosis-inducing potential of di-spiropyrrolidino and di-spiropyrrolizidino oxindole andrographolide derivatives. PLoS One 2013; 8:e58055. [PMID: 23472133 PMCID: PMC3589478 DOI: 10.1371/journal.pone.0058055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023] Open
Abstract
Anticancer role of andrographolide is well documented. To find novel potent derivatives with improved cytotoxicity than andrographolide on cancer cells, two series of di-spiropyrrolidino- and di-spiropyrrolizidino oxindole andrographolide derivatives prepared by cyclo-addition of azomethine ylide along with sarcosine or proline (viz. sarcosine and proline series respectively) and substitution of different functional groups (-CH3, -OCH3 and halogens) were examined for their cytotoxic effect on a panel of six human cancer cell lines (colorectal carcinoma HCT116 cells, pancreatic carcinoma MiaPaCa-2 cells, hepatocarcinoma HepG2 cells, cervical carcinoma HeLa cells, lung carcinoma A549 and melanoma A375 cells). Except halogen substituted derivatives of proline series (viz. CY2, CY14 and CY15 for Br, Cl and I substitution respectively), none of the other derivatives showed improved cytotoxicity than andrographolide in the cancer cell lines examined. Order of cytotoxicity of the potent compounds is CY2>CY14>CY15>andrographolide. Higher toxicity was observed in HCT116, MiaPaCa-2 and HepG2 cells. CY2, induced death of HCT116 (GI50 10.5), MiaPaCa-2 (GI50 11.2) and HepG2 (GI50 16.6) cells were associated with cell rounding, nuclear fragmentation and increased percentage of apoptotic cells, cell cycle arrest at G1 phase, ROS generation, and involvement of mitochondrial pathway. Upregulation of Bax, Bad, p53, caspases-3,-9 and cleaved PARP; downregulation of Bcl-2, cytosolic NF-κB p65, PI3K and p-Akt; translocation of P53/P21, NF-κB p65 were seen in CY2 treated HCT116 cells. Thus, three halogenated di-spiropyrrolizidino oxindole derivatives of andrographolide are found to be more cytotoxic than andrographolide in some cancer cells. The most potent derivative, CY2 induced death of the cancer cells involves ROS dependent mitochondrial pathway like andrographolide.
Collapse
Affiliation(s)
- Sumit Kumar Dey
- Cancer and Cell Biology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Dipayan Bose
- Cancer and Cell Biology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Abhijit Hazra
- Cancer and Cell Biology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Subhendu Naskar
- Cancer and Cell Biology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Abhishek Nandy
- Cancer and Cell Biology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Rudra Narayan Munda
- Cancer and Cell Biology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Subhadip Das
- Cancer and Cell Biology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Nabanita Chatterjee
- Cancer and Cell Biology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Nirup Bikash Mondal
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Sukdeb Banerjee
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Krishna Das Saha
- Cancer and Cell Biology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| |
Collapse
|
8
|
Gosslau A, En Jao DL, Huang MT, Ho CT, Evans D, Rawson NE, Chen KY. Effects of the black tea polyphenol theaflavin-2 on apoptotic and inflammatory pathways in vitro and in vivo. Mol Nutr Food Res 2011; 55:198-208. [PMID: 20669245 DOI: 10.1002/mnfr.201000165] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SCOPE Theaflavin-2 (TF-2), a major component of black tea extract, induces apoptosis of human colon cancer cells and suppresses serum-induced cyclooxygenase-2 (COX-2) expression 1. Here, we explored the mechanisms for activation of apoptosis, evaluated the impact on inflammatory genes in a broader panel of cells and tested whether topical anti-inflammatory effects could be observed in vivo. METHODS AND RESULTS TF-2 triggered apoptosis in five other transformed cancer cell lines, inducing cell shrinkage, membrane blebbing, and mitochondrial clustering within 3 h of treatment. Among a set of pro-apoptotic genes, TF-2 quickly induced the up-regulation of P53 and BAX, suggesting mitochondria as the primary target. Using a cell model for inflammatory response, we showed that TF-2 suppressed the 12-O-tetradecanoylphorbol-13-acetate-induced COX-2 gene expression, and also down-regulated TNF-α, iNOS, ICAM-1, and NFκB. A reporter gene assay showed that TF-2 down-regulated COX-2 at the transcriptional level. We also demonstrated that TF-2 exhibited anti-inflammatory activity in two mouse models of inflammation. Topical application with TF-2 significantly reduced ear edema and produced a pattern of gene down-regulation similar to that observed in the cell model. CONCLUSION These results suggest that the anti-inflammatory and pro-apoptotic activity of TF-2 may be exploited therapeutically in cancer and other diseases associated with inflammation.
