1
|
Zhou S, Zhang Q, Xu J, Xiang R, Dong X, Zhou X, Liu Z. CAP superfamily proteins in human: a new target for cancer therapy. Med Oncol 2024; 41:306. [PMID: 39499355 DOI: 10.1007/s12032-024-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The CAP (Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1) superfamily proteins (CAP proteins) are found in all kingdoms of life. The cysteine-rich secreted proteins are prevalent in human organs and tissues and serve as critical signaling molecules within cells, regulating a wide range of biochemical processes in the human body. Due to their involvement in numerous biological processes, CAP proteins have recently attracted significant attention, particularly in the context of tumorigenesis and cancer therapy. This review summarizes the expression patterns and roles of CAP proteins in various cancers. Additionally, it analyzes the mechanisms by which CAP proteins affect cancer cell proliferation and survival, regulate epithelial-mesenchymal transition, influence drug resistance, and regulate epigenetics. The review reveals that CAP proteins play distinct roles in various signaling pathways, such as the MAPK, PI3K-Akt, and p53 pathways, which are crucial for tumor progression. Furthermore, this review summarizes the tumor-inhibiting function of CAP proteins and their potential as cancer biomarkers. These findings suggest that CAP proteins represent a promising new target for innovative cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shenao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
2
|
Desai TA, Hedman ÅK, Dimitriou M, Koprulu M, Figiel S, Yin W, Johansson M, Watts EL, Atkins JR, Sokolov AV, Schiöth HB, Gunter MJ, Tsilidis KK, Martin RM, Pietzner M, Langenberg C, Mills IG, Lamb AD, Mälarstig A, Key TJ, Travis RC, Smith-Byrne K. Identifying proteomic risk factors for overall, aggressive, and early onset prostate cancer using Mendelian Randomisation and tumour spatial transcriptomics. EBioMedicine 2024; 105:105168. [PMID: 38878676 PMCID: PMC11233900 DOI: 10.1016/j.ebiom.2024.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. METHODS We investigated the association of 2002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomisation (MR) and colocalisation. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalisation were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumour tissue to assess their role in tumour aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. FINDINGS We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which the majority replicated where data were available. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirmed an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also found an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that comparatively had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk also mapped to existing therapeutic interventions. INTERPRETATION Our findings emphasise the importance of proteomics for improving our understanding of prostate cancer aetiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumours. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer. FUNDING This work was supported by Cancer Research UK (grant no. C8221/A29017).
Collapse
Affiliation(s)
- Trishna A Desai
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom.
| | - Åsa K Hedman
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marios Dimitriou
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
| | - Sandy Figiel
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Wencheng Yin
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Eleanor L Watts
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Joshua R Atkins
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience Uppsala University, 75124, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience Uppsala University, 75124, Uppsala, Sweden
| | - Marc J Gunter
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; NIHR Bristol Biomedical Research Centre, Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, United Kingdom; Computational Medicine, Berlin Institute of HealthHealth (BIH) at Charité - Univeritätsmedizin- Universitätsmedizin Berlin, Berlin, Germany; Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, United Kingdom; Computational Medicine, Berlin Institute of HealthHealth (BIH) at Charité - Univeritätsmedizin- Universitätsmedizin Berlin, Berlin, Germany; Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ian G Mills
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Alastair D Lamb
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Anders Mälarstig
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tim J Key
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C Travis
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Desai TA, Hedman ÅK, Dimitriou M, Koprulu M, Figiel S, Yin W, Johansson M, Watts EL, Atkins JR, Sokolov AV, Schiöth HB, Gunter MJ, Tsilidis KK, Martin RM, Pietzner M, Langenberg C, Mills IG, Lamb AD, Mälarstig A, Key TJ, Travis RC, Smith-Byrne K. Identifying proteomic risk factors for overall, aggressive and early onset prostate cancer using Mendelian randomization and tumor spatial transcriptomics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295864. [PMID: 37790472 PMCID: PMC10543057 DOI: 10.1101/2023.09.21.23295864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. Methods We investigated the association of 2,002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomization (MR) and colocalization. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalization were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumor tissue to assess their role in tumor aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. Results We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which a majority were novel and replicated. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirm an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also find an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk mapped to existing therapeutic interventions. Conclusion Our findings emphasize the importance of proteomics for improving our understanding of prostate cancer etiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumors. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer.
Collapse
Affiliation(s)
- Trishna A Desai
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Åsa K Hedman
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Department of Medicine, Stockholm, Sweden
| | - Marios Dimitriou
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Department of Medicine, Stockholm, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
| | - Sandy Figiel
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Wencheng Yin
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Eleanor L Watts
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Joshua R Atkins
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience Uppsala University, 75124 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience Uppsala University, 75124 Uppsala, Sweden
| | - Marc J Gunter
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- NIHR Bristol Biomedical Research Centre, Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
- Computational Medicine, Berlin Institute of HealthHealth (BIH) at Charité - Univeritätsmedizin- Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
- Computational Medicine, Berlin Institute of HealthHealth (BIH) at Charité - Univeritätsmedizin- Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ian G Mills
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Alastair D Lamb
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Anders Mälarstig
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Department of Medicine, Stockholm, Sweden
| | - Tim J Key
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C Travis
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Fernández-Tabanera E, Melero-Fernández de Mera RM, Alonso J. CD44 In Sarcomas: A Comprehensive Review and Future Perspectives. Front Oncol 2022; 12:909450. [PMID: 35785191 PMCID: PMC9247467 DOI: 10.3389/fonc.2022.909450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
It is widely accepted that the tumor microenvironment, particularly the extracellular matrix, plays an essential role in the development of tumors through the interaction with specific protein-membrane receptors. One of the most relevant proteins in this context is the transmembrane protein CD44. The role of CD44 in tumor progression, invasion, and metastasis has been well established in many cancers, although a comprehensive review concerning its role in sarcomas has not been published. CD44 is overexpressed in most sarcomas and several in vitro and in vivo experiments have shown a direct effect on tumor progression, dissemination, and drug resistance. Moreover, CD44 has been revealed as a useful marker for prognostic and diagnostic (CD44v6 isoform) in osteosarcoma. Besides, some innovative treatments such as HA-functionalized liposomes therapy have become an excellent CD44-mediated intracellular delivery system for osteosarcoma. Unfortunately, the reduced number of studies deciphering the prognostic/diagnostic value of CD44 in other sarcoma subgroups, neither than osteosarcoma, in addition to the low number of patients involved in those studies, have produced inconclusive results. In this review, we have gone through the information available on the role of CD44 in the development, maintenance, and progression of sarcomas, analyzing their implications at the prognostic, therapeutic, and mechanistic levels. Moreover, we illustrate how research involving the specific role of CD44 in the different sarcoma subgroups could suppose a chance to advance towards a more innovative perspective for novel therapies and future clinical trials.
