1
|
Gao Y, Zheng H. Role of mitochondria and potential of mitochondria-targeted therapy in BRAF mutant cancer: A review. Crit Rev Oncol Hematol 2024; 203:104484. [PMID: 39197669 DOI: 10.1016/j.critrevonc.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
The classical mitogen-activated protein kinase (MAPK) signaling pathway, the Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK protein kinase cascade, is a conserved cascade that regulates cell growth, differentiation, and proliferation. The significance of BRAF in cancer was established with the discovery of cancer-activating mutations in BRAF in several human tumors in 2002. Currently, BRAF is recognized as a driver mutation that affects cancer phenotypes in different ways, making it an important therapeutic target for cancer. BRAF-selective inhibitors have shown promise in clinical trials involving patients with metastatic melanoma. However, resistance mechanisms to BRAF inhibitors therapy have resulted in short-lived therapeutic responses. Further in-depth research is imperative to explore resistance mechanisms that oppose the effectiveness of BRAF inhibitors. Metabolic reprogramming has emerging role in BRAF-mutant cancers. In particular, mitochondrial metabolism and its closely related signaling pathways mediated by mitochondria have become recognized as potential new targets for treating BRAF-mutant cancers. This review, examines the progress in understanding BRAF mutations in cancer, the clinicopathological correlation of BRAF inhibitors, and recent advances in mitochondrial metabolism, mitochondrial dynamics and mitochondrial mediated death in BRAF-mutant cancer. This review will inform future cancer research and lay the foundation for novel treatment combinations of BRAF-mutant cancers.
Collapse
Affiliation(s)
- Yanyan Gao
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hua Zheng
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Lee M, Morris LGT. Genetic alterations in thyroid cancer mediating both resistance to BRAF inhibition and anaplastic transformation. Oncotarget 2024; 15:36-48. [PMID: 38275291 PMCID: PMC10812235 DOI: 10.18632/oncotarget.28544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024] Open
Abstract
A subset of thyroid cancers present at advanced stage or with dedifferentiated histology and have limited response to standard therapy. Tumors harboring the BRAF V600E mutation may be treated with BRAF inhibitors; however, tumor response is often short lived due to multiple compensatory resistance mechanisms. One mode of resistance is the transition to an alternative cell state, which on rare occasions can correspond to tumor dedifferentiation. DNA sequencing and RNA expression profiling show that thyroid tumors that dedifferentiate after BRAF inhibition are enriched in known genetic alterations that mediate resistance to BRAF blockade, and may also drive tumor dedifferentiation, including mutations in the PI3K/AKT/MTOR (PIK3CA, MTOR), MAP/ERK (MET, NF2, NRAS, RASA1), SWI/SNF chromatin remodeling complex (ARID2, PBRM1), and JAK/STAT pathways (JAK1). Given these findings, recent investigations have evaluated the efficacy of dual-target therapies; however, continued lack of long-term tumor control illustrates the complex and multifactorial nature of these compensatory mechanisms. Transition to an immune-suppressed state is another correlate of BRAF inhibitor resistance and tumor dedifferentiation, suggesting a possible role for concurrent targeted therapy with immunotherapy. Investigations into combined targeted and immunotherapy are ongoing, but early results with checkpoint inhibitors, viral therapies, and CAR T-cells suggest enhanced anti-tumor immune activity with these combinations.
Collapse
Affiliation(s)
- Mark Lee
- Department of Otolaryngology-Head and Neck Surgery, New York Presbyterian Hospital, New York, NY 10032, USA
| | - Luc GT Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Bhattacharya S, Mahato RK, Singh S, Bhatti GK, Mastana SS, Bhatti JS. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci 2023; 332:122110. [PMID: 37734434 DOI: 10.1016/j.lfs.2023.122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Thyroid cancer continues to exhibit a rising incidence globally, predominantly affecting women. Despite stable mortality rates, the unique characteristics of thyroid carcinoma warrant a distinct approach. Differentiated thyroid cancer, comprising most cases, is effectively managed through standard treatments such as thyroidectomy and radioiodine therapy. However, rarer variants, including anaplastic thyroid carcinoma, necessitate specialized interventions, often employing targeted therapies. Although these drugs focus on symptom management, they are not curative. This review delves into the fundamental modulators of thyroid cancers, encompassing genetic, epigenetic, and non-coding RNA factors while exploring their intricate interplay and influence. Epigenetic modifications directly affect the expression of causal genes, while long non-coding RNAs impact the function and expression of micro-RNAs, culminating in tumorigenesis. Additionally, this article provides a concise overview of the advantages and disadvantages associated with pharmacological and non-pharmacological therapeutic interventions in thyroid cancer. Furthermore, with technological advancements, integrating modern software and computing into healthcare and medical practices has become increasingly prevalent. Artificial intelligence and machine learning techniques hold the potential to predict treatment outcomes, analyze data, and develop personalized therapeutic approaches catering to patient specificity. In thyroid cancer, cutting-edge machine learning and deep learning technologies analyze factors such as ultrasonography results for tumor textures and biopsy samples from fine needle aspirations, paving the way for a more accurate and effective therapeutic landscape in the near future.