Collapse
Affiliation(s)
- Alexander Gosslau
- WellGen Inc., Commercialization Center for Innovative Technologies, North Brunswick, NJ 08854-8087, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Chen CH, Chang YJ, Ku MSB, Chung KT, Yang JT. Enhancement of temozolomide-induced apoptosis by valproic acid in human glioma cell lines through redox regulation. J Mol Med (Berl) 2011; 89:303-15. [PMID: 21340685 DOI: 10.1007/s00109-010-0707-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/09/2010] [Accepted: 11/18/2010] [Indexed: 12/18/2022]
Abstract
Temozolomide (TMZ) is an oral alkylating agent that has been widely used in the treatment of refractory glioma, although inherent and acquired resistance to this drug is common. The clinical use of valproic acid (VPA) as an anticonvulsant and mood-stabilizing drug has been reported primarily for the treatment of epilepsy and bipolar disorder and less commonly for major depression. VPA is also used in the treatment of glioma-associated seizures with or without intracranial operation. In this study, we evaluated the potential synergistic effect of TMZ and VPA in human glioma cell lines. Compared with the use of TMZ or VPA alone, concurrent treatment with both drugs synergistically induced apoptosis in U87MG cells as evidenced by p53 and Bax expression, mitochondrial transmembrane potential loss, reactive oxygen species production, and glutathione depletion. This synergistic effect correlated with a decrease in nuclear translocation of the nuclear factor-erythroid 2 p45-related factor and corresponded with reduced heme oxygenase-1 and γ-glutamylcysteine synthetase expression. Pretreatment with N-acetylcysteine partially recovered the apoptotic effect of the TMZ/VPA combination treatment. The same degree of synergism is also seen in p53-mutant Hs683 cells, which indicates that p53 may not play a major role in the increased proapoptotic effect of the TMZ/VPA combination. In conclusion, VPA enhanced the apoptotic effect of TMZ, possibly through a redox regulation mechanism. The TMZ/VPA combination may be effective for treating glioma cancer and may be a powerful agent against malignant glioma. This drug combination should be further explored in the clinical setting.
Collapse
Affiliation(s)
- Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Lahiry L, Saha B, Chakraborty J, Adhikary A, Mohanty S, Hossain DMS, Banerjee S, Das K, Sa G, Das T. Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis 2009; 31:259-68. [DOI: 10.1093/carcin/bgp240] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
11
|
Theaflavins retard human breast cancer cell migration by inhibiting NF-κB via p53-ROS cross-talk. FEBS Lett 2009; 584:7-14. [DOI: 10.1016/j.febslet.2009.10.081] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 11/19/2022]
|
12
|
Chattopadhyay S, Bhattacharyya S, Saha B, Chakraborty J, Mohanty S, Sakib Hossain DM, Banerjee S, Das K, Sa G, Das T. Tumor-shed PGE(2) impairs IL2Rgammac-signaling to inhibit CD4 T cell survival: regulation by theaflavins. PLoS One 2009; 4:e7382. [PMID: 19812686 PMCID: PMC2753647 DOI: 10.1371/journal.pone.0007382] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 08/28/2009] [Indexed: 01/18/2023] Open
Abstract