Collapse
Affiliation(s)
- Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Raquel M. Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- *Correspondence: Javier Alonso,
| |
Collapse
|
5
|
Kim H, Roh Y, Yong Park S, Lee C, Lim S, Cho S, Lee HY, Auck Hong S, Jin Lee T, Chul Myung S, Yun SJ, Hyun Choi Y, Kim WJ, Moon SK. In vitro and in vivo anti-tumor efficacy of krill oil against bladder cancer: Involvement of tumor-associated angiogenic vasculature. Food Res Int 2022; 156:111144. [DOI: 10.1016/j.foodres.2022.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
|
6
|
Huang X, Xu H, Zeng Y, Lan Q, Liu L, Lai W, Chu Z. Identification of a 3-gene signature for predicting the prognosis of stage II colon cancer based on microsatellite status. J Gastrointest Oncol 2022; 12:2749-2762. [PMID: 35070404 DOI: 10.21037/jgo-21-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/24/2021] [Indexed: 11/06/2022] Open
Abstract
Background Though colon cancer (CC) is one of the most malignant tumors across the world, CC patients with microsatellite instability-high (MSI-H) in stage II seem to have a better prognosis. However, the molecular mechanisms underlying the phenomena haven't been elucidated yet. Methods This study enrolled 322 CCs with known microsatellite status from GSE143985, GSE39582 and GSE92921 in the Gene Expression Omnibus (GEO) database. Robust rank aggregation (RRA) analysis, univariate Cox regression analysis and multivariate Cox stepwise regression analysis were performed to identify genes and construct risk score signature. Kaplan-Meier and receiver operating characteristic (ROC) curves analyses were used to evaluate the prognostic value of the signature. The potential mechanisms underlying this signature were assessed in the Metascape database, gene set enrichment analysis (GSEA) and immune infiltration analysis. Results RRA analysis identified 40 differently expressed genes (DEGs). A 3-gene risk score signature (MKQ signature) associated with disease-free survival (DFS) was generated. DFS was significantly longer in CC patients with lower than higher scores (P=0.0046). The areas under curves (AUCs) of the time-dependent ROC curves of MKQ signature at 1-, 3- and 5-year DFS were 1, 0.963 and 0.961 respectively. Recurrence-free survival (RFS) was significantly longer in patients in GSE39582 with lower than higher risk scores (P=0.032). The AUCs for 1-, 3- and 5-year RFS in GSE39582 were 0.63, 0.618 and 0.583, respectively, validating the value of the MKQ signature. Functional annotation and GSEA revealed that the MKQ signature was associated with multiple immune-related pathways. Immune cell infiltration was found to differ in patients differing in the MKQ signature. Conclusions Gene expression and microsatellite status identified a 3-gene signature (MKQ signature) that could facilitate risk-stratified management in patients with stage II CC. Dysregulation of MSMB, KRT23, and QPRT can serve as prognostic markers in stage II CC.
Collapse
Affiliation(s)
- Xiangxiong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Heyang Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yujie Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiusheng Lan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhonghua Chu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Hwang B, Gho Y, Kim H, Lee S, Hong SA, Lee TJ, Myung SC, Yun SJ, Choi YH, Kim WJ, Moon SK. Rosa hybrida Petal Extract Exhibits Antitumor Effects by Abrogating Tumor Progression and Angiogenesis in Bladder Cancer Both In Vivo and In Vitro. Integr Cancer Ther 2022; 21:15347354221114337. [PMID: 35912937 PMCID: PMC9421223 DOI: 10.1177/15347354221114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The edible Rosa hybrida (RH) petal is utilized in functional
foods and cosmetics. Although the biological function of RH petal extract is
known, mechanism of action studies involving tumor-associated angiogenesis have
not yet been reported. Herein, we investigated the regulatory effect of the
ethanol extract of RH petal (EERH) on tumor growth and tumor angiogenesis
against bladder cancer. EERH treatment inhibited the bladder carcinoma T24 cell
and 5637 cell proliferation because of G1-phase cell cycle arrest by
inducing p21WAF1 expression and reducing cyclins/CDKs level. EERH regulated
signaling pathways differently in both cells. EERH-stimulated suppression of T24
and 5637 cell migration and invasion was associated with the decline in
transcription factor-mediated MMP-9 expression. EERH oral administration to
xenograft mice reduced tumor growth. Furthermore, no obvious toxicity was
observed in acute toxicity test. Decreased CD31 levels in EERH-treated tumor
tissues led to examine the angiogenic response. EERH alleviated VEGF-stimulated
tube formation and proliferation by downregulating the VEGFR2/eNOS/AKT/ERK1/2
cascade in HUVECs. EERH impeded migration and invasion of VEGF-induced HUVECs,
which is attributed to the repressed MMP-2 expression. Suppression of
neo-microvessel sprouting, induced by VEGF, was verified by treatment with EERH
using the ex vivo aortic ring assay. Finally, kaempferol was identified as the
main active compound of EERH. The present study demonstrated that EERH may aid
the development of antitumor agents against bladder cancer.