Collapse
Affiliation(s)
- Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
4
|
Norollahi SE, Vahidi S, Shams S, Keymoradzdeh A, Soleymanpour A, Solymanmanesh N, Mirzajani E, Jamkhaneh VB, Samadani AA. Analytical and therapeutic profiles of DNA methylation alterations in cancer; an overview of changes in chromatin arrangement and alterations in histone surfaces. Horm Mol Biol Clin Investig 2023; 44:337-356. [PMID: 36799246 DOI: 10.1515/hmbci-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzdeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazanin Solymanmanesh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Makgoo L, Mosebi S, Mbita Z. The Role of Death-Associated Protein Kinase-1 in Cell Homeostasis-Related Processes. Genes (Basel) 2023; 14:1274. [PMID: 37372454 DOI: 10.3390/genes14061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Tremendous amount of financial resources and manpower have been invested to understand the function of numerous genes that are deregulated during the carcinogenesis process, which can be targeted for anticancer therapeutic interventions. Death-associated protein kinase 1 (DAPK-1) is one of the genes that have shown potential as biomarkers for cancer treatment. It is a member of the kinase family, which also includes Death-associated protein kinase 2 (DAPK-2), Death-associated protein kinase 3 (DAPK-3), Death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK-1) and Death-associated protein kinase-related apoptosis-inducing kinase 2 (DRAK-2). DAPK-1 is a tumour-suppressor gene that is hypermethylated in most human cancers. Additionally, DAPK-1 regulates a number of cellular processes, including apoptosis, autophagy and the cell cycle. The molecular basis by which DAPK-1 induces these cell homeostasis-related processes for cancer prevention is less understood; hence, they need to be investigated. The purpose of this review is to discuss the current understanding of the mechanisms of DAPK-1 in cell homeostasis-related processes, especially apoptosis, autophagy and the cell cycle. It also explores how the expression of DAPK-1 affects carcinogenesis. Since deregulation of DAPK-1 is implicated in the pathogenesis of cancer, altering DAPK-1 expression or activity may be a promising therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Lilian Makgoo
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Pietersburg 0727, Sovenga, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Johanessburg 1710, Florida, South Africa
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Pietersburg 0727, Sovenga, South Africa
| |
Collapse
|
6
|
Ozisik H, Ozdil B, Suner A, Sipahi M, Erdogan M, Cetinkalp S, Ozgen G, Saygili F, Oktay G, Aktug H. The expression of HDAC9 and P300 in papillary thyroid carcinoma cell line. Pathol Res Pract 2023; 243:154385. [PMID: 36857949 DOI: 10.1016/j.prp.2023.154385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer and accounts for 85-90% of all thyroid cancers. Metastatic differentiated thyroid cancer, radioiodine-refractory thyroid cancer, and anaplastic thyroid cancer still lack effective therapeutic options. Here, we aimed to assess HDAC9 and P300 expression in the papillary thyroid carcinoma cell line and compare them with normal thyroid cells. METHODS Nthy-ori-3-1, a normal thyroid cell line, and BCPAP, a PTC cell line, were cultured for 24 and 48 h and immunofluorescence staining was used to determine the levels of HDAC9 and P300 protein expression. HDAC9 paracrine release was assessed using an ELISA assay. RESULTS HDAC9 protein expression was higher in both cell groups at the 48th hour than at the 24th hour; however, P300 protein expression was lower in BCPAP cells at the 48th hour than at the 24th hour. In comparison to Nthy-ori-3-1, BCPAP expressed more HDAC9 and P300 proteins. HDAC9 secretion slightly increased in Nthy-ori-3-1 cells from 24 to 48 h. Furthermore, HDAC9 secretion in BCPAP cells dramatically decreased from 24 to 48 h. CONCLUSION Our findings revealed that the expression of HDAC9 and P300 was higher in the PTC cell line than in normal thyroid cells. This indicates that the acetylation mechanism in thyroid cancer cells is not the same as it is in healthy cells. Epigenetic studies may reveal the mechanisms underlying PTC with further analysis.
Collapse
Affiliation(s)
- Hatice Ozisik
- Ege University, Department of Endocrinology and Metabolism, İzmir, Turkey.
| | - Berrin Ozdil
- Ege University, Department of Histology and Embryology, İzmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Aslı Suner
- Ege University, Department of Biostatistics and Medical Informatics, İzmir, Turkey
| | - Murat Sipahi
- Dokuz Eylül University, Institue of Health Sciences, Department of Biochemistry, İzmir, Turkey
| | - Mehmet Erdogan
- Ege University, Department of Endocrinology and Metabolism, İzmir, Turkey
| | - Sevki Cetinkalp
- Ege University, Department of Endocrinology and Metabolism, İzmir, Turkey
| | - Gokhan Ozgen
- Ege University, Department of Endocrinology and Metabolism, İzmir, Turkey
| | - Fusun Saygili
- Ege University, Department of Endocrinology and Metabolism, İzmir, Turkey
| | - Gulgun Oktay
- Dokuz Eylül University, Department of Medical Biochemistry, İzmir, Turkey
| | - Huseyin Aktug
- Ege University, Department of Histology and Embryology, İzmir, Turkey
| |
Collapse
|
7
|
Elia G, Patrizio A, Ragusa F, Paparo SR, Mazzi V, Balestri E, Botrini C, Rugani L, Benvenga S, Materazzi G, Spinelli C, Antonelli A, Fallahi P, Ferrari SM. Molecular features of aggressive thyroid cancer. Front Oncol 2022; 12:1099280. [PMID: 36605433 PMCID: PMC9807782 DOI: 10.3389/fonc.2022.1099280] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) have a worse prognosis with respect to well differentiated TC, and the loss of the capability of up-taking 131I is one of the main features characterizing aggressive TC. The knowledge of the genomic landscape of TC can help clinicians to discover the responsible alterations underlying more advance diseases and to address more tailored therapy. In fact, to date, the antiangiogenic multi-targeted kinase inhibitor (aaMKIs) sorafenib, lenvatinib, and cabozantinib, have been approved for the therapy of aggressive radioiodine (RAI)-resistant papillary TC (PTC) or follicular TC (FTC). Several other compounds, including immunotherapies, have been introduced and, in part, approved for the treatment of TC harboring specific mutations. For example, selpercatinib and pralsetinib inhibit mutant RET in medullary thyroid cancer but they can also block the RET fusion proteins-mediated signaling found in PTC. Entrectinib and larotrectinib, can be used in patients with progressive RAI-resistant TC harboring TRK fusion proteins. In addition FDA authorized the association of dabrafenib (BRAFV600E inhibitor) and trametinib (MEK inhibitor) for the treatment of BRAFV600E-mutated ATC. These drugs not only can limit the cancer spread, but in some circumstance they are able to induce the re-differentiation of aggressive tumors, which can be again submitted to new attempts of RAI therapy. In this review we explore the current knowledge on the genetic landscape of TC and its implication on the development of new precise therapeutic strategies.