Background Many tumors are associated with decreased cellular immunity and elevated levels of prostaglandin E2 (PGE2), a known inhibitor of CD4+ T cell activation and inducer of type-2 cytokine bias. However, the role of this immunomodulator in the survival of T helper cells remained unclear. Since CD4+ T cells play critical roles in cell-mediated immunity, detail knowledge of the effect tumor-derived PGE2 might have on CD4+ T cell survival and the underlying mechanism may, therefore, help to overcome the overall immune deviation in cancer. Methodology/Principal Findings By culturing purified human peripheral CD4+ T cells or Jurkat cells with spent media of theaflavin- or celecoxib-pre-treated MCF-7 cells, we show that tumor-shed PGE2 severely impairs interleukin 2 receptor γc (IL2Rγc)-mediated survival signaling in CD4+ T cells. Indeed, tumor-shed PGE2 down-regulates IL2Rγc expression, reduces phosphorylation as well as activation of Janus kinase 3 (Jak-3)/signal transducer and activator of transcription 5 (Stat-5) and decreases Bcl-2/Bax ratio thereby leading to activation of intrinsic apoptotic pathway. Constitutively active Stat-5A (Stat-5A1*6) over-expression efficiently elevates Bcl-2 levels in CD4+ T cells and protects them from tumor-induced death while dominant-negative Stat-5A over-expression fails to do so, indicating the importance of Stat-5A-signaling in CD4+ T cell survival. Further support towards the involvement of PGE2 comes from the results that (a) purified synthetic PGE2 induces CD4+ T cell apoptosis, and (b) when knocked out by small interfering RNA, cyclooxygenase-2 (Cox-2)-defective tumor cells fail to initiate death. Interestingly, the entire phenomena could be reverted back by theaflavins that restore cytokine-dependent IL2Rγc/Jak-3/Stat-5A signaling in CD4+ T cells thereby protecting them from tumor-shed PGE2-induced apoptosis. Conclusions/Significance These data strongly suggest that tumor-shed PGE2 is an important factor leading to CD4+ T cell apoptosis during cancer and raise the possibility that theaflavins may have the potential as an effective immunorestorer in cancer-bearer.
Collapse
Affiliation(s)
- Sreya Chattopadhyay
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Sankar Bhattacharyya
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Baisakhi Saha
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Juni Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Suchismita Mohanty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | | | - Shuvomoy Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Kaushik Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
- * E-mail:
| |
Collapse
|
13
|
Regulation of cell growth through cell cycle arrest and apoptosis in HPV 16 positive human cervical cancer cells by tea polyphenols. Invest New Drugs 2009; 28:216-24. [PMID: 19271153 DOI: 10.1007/s10637-009-9240-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Cervical cancer is the second most common malignant neoplasm in women, in terms of both incidence and mortality rates worldwide. The polyphenolic constituents of tea (Camellia sinensis) have gained considerable attention because of its anti-cancer properties against a variety of cancers. Here we studied the effects of green and black tea polyphenols (GTP and BTP), on cellular proliferation and cell death in the SiHa cells (human cervical cancer) expressing the human papilloma virus (HPV)-16. The result showed that both GTP and BTP inhibited proliferation of cells in dose and time dependent manner. Cell cycle analysis showed anti-proliferative effect of GTP which is associated with an increase in the G2/M phase and apoptotic effect of BTP in 24 h treated SiHa cells. Further, on increase of incubation time for 48 h, GTP caused induction of apoptosis up to 20% of SiHa cells. The role GTP and BTP in apoptosis was further confirmed by reduction in mitochondrial membrane potential and increased levels of membrane phosphatidylserine. Thus, our data suggests that tea polyphenols exhibit anti-cancer potential against cervical cancer by inhibition of cell growth and induction of apoptosis.