Collapse
Affiliation(s)
- Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| | - Yujeong Gho
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| | - Sanghyun Lee
- Dpartment of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Tae Jin Lee
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Soon Chul Myung
- Department of Urology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Seok-Joong Yun
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, South Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
8
|
Zhang L, Xie Q, Li X. Esculetin: A review of its pharmacology and pharmacokinetics. Phytother Res 2021; 36:279-298. [PMID: 34808701 DOI: 10.1002/ptr.7311] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022]
Abstract
Esculetin is a natural dihydroxy coumarin; it is mainly extracted from twig skin and the trunk bark of the Chinese herbal medicine Fraxinus rhynchophylla Hance. Emerging evidence suggests that esculetin has a wide range of pharmacological activities. Based on its fundamental properties, including antioxidant, antiinflammatory, antiapoptotic, anticancer, antidiabetic, neuroprotective, and cardiovascular protective activities, as well as antibacterial activity, among others, esculetin is expected to be a therapeutic drug for specific disease indications, such as cancer, diabetes, atherosclerosis, Alzheimer's disease (AD), Parkinson's disease (PD), nonalcoholic fatty liver disease (NAFLD), and other diseases. The oral bioavailability of esculetin was shown by studies to be low. The extensive glucuronidation was described to be the main metabolic pathway of esculetin and C-7 phenolic hydroxyl to be its major metabolic site. With the development of scientific research technology, the pharmacological effects of esculetin are identified and its potential for the treatment of diseases is demonstrated. The underlining mechanisms of action and biological activities as well as the pharmacokinetic data of the analyzed compound reported so far are highlighted in this review with the aim of becoming a proven, and applicable insight and reference for further studies on the utilization of esculetin.
Collapse
Affiliation(s)
- Linlin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingxuan Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Hwang B, Shin SS, Song JH, Choi YH, Kim WJ, Moon SK. Carnosine exerts antitumor activity against bladder cancers in vitro and in vivo via suppression of angiogenesis. J Nutr Biochem 2019; 74:108230. [PMID: 31683101 DOI: 10.1016/j.jnutbio.2019.108230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/11/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022]
Abstract
Carnosine, a naturally occurring dipeptide, was recently reported to exhibit anticancer activity; however, the molecular mechanisms and regulators underlying its activity against tumor-associated angiogenesis remain unidentified. In this study, we evaluated the in vitro and in vivo antitumor effects of carnosine in EJ bladder cancer cells and EJ-xenografted BALB/c nude mice, respectively. In addition, in vitro capillary tube formation of HUVECs, ex vivo aortic ring and in vivo Matrigel plug assays were employed to examine the antiangiogenic potential of carnosine. Carnosine significantly inhibited EJ cell proliferation. Flow cytometric and immunoblot analyses indicated that carnosine modulated regulators of the G1 cell cycle phase, including cyclin D1, CDK4 and p21WAF1. The mitogen-activated protein kinases, ERK and p38, but not JNK or AKT, responded to carnosine. Carnosine inhibited the migratory and invasive potential of EJ cells by inhibiting MMP-9 activity, which was associated with suppression of binding activity of NF-κB, SP-1 and AP-1. In xenograft tumors, carnosine exhibited antitumor activity equivalent to cisplatin, but no weight loss occurred in carnosine-treated mice. In HUVECs, carnosine inhibited VEGF-mediated proliferation, colony tube formation, migration and invasion. The antiangiogenic activity of carnosine was partially due to the suppression of VEGFR-2-mediated ERK/AKT/eNOS signaling and MMP-2. Furthermore, using aortic ring and Matrigel plug assays, we confirmed the antiangiogenic activity of carnosine. Given that targeting tumor-associated angiogenesis is a proven effective therapeutic strategy, our results may provide valuable information for the development of preventive or therapeutic agents for bladder cancer patients.
Collapse
Affiliation(s)
- Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, South Korea
| | - Seung-Shick Shin
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, South Korea
| | - Jun-Hui Song
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47340, South Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, South Korea.
| |
Collapse
|
10
|
van der Toom EE, Axelrod HD, de la Rosette JJ, de Reijke TM, Pienta KJ, Valkenburg KC. Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nat Rev Urol 2019; 16:7-22. [PMID: 30479377 DOI: 10.1038/s41585-018-0119-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite improvements in early detection and advances in treatment, patients with prostate cancer continue to die from their disease. Minimal residual disease after primary definitive treatment can lead to relapse and distant metastases, and increasing evidence suggests that circulating tumour cells (CTCs) and bone marrow-derived disseminated tumour cells (BM-DTCs) can offer clinically relevant biological insights into prostate cancer dissemination and metastasis. Using epithelial markers to accurately detect CTCs and BM-DTCs is associated with difficulties, and prostate-specific markers are needed for the detection of these cells using rare cell assays. Putative prostate-specific markers have been identified, and an optimized strategy for staining rare cancer cells from liquid biopsies using these markers is required. The ideal prostate-specific marker will be expressed on every CTC or BM-DTC throughout disease progression (giving high sensitivity) and will not be expressed on non-prostate-cancer cells in the sample (giving high specificity). Some markers might not be specific enough to the prostate to be used as individual markers of prostate cancer cells, whereas others could be truly prostate-specific and would make ideal markers for use in rare cell assays. The goal of future studies is to use sensitive and specific prostate markers to consistently and reliably identify rare cancer cells.
Collapse
Affiliation(s)
| | - Haley D Axelrod
- The James Buchanan Brady Urological Institute, Baltimore, MD, USA.,Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | | |
Collapse
|
11
|
Luebke AM, Attarchi-Tehrani A, Meiners J, Hube-Magg C, Lang DS, Kluth M, Tsourlakis MC, Minner S, Simon R, Sauter G, Büscheck F, Jacobsen F, Hinsch A, Steurer S, Schlomm T, Huland H, Graefen M, Haese A, Heinzer H, Clauditz TS, Burandt E, Wilczak W, Höflmayer D. Loss of PSP94 expression is associated with early PSA recurrence and deteriorates outcome of PTEN deleted prostate cancers. Cancer Biol Med 2019; 16:319-330. [PMID: 31516752 PMCID: PMC6713635 DOI: 10.20892/j.issn.2095-3941.2018.0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective Prostate secretory protein of 94 amino acids (PSP94) is a target gene of the EZH2 transcriptional repressor and is often downregulated in prostate cancer; however, its prognostic value is disputed. Methods Immunohistochemical analysis of a tissue microarray of 12, 432 prostate cancer specimens was performed to evaluate PSP94 expression. Correlation of PSP94 expression with tumor phenotype, patient prognosis, TMPRSS2:ERG fusion status, EZH2 expression and PTEN deletion was studied. Results PSP94 expression was increased in benign prostatic hyperplasia; however, it was downregulated in 48% and negative in 42% of the 9, 881 interpretable prostate cancer specimens. The loss of PSP94 expression was inversely correlated to EZH2 expression (P < 0.0001) and largely unrelated to the ERG status, but strongly correlated with high Gleason grade, advanced tumor stage, and nodal metastasis ( P <0.0001 each). The fraction of PSP94-negative cancer specimens increased from 40% in pT2 to 52% in pT3b-pT4 ( P < 0.0001) and from 40% in Gleason 3+3 = 6 to 46% in Gleason 4+3 = 7 and 60% in Gleason ≥4+4 = 8 ( P < 0.0001). Loss of PSP94 was linked to early prostate-specific antigen recurrence, but with little absolute effect ( P < 0.0001). However, it provided additional prognostic impact in cancer specimens with PTEN deletion. Loss of PSP94 deteriorated prognosis of cancer patients with PTEN deletion by more than 10% (P < 0.0001). The combination of PTEN deletion and PSP94 loss provided independent prognostic information that was observed in several subgroups defined by classical and quantitative Gleason grade. Conclusions The results of our study suggest that combined PSP94/PTEN analysis can be potentially used in the clinical prognosis of prostate cancer.