Collapse
Affiliation(s)
- Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Sabrina Rosaria Paparo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Licia Rugani
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy,Master Program on Childhood, Adolescent and Women’s Endocrine Health, University of Messina, Messina, Italy,Interdepartmental Program of Molecular and Clinical Endocrinology and Women’s Endocrine Health, Azienda Ospedaliera Universitaria Policlinico ‘G. Martino’, Messina, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Claudio Spinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy,*Correspondence: Alessandro Antonelli,
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | |
Collapse
|
8
|
Mazzoni M, Todoerti K, Agnelli L, Minna E, Pagliardini S, Di Marco T, Borrello MG, Neri A, Greco A. Transcriptomic landscape of TIMP3 oncosuppressor activity in thyroid carcinoma. Cancer Cell Int 2022; 22:400. [PMID: 36503426 PMCID: PMC9743531 DOI: 10.1186/s12935-022-02811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most frequent thyroid tumor. The tissue inhibitor of metalloproteinase-3 (TIMP3) gene encodes a matrix metalloproteinases inhibitor that exerts a tumor suppressor role in several tumor types. TIMP3 is frequently downregulated in PTC by promoter methylation. We have previously functionally demonstrated that TIMP3 exerts an oncosuppressor role in PTC: TIMP3 restoration in the PTC-derived NIM1 cell line affects in vitro migration, invasion and adhesive capability, while reduces tumor growth, angiogenesis and macrophage recruitment in vivo. To get a deeper insight on the mediators of TIMP3 oncosuppressor activity in thyroid tumors, here we focused on the TIMP3 related transcriptome. METHODS TCGA database was used for investigating the genes differentially expressed in PTC samples with low and high TIMP3 expression. Genome wide expression analysis of clones NIM1-T23 (expressing a high level of TIMP3 protein) and NIM1-EV (control empty vector) was performed. Gene sets and functional enrichment analysis with clusterProfiler were applied to identify the modulated biological processes and pathways. CIBERSORT was used to evaluate the distribution of different immunological cell types in TCGA-PTC tumor samples with different TIMP3 expression levels. Real time PCR was performed for the validation of selected genes. RESULTS Thyroid tumors with TIMP3-high expression showed a down-modulation of inflammation-related gene sets, along with a reduced protumoral hematopoietic cells fraction; an enrichment of cell adhesion functions was also identified. Similar results were obtained in the TIMP3-overexpessing NIM1 cells in vitro model, where a down-regulation of immune-related function gene sets, some of which also identified in tumor samples, was observed. Interestingly, through enrichment analysis, were also recognized terms related to cell adhesion, extracellular matrix organization, blood vessel maintenance and vascular process functions that have been found modulated in our previous in vitro and in vivo functional studies. CONCLUSIONS Our results highlight the correlation of TIMP3 expression levels with the regulation of inflammatory functions and the immune infiltration composition associated with different PTC prognosis, thus providing a broader view on the oncosuppressor role of TIMP3 in PTC.
Collapse
Affiliation(s)
- M. Mazzoni
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - K. Todoerti
- grid.417893.00000 0001 0807 2568Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - L. Agnelli
- grid.417893.00000 0001 0807 2568Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - E. Minna
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - S. Pagliardini
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - T. Di Marco
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - M. G. Borrello
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - A. Neri
- Scientific Directorate, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - A. Greco
- grid.417893.00000 0001 0807 2568Molecular Mechanisms Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
9
|
Identification and Validation of a Prognostic Signature Based on Methylation Profiles and Methylation-Driven Gene DAB2 as a Prognostic Biomarker in Differentiated Thyroid Carcinoma. DISEASE MARKERS 2022; 2022:1686316. [DOI: 10.1155/2022/1686316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Recurrence is the major death cause of differentiated thyroid carcinoma (DTC), and a better understanding of recurrence risk at early stage may lead to make the optimal medical decision to improve patients’ prognosis. The 2015 American Thyroid Association (ATA) risk stratification system primary based on clinic-pathologic features is the most commonly used to describe the initial risk of persistent/recurrent disease. Besides, multiple prognostics models based on multigenes expression profiles have been developed to predict the recurrence risk of DTC patients. Recent evidences indicated that aberrant DNA methylation is involved in the initiation and progression of DTC and can be useful biomarkers for clinical diagnosis and prognosis prediction of DTC. Therefore, there is a need for integrating gene methylation feature to assess the recurrence risk of DTC. Gene methylation profile from The Cancer Genome Atlas (TCGA) was used to construct a recurrence risk model of DTC by successively performed univariate Cox regression, LASSO regression, and multivariate Cox regression. Two Gene Expression Omnibus (GEO) methylation cohorts of DTC were utilized to validate the predictive value of the methylation profiles model as external cohort by receiver operating characteristic (ROC) curve and survival analysis. Besides, CCK-8, colony-formation assay, transwell, and scratch-wound assay were used to investigate the biological significance of critical gene in the model. In our study, we constructed and validated a prognostic signature based on methylation profiles of SPTA1, APCS, and DAB2 and constructed a nomogram based on the methylation-related model, age, and AJCC_T stage that could provide evidence for the long-term treatment and management of DTC patients. Besides, in vitro experiments showed that DAB2 inhibited proliferation, colony-formation, and migration of BCPAP cells and the gene set enrichment analysis and immune infiltration analysis showed that DAB2 may promote antitumor immunity in DTC. In conclusion, promoter hypermethylation and loss expression of DAB2 in DTC may be a biomarker of unfavorable prognosis and poor response to immune therapy.