Collapse
|
14
|
Letchoumy PV, Mohan KVPC, Prathiba D, Hara Y, Nagini S. Comparative evaluation of antiproliferative, antiangiogenic and apoptosis inducing potential of black tea polyphenols in the hamster buccal pouch carcinogenesis model. J Carcinog 2007; 6:19. [PMID: 18053169 PMCID: PMC2217513 DOI: 10.1186/1477-3163-6-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Accepted: 12/03/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To evaluate the relative chemopreventive efficacy of two black tea polyphenols, Polyphenon-B [P-B] and BTF-35 on 7,12-dimethylbenz [a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. METHODS Hamsters were divided into 6 groups. The right buccal pouches of animals in groups 1-3 were painted with 0.5% of DMBA three times a week for 14 weeks. While hamsters in group 1 received no further treatment, animals in groups 2 and 3 received diet containing 0.05% P-B and BTF-35 respectively, four weeks before DMBA painting that was continued until the end of the experiments. Animals in groups 4 and 5 were given P-B and BTF-35 alone respectively as in groups 2 and 3. Group 6 animals served as the untreated control. All the animals were sacrificed after 18 weeks. The expression of p21, cyclin D1, glutathione S-transferase pi (GST-P), nuclear factor kappa B (NF-kappaB), Bcl-2, Bax, cytochrome C, caspase-3, caspase-9, poly(ADP-ribose) polymerase (PARP), cytokeratins and vascular endothelial growth factor (VEGF) was analysed by RT-PCR, immunohistochemical and Western blot analyses. RESULTS DMBA treated animals developed buccal pouch carcinomas that displayed increased expression of p21, cyclin D1, GST-P, NF-kappaB, cytokeratins, VEGF and Bcl-2 with decreased expression of Bax, cytochrome C, caspase-3, caspase-9, and PARP. Dietary administration of both P-B and BTF-35 reduced the incidence of DMBA-induced HBP carcinomas by modulating markers of cell proliferation, cell survival, tumour infiltration, angiogenesis, and apoptosis. CONCLUSION The results of the present study provide a mechanistic basis for the chemopreventive potential of black tea polyphenols. The greater efficacy of BTF-35 in inhibiting HBP carcinogenesis and modulating multiple molecular targets may have a potential role in the prevention of oral cancer.
Collapse
Affiliation(s)
- Paramasivame Vidjaya Letchoumy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India
| | | | - Duvuru Prathiba
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Chennai-600 116, Tamil Nadu, India
| | | | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India
| |
Collapse
|
15
|
Wang GY, Zhang JW, Lü QH, Xu RZ, Dong QH. Berbamine induces apoptosis in human hepatoma cell line SMMC7721 by loss in mitochondrial transmembrane potential and caspase activation. J Zhejiang Univ Sci B 2007; 8:248-55. [PMID: 17444599 PMCID: PMC1838830 DOI: 10.1631/jzus.2007.b0248] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the effect of berbamine on human hepatoma cell line SMMC7721. METHODS The effects of 24 h and 48 h incubation with different concentrations (0 to approximately 64 microg/ml) of the berbamine on SMMC7721 cells were evaluated using 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. Hoechst 33258 staining was conducted to distinguish the apoptotic cell, and the appearance of sub-G1 stage was determined by PI (propidium iodide) staining, the percentage of apoptotic cell was determined by flow cytometry following annexin V/PI staining. Flow cytometry was performed to analyze the cell cycle distribution and the mitochondrial membrane potential (psi(m)); the expression of activated caspase3 and caspase9 was analyzed by Western-blot. RESULTS The proliferation of SMMC7721 was decreased after treatment with berbamine in a dose- and time-dependent manner. Berbamine could induce apoptosis in SMMC7721 cells and could cause cell cycle arrest in G0/G1 phase, to induce loss of mitochondrial membrane potential (psi(m)) and activate caspase3 and caspase9. Berbamine-induced apoptosis could be blocked by the broad caspase inhibitor z-VAD-fmk. CONCLUSION Berbamine exerts antiproliferative effects on human hepatocellular carcinoma SMMC7721 cells. The anticancer activity of berbamine could be attributed partly to its inhibition of cell proliferation and induction of apoptosis in cancer cells through loss in mitochondrial transmembrane potential and caspase activation.