Collapse
Affiliation(s)
- Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ali Attarchi-Tehrani
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan Meiners
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Dagmar S Lang
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
12
|
Park SL, Won SY, Song JH, Lee SY, Kim WJ, Moon SK. Esculetin Inhibits VEGF-Induced Angiogenesis Both In Vitro and In Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:61-76. [DOI: 10.1142/s0192415x1650004x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Esculetin is known to inhibit tumor growth, but its effect in angiogenesis has not been studied. Here, we report the efficacy of esculetin on VEGF-induced angiogenesis. Esculetin treatment inhibited VEGF-induced proliferation and DNA synthesis of HUVECs with no cell toxicity. G1-phase cell-cycle arrest was associated with a decreased expression of cyclins and CDKs via the binding of p27KIP1. Esculetin down-regulated the MMP-2 expression in VEGF-stimulated HUVECs, which suppressed colony tube formation and migration. Esculetin reduced the phosphorylation of VEGFR-2 and the downstream signaling of VEGFR-2, including ERK1/2 and eNOS/Akt pathways. Esculetin suppressed microvessel outgrowth from an aortic ring ex vivo model treated with VEGF, and blocked the VEGF-induced formation of new blood vessels and hemoglobin content in an in vivo Matrigel plug model. Collectively, VEGF-stimulated responses in angiogenesis were inhibited in vitro and in vivo, providing a theoretical basis for effective use against anti-angiogenic therapies.
Collapse
Affiliation(s)
- Sung Lyea Park
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Se Yeon Won
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Jun-Hui Song
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Sook-Young Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Wun-Jae Kim
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Republic of Korea
| |
Collapse
|
13
|
Sutcliffe S, De Marzo AM, Sfanos KS, Laurence M. MSMB variation and prostate cancer risk: clues towards a possible fungal etiology. Prostate 2014; 74:569-78. [PMID: 24464504 PMCID: PMC4037912 DOI: 10.1002/pros.22778] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/25/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND. With recent advances in high-throughput sequencing technologies, many prostate cancer risk loci have been identified, including rs10993994, a single nucleotide polymorphism (SNP) located near the MSMB gene. Variant allele (T) carriers of this SNP produce less prostate secretory protein 94 (PSP94), the protein product of MSMB, and have an increased risk of prostate cancer (approximately 25% per T allele), suggesting that PSP94 plays a protective role in prostate carcinogenesis, although the mechanisms for such protection are unclear. METHODS. We reviewed the literature on possible mechanisms for PSP94 protection for prostate cancer. RESULTS. One possible mechanism is tumor suppression, as PSP94 has been observed to inhibit cell or tumor growth in in vitro and in vivo models. Another novel mechanism, which we propose in this review article, is that PSP94 may protect against prostate cancer by preventing or limiting an intracellular fungal infection in the prostate. This mechanism is based on the recent discovery of PSP94's fungicidal activity in low-calcium environments (such as the cytosol of epithelial cells), and accumulating evidence suggesting a role for inflammation in prostate carcinogenesis. We provide further details of our proposed mechanism in this review article. CONCLUSIONS. To explore this mechanism, future studies should consider screening prostate specimens for fungi using the rapidly expanding number of molecular techniques capable of identifying infectious agents from the entire tree of life.
Collapse
Affiliation(s)
- Siobhan Sutcliffe
- Division of Public Health Sciences and the Alvin J. Siteman Cancer Center, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Brady Urological Institute and the Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Karen S. Sfanos
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | |
Collapse
|
14
|
Karunasinghe N, Bishop K, Murray P, Xu Y, Goudie M, Ng L, Zhu S, Han DY, Ferguson LR, Masters J, Benjamin B, Holmes M. Role of β-microseminoprotein from prostate cancer initiation to recurrence: A mini-review. World J Clin Urol 2014; 3:20-30. [DOI: 10.5410/wjcu.v3.i1.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/19/2013] [Accepted: 02/18/2014] [Indexed: 02/06/2023] Open
Abstract
Medline/Pubmed articles relevant to this topic were considered using the search terms β-microseminoprotein, MSMB, prostate secretory protein of 94 amino acids and PSP94. Full articles were retrieved when the abstract was considered relevant. In addition, other data related to this topic including our own are discussed. Summary of findings-β-microseminoprotein (MSMB) is increasingly being considered as a marker for prostate cancer, as reduced levels have been associated with the disease. Here we review various aspects of this protein including its biological and physiological variants, binding proteins and immune modulation; its importance as a marker for biochemical recurrence of prostate cancer; prostate cancer related splice variants and its therapeutic utility. Two of the most important properties of MSMB are related to anticancer functions and immune modulation. Predominant expression of two (short and full-length) splice variants of MSMB has been observed from normal prostate and several other tissues. In benign prostate hyperplasia the short isoform is dominant, constituting 98% of this isoform, whereas in prostate cancer 96% constitute the full-length isoform. The MSMB promoter single nucleotide polymorphism rs10993994 with the C allele functions as an activated cyclic adenosine monophosphate response element binding protein binding site. This C variant of rs10993994 could be responsible for the production of splice variants under variable conditions. MSMB has binding motifs to a few known proteins including immunoglobulin G and several Cysteine-rich secretory proteins family proteins. MSMB bound to these proteins is considered as immune modulating. Use of MSMB as a urinary marker for detecting aggressive prostate cancers that could resist radiation and surgical treatments, seems possible, but needs further investigation. The ratio of MSMB splice variants could also be a possible approach in understanding prostate cancers, with higher ratios indicating severe disease.