Collapse
|
10
|
Posttranslational Modifications in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, Classification, and Treatment. Cancers (Basel) 2022; 14:cancers14071610. [PMID: 35406382 PMCID: PMC8996999 DOI: 10.3390/cancers14071610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
There is evidence that posttranslational modifications, including phosphorylation, acetylation, methylation, ubiquitination, sumoylation, glycosylation, and succinylation, may be involved in thyroid cancer. We review recent reports supporting a role of posttranslational modifications in the tumorigenesis of thyroid cancer, sensitivity to radioiodine and other types of treatment, the identification of molecular treatment targets, and the development of molecular markers that may become useful as diagnostic tools. An increased understanding of posttranslational modifications may be an important supplement to the determination of alterations in gene expression that has gained increasing prominence in recent years.
Collapse
|
11
|
Papanicolau-Sengos A, Aldape K. DNA Methylation Profiling: An Emerging Paradigm for Cancer Diagnosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:295-321. [PMID: 34736341 DOI: 10.1146/annurev-pathol-042220-022304] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histomorphology has been a mainstay of cancer diagnosis in anatomic pathology for many years. DNA methylation profiling is an additional emerging tool that will serve as an adjunct to increase accuracy of pathological diagnosis. Genome-wide interrogation of DNA methylation signatures, in conjunction with machine learning methods, has allowed for the creation of clinical-grade classifiers, most prominently in central nervous system and soft tissue tumors. Tumor DNA methylation profiling has led to the identification of new entities and the consolidation of morphologically disparate cancers into biologically coherent entities, and it will progressively become mainstream in the future. In addition, DNA methylation patterns in circulating tumor DNA hold great promise for minimally invasive cancer detection and classification. Despite practical challenges that accompany any new technology, methylation profiling is here to stay and will become increasingly utilized as a cancer diagnostic tool across a range of tumor types. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
12
|
Jiang Y, Liu J, Xu H, Zhou X, He L, Zhu C. DAPK2 activates NF-κB through autophagy-dependent degradation of I-κBα during thyroid cancer development and progression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1083. [PMID: 34422995 PMCID: PMC8339828 DOI: 10.21037/atm-21-2062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Background Death-associated protein kinase 2 (DAPK2) is a serine/threonine kinase, which has been implicated in autophagy and apoptosis. DAPK2 functions as a tumor suppressor in various cancers. However, the role of DAPK2 in thyroid cancer (TC) is unclear. Methods RNA sequencing of human TC samples was performed to identify differentially expressed genes that may play a role in TC development. The messenger RNA (mRNA) expression of DAPK2 was verified by quantitative real-time polymerase chain reaction (qRT-PCR). To investigate the role of DAPK2 in TC development, DAPK2 was knocked down and overexpressed in a TTA1 cell line. The effect of DAPK2 on cell proliferation, sensitization of TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis and tumor growth was examined. The effect of DAPK2 on autophagy and NF-κB activation was investigated to address the underlying mechanism. Results DAPK2 was upregulated in TC. Knockdown of DAPK2 in TTA1 cells led to reduced cell proliferation, sensitization of TRAIL-induced apoptosis, and restricted tumor growth both in vitro and in vivo, while overexpression of DAPK2 exhibited the opposite effect. Mechanistically, DAPK2 promoted autophagy as demonstrated by the accumulation of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, which correlated with the level of nuclear factor-κB (NF-κB) activation. Knockdown of inhibitory-κBα (I-κBα) in short hairpin (sh) DAPK2 TTA1 cells restored the activity of NF-κB, suggesting DAPK2 activated NF-κB through autophagy-mediated I-κBα degradation. Conclusions Our findings revealed a pivotal role of DAPK2 in thyroid carcinogenesis, being required for tumor growth and for resistance to TRAIL-induced apoptosis through autophagy-mediated I-κBα degradation. This result provides a novel target for the therapy of TC.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ji Liu
- Department of Anesthesia, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Xu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Discipline Construction Research Center of China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liu He
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Discipline Construction Research Center of China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chenfang Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Discipline Construction Research Center of China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
The Genomic Landscape of Thyroid Cancer Tumourigenesis and Implications for Immunotherapy. Cells 2021; 10:cells10051082. [PMID: 34062862 PMCID: PMC8147376 DOI: 10.3390/cells10051082] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is the most prevalent endocrine malignancy that comprises mostly indolent differentiated cancers (DTCs) and less frequently aggressive poorly differentiated (PDTC) or anaplastic cancers (ATCs) with high mortality. Utilisation of next-generation sequencing (NGS) and advanced sequencing data analysis can aid in understanding the multi-step progression model in the development of thyroid cancers and their metastatic potential at a molecular level, promoting a targeted approach to further research and development of targeted treatment options including immunotherapy, especially for the aggressive variants. Tumour initiation and progression in thyroid cancer occurs through constitutional activation of the mitogen-activated protein kinase (MAPK) pathway through mutations in BRAF, RAS, mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway and/or receptor tyrosine kinase fusions/translocations, and other genetic aberrations acquired in a stepwise manner. This review provides a summary of the recent genetic aberrations implicated in the development and progression of thyroid cancer and implications for immunotherapy.