Collapse
Affiliation(s)
- Guan-yu Wang
- Department of Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- †E-mail:
| | - Jia-wei Zhang
- Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qing-hua Lü
- Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Rong-zhen Xu
- Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qing-hua Dong
- Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- †E-mail:
| |
Collapse
|
16
|
Murugan RS, Mohan KVPC, Uchida K, Hara Y, Prathiba D, Nagini S. Modulatory effects of black tea polyphenols on oxidant-antioxidant profile and expression of proliferation, apoptosis, and angiogenesis-associated proteins in the rat forestomach carcinogenesis model. J Gastroenterol 2007; 42:352-61. [PMID: 17530359 DOI: 10.1007/s00535-007-2018-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 01/29/2007] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chemoprevention by dietary constituents has emerged as a novel approach to control stomach cancer incidence. We therefore evaluated the chemopreventive effects of black tea polyphenols (Polyphenon-B) on oxidant-antioxidant status, cell proliferation, apoptosis, and angiogenesis during N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis. METHODS Male Wistar rats were divided into four groups. Rats in group 1 and 2 were given MNNG (150 mg/kg body weight) by intragastric intubation three times at 2 week intervals and followed for 26 weeks. Rats in group 2 received in addition a basal diet containing 0.05% Polyphenon-B. Group 3 animals were given 0.05% Polyphenon-B alone. Group 4 animals served as controls. The status of lipid peroxidation and antioxidants and the expression of the lipid peroxidation marker 4-hydroxy nonenal (4-HNE), proliferating cell nuclear antigen (PCNA), glutathiones-transferase (GST)-pi, Bcl-2, Bax, cytochrome C, caspase 3, cytokeratins, and vascular endothelial growth factor (VEGF) were used as biomarkers. RESULTS Intragastric administration of MNNG induced well-differentiated squamous cell carcinomas that showed diminished lipid and protein oxidation and an increase in antioxidant status. This was associated with increased cell proliferation, angiogenesis, and invasive potential coupled with apoptosis evasion as revealed by upregulation of PCNA, GST-pi, Bcl-2, cytokeratins, and VEGF and downregulation of Bax, cytochrome C, and caspase 3 protein expression. Dietary administration of Polyphenon-B effectively suppressed MNNG-induced gastric carcinogenesis, as evidenced by modulation of oxidant-antioxidant status, inhibition of cell proliferation and infiltration, and angiogenesis associated with apoptosis induction. CONCLUSIONS The present study provides evidence that Polyphenon-B exerts multifunctional inhibitory effects on MNNG-induced gastric carcinogenesis and suggests that it can be developed as a potential chemopreventive agent.
Collapse
Affiliation(s)
- Ramalingam Senthil Murugan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
17
|
Mandal D, Lahiry L, Bhattacharyya A, Bhattacharyya S, Sa G, Das T. Tumor-induced thymic involution via inhibition of IL-7Rα and its JAK-STAT signaling pathway: Protection by black tea. Int Immunopharmacol 2006; 6:433-44. [PMID: 16428079 DOI: 10.1016/j.intimp.2005.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 06/28/2005] [Accepted: 09/14/2005] [Indexed: 11/30/2022]
Abstract
Down-regulation of cell-mediated immune functions occurring at late stages of cancer may be related to the thymic involution since thymus is the major site of T cell maturation, proliferation, and differentiation. We found that in Ehrlich's ascites carcinoma (EAC)-bearing mice there was profound depletion of CD4+ and CD8+ cells in peripheral blood with severely damaged thymus on 21st day of tumor inoculation. However, treatment with black tea at an antitumor dose of 2.5% significantly reduced such depletion and protected the thymus considerably from tumor onslaught. A search for the underlying mechanism revealed EAC-induced IL-7Ralpha down-regulation, inhibition of JAK3 and STAT5 phosphorylation, and decrease in Bcl-2/Bax ratio in thymocytes that finally led to thymocyte apoptosis in one hand and T cell maturation block on the other. Interestingly, black tea treatment prevented IL-7Ralpha down-regulation and protected the signaling cascade through JAK-STAT thereby inhibiting tumor-induced thymic apoptosis and ensuring proper functioning of this organ in tumor-bearing host.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Camellia sinensis
- Carcinoma, Ehrlich Tumor/enzymology
- Carcinoma, Ehrlich Tumor/immunology
- Carcinoma, Ehrlich Tumor/pathology
- Carcinoma, Ehrlich Tumor/prevention & control
- Cell Line, Tumor
- Cells, Cultured
- Janus Kinase 3/antagonists & inhibitors
- Janus Kinase 3/physiology
- Leukocyte Count
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Lymphocyte Count
- MAP Kinase Signaling System/immunology
- Mice
- Phosphorylation
- Plant Extracts/therapeutic use
- Receptors, Interleukin-7/antagonists & inhibitors
- Receptors, Interleukin-7/physiology
- STAT5 Transcription Factor/antagonists & inhibitors
- STAT5 Transcription Factor/physiology
- Tea/chemistry
- Thymus Gland/drug effects
- Thymus Gland/enzymology
- Thymus Gland/immunology
- Thymus Gland/pathology
Collapse
|