Collapse
|
15
|
Debiais-Delpech C, Godet J, Pedretti N, Bernard FX, Irani J, Cathelineau X, Cussenot O, Fromont G. Expression patterns of candidate susceptibility genes HNF1β and CtBP2 in prostate cancer: association with tumor progression. Urol Oncol 2013; 32:426-32. [PMID: 24332637 DOI: 10.1016/j.urolonc.2013.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Genome-wide association studies have identified variants at multiple loci associated with prostate cancer (PCa) risk. Some of these loci include candidate susceptibility genes, such as MSMB, HNF1β, and C-terminal-binding protein (CtBP2). Except for MSMB, the clinicopathological significance of these genes has not been investigated. We therefore aimed to analyze their expression in PCa tissues, in relation with tumor progression and aggressiveness. METHODS AND MATERIALS Protein expression was evaluated by immunohistochemistry on tissue microarrays containing samples from normal prostate (NL, n = 91), high-grade prostatic intraepithelial neoplasia (PIN, n = 61), clinically localized PCa (CLC, n = 434), PCa metastases (M, n = 28), and castration-resistant PCa (CRC, n = 49). Moreover, mRNA expression for each marker was assessed by quantitative real-time polymerase chain reaction, on 53 frozen samples of NL, CLC, and CRC. RESULTS These genes were differentially expressed at the different stages of PCa natural history. MSMB expression decreased with disease development and progression. In contrast, nuclear HNF1β and CtBP2 staining significantly increased in the CRC and M groups when compared with CLC, together with the transcripts levels. In patients with CLC, HNF1β and CtBP2 nuclear expressions were strongly associated with cancer cell proliferation. After adjusting for the Gleason score and the pathological stage, none of the candidate genes was significantly predictive of recurrence after radical prostatectomy. In patients with CRC, CtBP2 nuclear staining was associated with shorter overall survival. CONCLUSIONS The decrease of MSMB expression during tumor progression strongly supports its role as a tumor-suppressor gene. Although its functions remain to be clarified in PCa cells, HNF1β and CtBP2 are associated with cancer cell proliferation, tumor progression, and castration-resistant disease.
Collapse
Affiliation(s)
| | - Julie Godet
- Department of Pathology, CHU-Universite de Poitiers, Poitiers, France
| | | | | | - Jacques Irani
- Department of Urology, CHU-Universite de Poitiers, Poitiers, France
| | | | - Olivier Cussenot
- Centre d'etude et de Recherche sur les Pathologies Prostatique (CeRePP), Hospital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gaelle Fromont
- Department of Pathology, CHU-Universite de Poitiers, Poitiers, France; Centre d'etude et de Recherche sur les Pathologies Prostatique (CeRePP), Hospital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
16
|
Rinckleb AE, Surowy HM, Luedeke M, Varga D, Schrader M, Hoegel J, Vogel W, Maier C. The prostate cancer risk locus at 10q11 is associated with DNA repair capacity. DNA Repair (Amst) 2012; 11:693-701. [PMID: 22677538 DOI: 10.1016/j.dnarep.2012.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/16/2012] [Accepted: 05/14/2012] [Indexed: 12/28/2022]
Abstract
Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) that mildly predict prostate cancer risk. These SNPs are local tagging markers for causal gene alterations. Consideration of candidate genes in the tagged regions would be facilitated by additional information on the particular pathomechanisms which contribute to the observed risk increase. In this study we test for an association of prostate cancer tagging SNPs with alterations in DNA repair capacity, a phenotype that is frequently involved in cancer predisposition. DNA repair capacity was assessed on blood lymphocytes from 128 healthy probands after ionizing irradiation. We used the micronucleus (MN) assay to determine the cellular DNA double-strand break repair capacity and flow cytometry to measure damage induced mitotic delay (MD). Probands were genotyped for a panel of 14 SNPs, each representing an independent prostate cancer risk locus previously identified by GWAS. Associations between germline variants and DNA repair capacity were found for the SNPs rs1512268 (8p21), rs6983267 (8q24) and rs10993994 (10q11). The most significant finding was an association of homozygous rs10993994 T-allele carriers with a lower MN frequency (p=0.0003) and also a decreased MD index (p=0.0353). Cells with prostate cancer risk alleles at rs10993994 seem to cope more efficiently with DNA double strand breaks (less MN) in a shorter time (decreased MD index). This intriguing finding imposes concern about the accuracy of repair, with respect to the cancer risk that is mediated by T genotypes. To date, MSMB (microseminoprotein β) is favored as the causal gene at the 10q11 risk locus, since it was the first candidate gene known to be expressionally altered by rs10993994. Based on the present observation, candidate genes from the contexts of DNA repair and apoptosis may be more promising targets for expression studies with respect to the rs10993994 genotype.