Collapse
|
14
|
Canberk S, Lima AR, Pinto M, Máximo V. Translational Potential of Epigenetic-Based Markers on Fine-Needle Aspiration Thyroid Specimens. Front Med (Lausanne) 2021; 8:640460. [PMID: 33834032 PMCID: PMC8021713 DOI: 10.3389/fmed.2021.640460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The awareness of epigenetic alterations leading to neoplasia attracted the attention of researchers toward its potential use in the management of cancer, from diagnosis to prognosis and prediction of response to therapies. Our group has focused its attention on the epigenomics of thyroid neoplasms. Although most of the epigenetic studies have been applied on histological samples, the fact is that cytology, through fine-needle aspiration, is a primary diagnostic method for many pathologies, of which thyroid nodules are one of the most paradigmatic examples. This has led to an increasing literature report of epigenetic studies using these biological samples over the past decade. In this review, our group aimed to document recent research of epigenetic alterations and its associated assessment techniques, based on cytology material. Our review covers the main epigenetic categories—DNA methylation, histone modification, and RNA-silencing—whose evidence in thyroid cytology samples may represent solid soil for future prospectively designed studies aiming at validating patterns of epigenetic alterations and their potential use in the clinical management of thyroid neoplasms.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Mafalda Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
15
|
Ham J, Wang B, Po JW, Singh A, Niles N, Lee CS. Cancer-associated fibroblasts (CAFs) in thyroid papillary carcinoma: molecular networks and interactions. J Clin Pathol 2021; 74:759-765. [PMID: 33619218 DOI: 10.1136/jclinpath-2020-207357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023]
Abstract
In 1989, Stephen Paget proposed the 'seed and soil' theory of cancer metastasis. This theory has led to previous researchers focusing on the role of a tumour as a cancer seed and antiangiogenesis agents as cancer soil fumigant; for the latter to be effective, it is important for them to be able to distinguish cancer cells from stromal cells. However, antiangiogenesis agents have not produced dramatic survival benefits in vivo. This may be related to their inability to destroy the supporting stroma that promote cancer cell growth. Therefore, in order to effectively arrest cancer cell growth for therapeutic purposes, a paradigm shift is required in our fundamental approach to decipher the molecular events and networks in the stromal environment that cancer cells can thrive and proliferate. The pathogenesis of cancer is a multidimensional process of pathological molecular and cellular pathways, influencing different stromal properties and achieving a mutually negotiated crosstalk between cancer cells and stromal cells. This review summarises the clinical presentation of current knowledge of classical papillary thyroid carcinoma (PTC), emerging molecular diagnostics and future directions of classical PTC research.
Collapse
Affiliation(s)
- Jeehoon Ham
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Joseph William Po
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Surgical Innovation Unit, Department of Surgery, Westmead Hospital, Sydney, New South Wales, Australia
| | - Amandeep Singh
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Thyroid Cancer Group, Ingham Institute, Liverpool, New South Wales, Australia.,Department of Head & Neck Surgery, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Navin Niles
- CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,Thyroid Cancer Group, Ingham Institute, Liverpool, New South Wales, Australia.,Department of Head & Neck Surgery, Liverpool Hospital, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown Campus, Campbelltown, New South Wales, Australia
| | - Cheok Soon Lee
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia .,Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown Campus, Campbelltown, New South Wales, Australia.,Central Clinical School, University of Sydney, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Department of Anatomical Pathology, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
16
|
Thyroid Carcinoma: Phenotypic Features, Underlying Biology and Potential Relevance for Targeting Therapy. Int J Mol Sci 2021; 22:ijms22041950. [PMID: 33669363 PMCID: PMC7920269 DOI: 10.3390/ijms22041950] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinoma consists a group of phenotypically heterogeneous cancers. Recent advances in biological technologies have been advancing the delineation of genetic, epigenetic, and non-genetic factors that contribute to the heterogeneities of these cancers. In this review article, we discuss new findings that are greatly improving the understanding of thyroid cancer biology and facilitating the identification of novel targets for therapeutic intervention. We review the phenotypic features of different subtypes of thyroid cancers and their underlying biology. We discuss recent discoveries in thyroid cancer heterogeneities and the critical mechanisms contributing to the heterogeneity with emphases on genetic and epigenetic factors, cancer stemness traits, and tumor microenvironments. We also discuss the potential relevance of the intratumor heterogeneity in understanding therapeutic resistance and how new findings in tumor biology can facilitate designing novel targeting therapies for thyroid cancer.