Collapse
Affiliation(s)
- Antje E Rinckleb
- Department of Urology, University Hospital Ulm, 89075 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dahlman A, Rexhepaj E, Brennan DJ, Gallagher WM, Gaber A, Lindgren A, Jirström K, Bjartell A. Evaluation of the prognostic significance of MSMB and CRISP3 in prostate cancer using automated image analysis. Mod Pathol 2011; 24:708-19. [PMID: 21240253 DOI: 10.1038/modpathol.2010.238] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite prostate cancer being the most frequent cancer in men in the Western world, tissue biomarkers for predicting disease recurrence after surgery have not been incorporated into clinical practice. Our group has previously identified β-microseminoprotein (MSMB) and cysteine-rich secretory protein-3 (CRISP3) as independent predictors of biochemical recurrence after radical prostatectomy. The purpose of the present study was to use automated image analysis, enabling quantitative determination of MSMB and CRISP3 expressions in a large cohort and to validate the previous findings. MSMB and CRISP3 protein expressions were assessed on tissue microarrays constructed from 3268 radical prostatectomy specimens. Whole-slide digital images were captured, and a novel cytoplasmic algorithm was used to develop a quantitative scoring model for cytoplasmic staining. Classification regression tree analysis was used to group patients, with different risk for biochemical recurrence, depending on level of protein expression. Patients with tumors expressing high levels of MSMB had a significantly reduced risk for biochemical recurrence after radical prostatectomy (HR=0.468; 95% CI 0.394-0.556; P<0.001). Multivariate analysis adjusted for clinicopathological parameters revealed that MSMB expression was an independent predictor of decreased risk of recurrence (HR=0.710; 95% CI 0.578-0.872; P<0.001). We found no correlation between CRISP3 expression and biochemical recurrence. In this current study, we applied a novel image analysis on a large independent cohort and successfully verified that MSMB is a strong independent factor, predicting favorable outcome after radical prostatectomy for localized prostate cancer.
Collapse
Affiliation(s)
- Anna Dahlman
- Department of Clinical Sciences, Division of Urological Cancers, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Is 37LRP cell surface receptor for PSP94? Asian J Androl 2011; 13:347. [PMID: 21297657 DOI: 10.1038/aja.2010.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
19
|
Van Eynde A, Litovkin K, Bollen M. Growth inhibition properties of the putative prostate cancer biomarkers PSP94 and CRISP-3. Asian J Androl 2010; 13:205-6. [PMID: 21102472 DOI: 10.1038/aja.2010.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Aleyde Van Eynde
- Laboratory of Biosignaling and Therapeutics, Department of Molecular Cell Biology, Faculty of Medicine, KULeuven, Leuven B-3000, Belgium.
| | | | | |
Collapse
|
20
|
Whitaker HC, Kote-Jarai Z, Ross-Adams H, Warren AY, Burge J, George A, Bancroft E, Jhavar S, Leongamornlert D, Tymrakiewicz M, Saunders E, Page E, Mitra A, Mitchell G, Lindeman GJ, Evans DG, Blanco I, Mercer C, Rubinstein WS, Clowes V, Douglas F, Hodgson S, Walker L, Donaldson A, Izatt L, Dorkins H, Male A, Tucker K, Stapleton A, Lam J, Kirk J, Lilja H, Easton D, Cooper C, Eeles R, Neal DE. The rs10993994 risk allele for prostate cancer results in clinically relevant changes in microseminoprotein-beta expression in tissue and urine. PLoS One 2010; 5:e13363. [PMID: 20967219 PMCID: PMC2954177 DOI: 10.1371/journal.pone.0013363] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/01/2010] [Indexed: 11/19/2022] Open
Abstract
Background Microseminoprotein-beta (MSMB) regulates apoptosis and using genome-wide association studies the rs10993994 single nucleotide polymorphism in the MSMB promoter has been linked to an increased risk of developing prostate cancer. The promoter location of the risk allele, and its ability to reduce promoter activity, suggested that the rs10993994 risk allele could result in lowered MSMB in benign tissue leading to increased prostate cancer risk. Methodology/Principal Findings MSMB expression in benign and malignant prostate tissue was examined using immunohistochemistry and compared with the rs10993994 genotype. Urinary MSMB concentrations were determined by ELISA and correlated with urinary PSA, the presence or absence of cancer, rs10993994 genotype and age of onset. MSMB levels in prostate tissue and urine were greatly reduced with tumourigenesis. Urinary MSMB was better than urinary PSA at differentiating men with prostate cancer at all Gleason grades. The high risk allele was associated with heterogeneity of MSMB staining and loss of MSMB in both tissue and urine in benign prostate. Conclusions These data show that some high risk alleles discovered using genome-wide association studies produce phenotypic effects with potential clinical utility. We provide the first link between a low penetrance polymorphism for prostate cancer and a potential test in human tissue and bodily fluids. There is potential to develop tissue and urinary MSMB for a biomarker of prostate cancer risk, diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Hayley C Whitaker
- Uro-Oncology Research Group, CRUK Cambridge Research Institute, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lamy S, Lachambre MP, Lord-Dufour S, Béliveau R. Propranolol suppresses angiogenesis in vitro: inhibition of proliferation, migration, and differentiation of endothelial cells. Vascul Pharmacol 2010; 53:200-8. [PMID: 20732454 DOI: 10.1016/j.vph.2010.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/22/2010] [Accepted: 08/07/2010] [Indexed: 02/07/2023]
Abstract
Propranolol, a non-selective β-adrenergic blocking drug, was recently reported to control the growth of hemangiomas, the most common vascular tumor of infancy. However, the mechanisms involved in this effect remain unknown. Here, we demonstrate that propranolol dose-dependently inhibited growth factor-induced proliferation of cultured human umbilical vein endothelial cells (HUVECs) through a G₀/G₁ phase cell cycle arrest. This was correlated to decreased cyclin D1, cyclin D3, and cyclin-dependent kinase CDK6 protein levels, while increases in the CDK inhibitors p15(INK4B), p21(WAF1/Cip1) and p27(Kip1) were observed. Chemotactic motility and differentiation of HUVECs into capillary-like tubular structures in Matrigel were also inhibited by propranolol. Furthermore, inhibition by propranolol of vascular endothelial growth factor (VEGF)-induced tyrosine phosphorylation of VEGF receptor-2 lead to inhibition of downstream signaling such as the activation of the extracellular signal-regulated kinase-1/2 and the secretion of the extracellular matrix degrading enzyme MMP-2. Taken together, these results demonstrate that propranolol interferes with several essential steps of neovascularization and opens up novel therapeutic opportunities for the use of β-blockers in the treatment of angiogenesis-dependent human diseases.