Collapse
|
17
|
Iancu IV, Botezatu A, Plesa A, Huica I, Fudulu A, Albulescu A, Bostan M, Mihaila M, Grancea C, Manda DA, Dobrescu R, Vladoiu SV, Anton G, Badiu CV. Alterations of regulatory factors and DNA methylation pattern in thyroid cancer. Cancer Biomark 2021; 28:255-268. [PMID: 32390600 DOI: 10.3233/cbm-190871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE DNA methylation plays an important role in thyroid oncogenesis. The aim of this study was to investigate the connection between global and local DNA methylation status and to establish the levels of important DNA methylation regulators (TET family and DNMT1) in thyroid tumours: follicular adenoma-FA, papillary thyroid carcinoma-PTC (classic papillary thyroid carcinoma-cPTC and papillary thyroid carcinoma follicular variant fvPTC). METHODS Global DNA methylation profile in thyroid tumours tissue (41 paired samples) was assessed by 5-methylcytosine and 5-hydroxymethylcytosine levels evaluation (ELISA), along with TETs and DNMT1 genes expression quantification. Also, it was investigated for the first time TET1 and TET2 promoter's methylation in thyroid tumours. BRAF V600E mutation and RET/PTC translocation testing were performed on all investigated samples. In vitro studies upon DNA methylation in K1 thyroid cancer cells were performed with demethylating agents (5-AzaC and vitamin C). RESULTS TET1 and TET2 displayed a significantly reduced gene expression level in PTC, while DNMT1 gene presented a high level of expression. PTC samples presented increased levels of 5-methylcytosine and low levels of 5-hydroxymethylcytosine. 5-methylcytosine levels were associated with TET1/TET2 expression levels. TET1 gene expression was significantly lower in patients positive for BRAF mutation and with RET/PTC rearrangement. TET2 gene was found hypermethylated in thyroid carcinoma patients overall, especially in PTC-follicular variant samples (p= 0.0002), where TET2 gene expression levels were significantly reduced (p= 0.0031). Furthermore, the data indicate for all thyroid cancer patients a good sensitivity (81.08%) and specificity (86.49%) regarding the use of TET1 (p< 0.0001), and TET2 (71.79%, 64.10%, p= 0.0001) hypermethylation as biomarkers for thyroid oncogenesis. CONCLUSIONS These results suggest that TET1/TET2 gene expression and methylation may serve as potential diagnostic tools for thyroid neoplasia. Our study showed that the methylation of TET1 increases in malignant thyroid tumours. fvPTC patients presented lower methylation levels compared to cPTC and could be a discriminatory factor between two cancer types and benign lesions. TET2 is a poorer discriminator between FA and fvPTC, but it can be useful for cPTC identification. K1-cells treated with demethylating agents showed a demethylation effect, especially upon TET2 gene. The cumulative effect of L-AA and 5-AzaC proved to have a potent combined demethylating effect on genes promoter's activation and could open new perspectives for thyroid cancer therapy.
Collapse
Affiliation(s)
- Iulia V Iancu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Anca Botezatu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Adriana Plesa
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Irina Huica
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Alina Fudulu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Adrian Albulescu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,National Institute for Chemical Pharmaceutical Research and Development, Bucharest, Romania
| | - Marinela Bostan
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Mirela Mihaila
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Camelia Grancea
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Dana Alice Manda
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Ruxandra Dobrescu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Susana Vilma Vladoiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Gabriela Anton
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Corin Virgil Badiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| |
Collapse
|
18
|
Nwadiugwu MC. Thyroid Tumor: Investigating MicroRNA-21 Gene Suppression in FTC and FTA. Cancer Inform 2020; 19:1176935120948474. [PMID: 32821081 PMCID: PMC7412895 DOI: 10.1177/1176935120948474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
The follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA) are malignant and benign thyroid neoplasms, respectively. MicroRNA (miRNA) expressions have been touted as an indicator for prognostic outcome in thyroid cancer. The study objective was to explore genes suppressed by miRNA-21-3p and miRNA-21-5p for potential therapeutic insights. Differentially expressed genes and their functional enrichment were obtained from 25 FTA and 27 FTC gene microarray dataset GSE82208 using R and Bioconductor tools. The miRNA target sites were obtained from miR-TarBase database. A unique gene list of differentially expressed FTC and FTA were entered into miR-TarBase database to obtain target genes for both miRNA-21-3p and miRNA-21-5p. The result showed that miRNA-21-3p and miRNA-21-5p downregulated TIMP3, MAT2A, TGFBR2, and PLAT gene in FTC and FTA leading to significant expression of acute phase-response to metallothionein, metal ions, and unfolded protein response (UPR). The computational analysis suggests that the suppression of miRNA-21-3p and miRNA-21-5p could be an intervention strategy for therapeutically targeting FTC and FTA treatments.
Collapse
Affiliation(s)
- Martin C Nwadiugwu
- Department of Biomedical Informatics, University of Nebraska, Omaha, NE, USA
| |
Collapse
|
19
|
Wei F, Wu Y, Wang Z, Li Y, Wang J, Shao G, Yang Y, Shi B. Diagnostic significance of DNA methylation of PTEN and DAPK in thyroid tumors. Clin Endocrinol (Oxf) 2020; 93:187-195. [PMID: 32286703 DOI: 10.1111/cen.14192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE DNA Methylation of the tumour suppressor gene leading to gene silencing plays an important role in thyroid tumour development. The purpose was to determine the DNA methylation status of phosphatase and tensin homolog (PTEN) and death-associated protein kinase (DAPK) in patients with thyroid nodules and to explore whether they can be used as molecular diagnostic tools to differentiate benign and malignant thyroid nodules. DESIGN, PATIENTS AND MEASUREMENTS Thyroid tissue and blood samples were obtained from normal healthy individuals (controls) and patients suffering from clinically diagnosed thyroid nodular disease [papillary thyroid carcinoma (PTC), adenoma and nodular goitre]. DNA methylation level, mRNA expression and protein expression of PTEN and DAPK in the thyroid tissues and peripheral blood were detected using methylation-specific PCR, semi-quantitative reverse transcription PCR and Western blot, respectively. Diagnostic sensitivity, specific and accuracy of detection were evaluated between blood and thyroid tissue. RESULTS There was a significant increase in the level of DNA methylation of PTEN and DAPK in PTC (P < .05) compared with controls and other types of thyroid nodules. Levels of the mRNA of both PTEN and DAPK were lower in PTC in both peripheral blood and tissue samples compared with controls, while there was concomitant decrease of both PTEN and DAPK protein expression in PTC tissues (P < .05). There was no significant difference in diagnostic specificity, sensitivity and accuracy between blood sample and thyroid tissues. CONCLUSIONS Hypermethylated status of both PTEN and DAPK in peripheral blood and tissue samples can be useful biomarkers for clinical diagnosis and, distinguishing of benign and malignant thyroid nodules.