Collapse
Affiliation(s)
- Sylvie Lamy
- Laboratoire de Médecine Moléculaire, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
22
|
Whitaker HC, Warren AY, Eeles R, Kote-Jarai Z, Neal DE. The potential value of microseminoprotein-beta as a prostate cancer biomarker and therapeutic target. Prostate 2010; 70:333-40. [PMID: 19790236 DOI: 10.1002/pros.21059] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recent genome-wide association studies have shown an association of a SNP two base pairs upstream of the 5' UTR of the microseminoprotein-beta (MSMB) gene with an increased risk of developing the prostate cancer, re-igniting interest in its protein product, MSMB. METHODS As one of the most abundant prostatic proteins, MSMB can be reliably detected in tissue and serum. RESULTS It has been consistently shown that MSMB expression is high in normal and benign prostate tissue and lowered or lost in prostate cancer suggesting that it might be a useful tissue biomarker for prostate cancer diagnosis and its levels in serum may be useful as a marker for prognosis. Members of the cysteine-rich secretory protein family and laminin receptors have been shown to bind MSMB at the cell surface and in serum thereby regulating apoptosis. Thus, in the benign prostate, MSMB regulates cell growth, but when MSMB is lost during tumourigenesis, cells are able to grow in a more uncontrolled manner. Both full length MSMB and a short peptide comprised of amino acids 31-45 have been tested for potential therapeutic benefit in mouse models and humans. CONCLUSIONS MSMB has potential as a biomarker of prostate cancer development, progression and recurrence and potentially as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Hayley C Whitaker
- Uro-Oncology Research Group, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK.
| | | | | | | | | |
Collapse
|
23
|
Fitzgerald LM, Kwon EM, Koopmeiners JS, Salinas CA, Stanford JL, Ostrander EA. Analysis of recently identified prostate cancer susceptibility loci in a population-based study: associations with family history and clinical features. Clin Cancer Res 2009; 15:3231-7. [PMID: 19366831 DOI: 10.1158/1078-0432.ccr-08-2190] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Two recent genome-wide association studies have highlighted several single nucleotide polymorphisms (SNPs) purported to be associated with prostate cancer risk. We investigated the significance of these SNPs in a population-based study of Caucasian men, testing the effects of each SNP in relation to family history of prostate cancer and the clinicopathologic features of the disease. EXPERIMENTAL DESIGN We genotyped 13 SNPs in 1,308 prostate cancer patients and 1,267 unaffected controls frequency matched to cases by five-year age groups. The association of each SNP with disease risk stratified by family history of prostate cancer and clinicopathologic features of the disease was calculated with the use of logistic and polytomous regression. RESULTS These results confirm the importance of multiple, previously reported SNPs in relation to prostate cancer susceptibility; 11 of the 13 SNPs were significantly associated with risk of developing prostate cancer. However, none of the SNP associations were of comparable magnitude with that associated with having a first-degree family history of the disease. Risk estimates associated with SNPs rs4242382 and rs2735839 varied by family history, whereas risk estimates for rs10993994 and rs5945619 varied by Gleason score. CONCLUSIONS Our results confirm that several recently identified SNPs are associated with prostate cancer risk; however, the variant alleles only confer a low to moderate relative risk of disease and are generally not associated with more aggressive disease features.
Collapse
Affiliation(s)
- Liesel M Fitzgerald
- National Human Genome Research Institute, Cancer Genetics Branch, NIH, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
24
|
Bjartell AS, Al-Ahmadie H, Serio AM, Eastham JA, Eggener SE, Fine SW, Udby L, Gerald WL, Vickers AJ, Lilja H, Reuter VE, Scardino PT. Association of cysteine-rich secretory protein 3 and beta-microseminoprotein with outcome after radical prostatectomy. Clin Cancer Res 2007; 13:4130-8. [PMID: 17634540 PMCID: PMC2660867 DOI: 10.1158/1078-0432.ccr-06-3031] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE It has been suggested that cysteine-rich secretory protein 3 (CRISP-3) and beta-microseminoprotein (MSP) are associated with outcome in prostate cancer. We investigated whether these markers are related to biochemical recurrence and whether addition of the markers improves prediction of recurring disease. EXPERIMENTAL DESIGN Tissue microarrays of radical prostatectomy specimens were analyzed for CRISP-3 and MSP by immunohistochemistry. Associations between marker positivity and postprostatectomy biochemical recurrence [prostate-specific antigen (PSA) >0.2 ng/mL with a confirmatory level] were evaluated by univariate and multivariable Cox proportional hazards regression. Multivariable analyses controlled for preoperative PSA and pathologic stage and grade. RESULTS Among 945 patients, 224 had recurrence. Median follow-up for survivors was 6.0 years. Patients positive for CRISP-3 had smaller recurrence-free probabilities, whereas MSP-positive patients had larger recurrence-free probabilities. On univariate analysis, the hazard ratio for patients positive versus negative for CRISP-3 was 1.53 (P=0.010) and for MSP was 0.63 (P=0.004). On multivariable analysis, both CRISP-3 (P=0.007) and MSP (P=0.002) were associated with recurrence. The hazard ratio among CRISP-3-positive/MSP-negative patients compared with CRISP-3-negative/MSP-positive patients was 2.38. Adding CRISP-3 to a base model that included PSA and pathologic stage and grade did not enhance the prediction of recurrence, but adding MSP increased the concordance index minimally from 0.778 to 0.781. CONCLUSION We report evidence that CRISP-3 and MSP are independent predictors of recurrence after radical prostatectomy for localized prostate cancer. However, addition of the markers does not importantly improve the performance of existing predictive models. Further research should aim to elucidate the functions of CRISP-3 and MSP in prostate cancer cells.
Collapse
Affiliation(s)
- Anders S Bjartell
- Departments of Surgery (Urology), Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Beke L, Nuytten M, Van Eynde A, Beullens M, Bollen M. The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 2007; 26:4590-5. [PMID: 17237810 DOI: 10.1038/sj.onc.1210248] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PSP94, for prostatic secretory protein of 94 amino acids, is secreted by the prostate gland and functions as a suppressor of tumor growth and metastasis. The expression of PSP94 is lost in advanced, hormone-refractory prostate cancer and this correlates with an increased expression of the Polycomb protein EZH2 (enhancer of zeste homolog 2), which represses transcription via trimethylation of histone H3 on Lys27 (H3K27). We show here that these events are causally related and that the MSMB gene, which encodes PSP94, is trimethylated on H3K27 in androgen-refractory, but not in androgen-sensitive prostate cancer cells. Chromatin immunoprecipitation experiments confirmed an association of EZH2 with the MSMB gene. The RNAi-mediated knockdown of EZH2 resulted in a loss of H3K27 trimethylation and an increased expression of the MSMB gene. Conversely, the overexpression of EZH2 was associated with a decreased expression of the MSMB gene. We also demonstrate that MSMB is additionally repressed in androgen-refractory prostate cancer cells by the hypoacetylation of histone H3K9 and the hypermethylation of a CpG island in the promoter region. Our data disclose a hitherto unexplored link between the putative oncogene EZH2 and the tumor suppressor PSP94, and show that MSMB is silenced by EZH2 in advanced prostate cancer cells.