Collapse
Affiliation(s)
- Feng Wei
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Endocrinology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yun Wu
- Department of Endocrinology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Zhaoxia Wang
- Department of Endocrinology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yongchao Li
- Department of Endocrinology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jing Wang
- Department of Endocrinology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ying Yang
- Department of Endocrinology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
20
|
Baidoun F, Saad AM, Abdel-Rahman O. New paradigms in the treatment of low-risk thyroid cancer. Expert Rev Endocrinol Metab 2020; 15:251-260. [PMID: 32511023 DOI: 10.1080/17446651.2020.1773802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Thyroid cancer is the most common endocrine malignancy. Multiple different staging systems have been introduced and used for differentiated thyroid carcinoma (DTC). AREAS COVERED In this literature review we provide an overview of the standard options for management of patients with low risk differentiated thyroid cancer. EXPERT OPINION Surgery is considered the first and most important step in managing DTC with goal to remove all the malignant foci in order to achieve cure and increase the survival with least chance of recurrence. Many studies have been conducted to determine the best surgical approaches and how aggressive surgeries should be in order to achieve the best outcomes regarding efficacy as well as safety. Radioactive iodine (RAI) therapy has also been a part of the treatment regimen and is used for different purposes with three main goals: post-surgical ablation, adjuvant therapy and persisted/recurrent disease treatment. Radiation therapy, on the other hand, is still not recommended to be used routinely in DTC because of the conflicting data of its benefit.
Collapse
Affiliation(s)
- Firas Baidoun
- Internal medicine department, Cleveland Clinic Foundation , Cleveland, OH, USA
| | - Anas M Saad
- Internal medicine department, Cleveland Clinic Foundation , Cleveland, OH, USA
| | - Omar Abdel-Rahman
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Khatami F, Larijani B, Heshmat R, Nasiri S, Haddadi-Aghdam M, Teimoori-Toolabi L, Tavangar SM. Hypermethylated RASSF1 and SLC5A8 promoters alongside BRAF V600E mutation as biomarkers for papillary thyroid carcinoma. J Cell Physiol 2020; 235:6954-6968. [PMID: 32017063 DOI: 10.1002/jcp.29591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Circulating cell-free DNA (cfDNA) has been considered as a diagnostic source to track genetic and epigenetic alterations in cancer. We aimed to study mutation in addition to the methylation status in the promoter regions of RASSF1 and SLC5A8 genes in tissues and circulating free DNA samples of patients affected with papillary thyroid carcinoma (PTC) and thyroid nodules as controls. BRAFV600E mutation was studied by ARMS-scorpion real-time polymerase chain reaction method in 57 PTC and 45 thyroid nodule cases. Methylation status of RASSF1 and SLC5A8 promoter regions was analyzed by methylation-specific high-resolution melting curve analysis. BRAFV600E mutation was found in 39 (68.4%) out of 57 PTC tissue samples, while in 33 (49.1%) cases of cfDNA, this mutation was detected. The frequency of BRAFV600E mutation in cfDNA was significantly different between metastatic and nonmetastatic PTC cases (22 of 33 PTC cases vs. 5 of 34 thyroid nodule samples). Methylation levels of three promoter regions of SLC5A8 and proximal promoter region of RASSF1 was significantly different between PTC and thyroid nodule cases in both cfDNA and tissue DNA. In addition, the methylation status of these two genes in tissue DNA was reflected in methylation status observed in cfDNA. This study confirmed that BRAFV600E mutation is better for discrimination between papillary thyroid carcinoma and thyroid nodules. On the other hand, hypermethylation in the more proximal promoter regions to RASSF1 and SLC5A8 genes showed higher sensitivity and more acceptable specificity for this discrimination.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Haddadi-Aghdam
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed M Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Veschi V, Verona F, Lo Iacono M, D'Accardo C, Porcelli G, Turdo A, Gaggianesi M, Forte S, Giuffrida D, Memeo L, Todaro M. Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis. Front Endocrinol (Lausanne) 2020; 11:566. [PMID: 32982967 PMCID: PMC7477072 DOI: 10.3389/fendo.2020.00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- *Correspondence: Matilde Todaro
| |
Collapse
|
23
|
Boufraqech M, Nilubol N. Multi-omics Signatures and Translational Potential to Improve Thyroid Cancer Patient Outcome. Cancers (Basel) 2019; 11:E1988. [PMID: 31835496 PMCID: PMC6966476 DOI: 10.3390/cancers11121988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Recent advances in high-throughput molecular and multi-omics technologies have improved our understanding of the molecular changes associated with thyroid cancer initiation and progression. The translation into clinical use based on molecular profiling of thyroid tumors has allowed a significant improvement in patient risk stratification and in the identification of targeted therapies, and thereby better personalized disease management and outcome. This review compiles the following: (1) the major molecular alterations of the genome, epigenome, transcriptome, proteome, and metabolome found in all subtypes of thyroid cancer, thus demonstrating the complexity of these tumors and (2) the great translational potential of multi-omics studies to improve patient outcome.