Collapse
Affiliation(s)
- L Beke
- Laboratory of Biosignaling & Therapeutics, Department of Molecular Cell Biology, Faculty of Medicine, KULeuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
26
|
Gelatinases, endonuclease and Vascular Endothelial Growth Factor during development and regression of swine luteal tissue. BMC DEVELOPMENTAL BIOLOGY 2006; 6:58. [PMID: 17137503 PMCID: PMC1693555 DOI: 10.1186/1471-213x-6-58] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/30/2006] [Indexed: 11/10/2022]
Abstract
BACKGROUND The development and regression of corpus luteum (CL) is characterized by an intense angiogenesis and angioregression accompanied by luteal tissue and extracellular matrix (ECM) remodelling. Vascular Endothelial Growth Factor (VEGF) is the main regulator of angiogenesis, promoting endothelial cell mitosis and differentiation. After the formation of neovascular tubes, the remodelling of ECM is essential for the correct development of CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). During luteal regression, characterized by an apoptotic process and successively by an intense ECM and luteal degradation, the activation of Ca++/Mg++-dependent endonucleases and MMPs activity are required. The levels of expression and activity of VEGF, MMP-2 and -9, and Ca++/Mg++-dependent endonucleases throughout the oestrous cycle and at pregnancy were analyzed. RESULTS Different patterns of VEGF, MMPs and Ca++/Mg++-dependent endonuclease were observed in swine CL during different luteal phases and at pregnancy. Immediately after ovulation, the highest levels of VEGF mRNA/protein and MMP-9 activity were detected. On days 5-14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels, while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1. Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed. CONCLUSION Our findings, obtained from a precisely controlled in vivo model of CL development and regression, allow us to determine relationships among VEGF, MMPs and endonucleases during angiogenesis and angioregression. Thus, CL provides a very interesting model for studying factors involved in vascular remodelling.
Collapse
|
27
|
Annabi B, Currie JC, Moghrabi A, Béliveau R. Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. Leuk Res 2006; 31:1277-84. [PMID: 17081606 DOI: 10.1016/j.leukres.2006.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 09/27/2006] [Accepted: 10/04/2006] [Indexed: 10/25/2022]
Abstract
Matrix metalloproteinase (MMP)-9 expression is linked with myeloid cell differentiation, as well as inflammation and angiogenesis processes related to cancer progression. MMP-9 secretion and macrophage-like HL-60 myeloid leukemia cells differentiation were triggered by the tumor-promoting agent PMA. The chemopreventive effects of green tea catechins epigallocatechin-gallate, catechin-gallate, and epicatechin-gallate, but not those catechins that lack a 3'-galloyl group, inhibited in a time- and dose-dependent manner MMP-9 secretion. The gene and protein expression of MMP-9 and of the mRNA stabilizing factor HuR were also inhibited, while that of the 67 kDa laminin receptor remained unaffected. Specific catechins may help optimize current chemotherapeutic treatment protocols for leukemia.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
28
|
Schwartz EA, Reaven PD. Molecular and signaling mechanisms of atherosclerosis in insulin resistance. Endocrinol Metab Clin North Am 2006; 35:525-49, viii. [PMID: 16959584 DOI: 10.1016/j.ecl.2006.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the prevalence of cardiovascular complications is increased in insulin-resistant individuals, the underlying causes of this link have been elusive. Recent work suggests that several intracellular signal transduction pathways are inappropriately activated by hyperinsulinemia, hyperglycemia, increased free fatty acids, dyslipidemia, various inflammatory cytokines and adipokines--factors that are increased in insulin resistance. Once activated, substantial cross talk occurs between these pathways, especially a self-reinforcing cascade of vascular inflammation and cell dysfunction, greatly increasing the risk and severity of atherosclerosis in the insulin-resistant individual. We review several key cell-signalling pathways, describe how they are activated in they insulin-resistant state and the damage they induce, and discusses possible therapeutic approaches to limit vascular damage.
Collapse
Affiliation(s)
- Eric A Schwartz
- Division of Research, Carl T. Hayden VA Medical Center, 650 East Indian School Road, Phoenix, AZ 85012, USA
| | | |
Collapse
|
29
|
Annabi B, Currie JC, Bouzeghrane M, Dulude H, Daigneault L, Garde S, Rabbani SA, Panchal C, Wu JJ, Béliveau R. Contribution of the 37-kDa laminin receptor precursor in the anti-metastatic PSP94-derived peptide PCK3145 cell surface binding. Biochem Biophys Res Commun 2006; 346:358-66. [PMID: 16759641 DOI: 10.1016/j.bbrc.2006.05.139] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/20/2006] [Indexed: 12/24/2022]
Abstract
PURPOSE PCK3145 is an anti-metastatic synthetic peptide with promising therapeutic efficacy against hormone-refractory prostate cancer. The characterization of the PCK3145 peptide cell surface binding/internalization mechanisms and of the receptors involved remained to be explored. RESULTS [(14)C]PCK3145 cell surface binding assays showed rapid and transient kinetic profile, that was inhibited by RGD peptides, laminin, hyaluronan, and type-I collagen. RGD peptides were however unable to inhibit PCK3145 intracellular uptake. Far-Western ligand binding studies enabled the identification of the 37-kDa laminin receptor precursor (37LRP) as a potential ligand for PCK3145. Overexpression of the recombinant 37LRP indeed led to an increase in PCK3145 binding but unexpectedly not to its uptake. CONCLUSIONS Our data support the implication of laminin receptors in cell surface binding and in transducing PCK3145 anti-metastatic effects, and provide a rational for targeting cancers that express high levels of such laminin receptors.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Que., Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|