Collapse
Affiliation(s)
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA;
| |
Collapse
|
24
|
DAPK1 loss triggers tumor invasion in colorectal tumor cells. Cell Death Dis 2019; 10:895. [PMID: 31772156 PMCID: PMC6879526 DOI: 10.1038/s41419-019-2122-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death worldwide. Despite the improvement of surgical and chemotherapeutic treatments, as of yet, the disease has not been overcome due to metastasis to distant organs. Hence, it is of great relevance to understand the mechanisms responsible for metastasis initiation and progression and to identify novel metastatic markers for a higher chance of preventing the metastatic disease. The Death-associated protein kinase 1 (DAPK1), recently, has been shown to be a potential candidate for regulating metastasis in CRC. Hence, the aim of the study was to investigate the impact of DAPK1 protein on CRC aggressiveness. Using CRISPR/Cas9 technology, we generated DAPK1-deficient HCT116 monoclonal cell lines and characterized their knockout phenotype in vitro and in vivo. We show that loss of DAPK1 implemented changes in growth pattern and enhanced tumor budding in vivo in the chorioallantoic membrane (CAM) model. Further, we observed more tumor cell dissemination into chicken embryo organs and increased invasion capacity using rat brain 3D in vitro model. The novel identified DAPK1-loss gene expression signature showed a stroma typical pattern and was associated with a gained ability for remodeling the extracellular matrix. Finally, we suggest the DAPK1-ERK1 signaling axis being involved in metastatic progression of CRC. Our results highlight DAPK1 as an anti-metastatic player in CRC and suggest DAPK1 as a potential predictive biomarker for this cancer type.
Collapse
|
25
|
Botezatu A, Iancu IV, Plesa A, Manda D, Popa O, Bostan M, Mihaila M, Albulescu A, Fudulu A, Vladoiu SV, Huica I, Dobrescu R, Anton G, Badiu C. Methylation of tumour suppressor genes associated with thyroid cancer. Cancer Biomark 2019; 25:53-65. [PMID: 31006665 DOI: 10.3233/cbm-182265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thyroid carcinoma is the most common endocrine malignancy worldwide. Changes in DNA methylation can cause silencing of normally active genes, especially tumour suppressor genes (TSG) or activation of normally silent genes. OBJECTIVE The aim of this study is to evaluate the degree of promoter methylation for a panel of markers for thyroid neoplasms and to establish their relationship with thyroid oncogenesis. METHODS To generate a comprehensive DNA methylation signature of TSGs involved in thyroid neoplasia, we use Human TSG EpiTect Methyl II Signature PCR Array-Qiagen for 24 samples (follicular adenomas and papillary thyroid carcinomas) compared with normal thyroid tissue. We extended the evaluation for three TSGs (TP73, WIF1, PDLIM4) using qMS-PCR. Statistical analysis was performed with GraphPad Prism. RESULTS We noted four important genes NEUROG1, ESR1, RUNX3, MLH1, which presented methylated promoter in tumour samples compared to normal. We found new characteristic of thyroid tumours: methylation of TP73, WIF1 and PDLIM4 TSGs, which can contribute to thyroid neoplasia. A significant correlation between BRAF V600E mutation and RET/PTC rearrangements with TIMP3 and CDH13, RARB methylation, respectively was observed. CONCLUSIONS TSGs promoter hypermethylation is a hallmark of cancer and a test that uses methylation quantification method is suitable for diagnosis and prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Anca Botezatu
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Iulia V Iancu
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Adriana Plesa
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Dana Manda
- 'CI Parhon' National Institute of Endocrinology, Bucharest, Romania
| | - Oana Popa
- 'CI Parhon' National Institute of Endocrinology, Bucharest, Romania
| | - Marinela Bostan
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Mirela Mihaila
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Adrian Albulescu
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania.,National Institute for Chemical pharmaceutical Research and Development, Calea Vitan, Romania
| | - Alina Fudulu
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Susana V Vladoiu
- 'CI Parhon' National Institute of Endocrinology, Bucharest, Romania
| | - Irina Huica
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Ruxandra Dobrescu
- 'CI Parhon' National Institute of Endocrinology, Bucharest, Romania.,'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Gabriela Anton
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Corin Badiu
- 'CI Parhon' National Institute of Endocrinology, Bucharest, Romania.,'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
26
|
Khatami F, Larijani B, Heshmat R, Nasiri S, Saffar H, Shafiee G, Mossafa A, Tavangar SM. Promoter Methylation of Four Tumor Suppressor Genes in Human Papillary Thyroid Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:290-298. [PMID: 31754358 PMCID: PMC6824767 DOI: 10.30699/ijp.2019.94401.1922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/27/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & OBJECTIVE Papillary thyroid cancer (PTC) is considered to be the most common type of thyroid malignancies. Epigenetic alteration, in which the chromatin conformation and gene expression change without changing the sequence of DNA, can occur in some tumor suppressor genes and oncogenes. Methylation is the most common type of epigenetic alterations that can be an excellent indicator of PTC invasive behavior. METHODS In this research, we determined the promoter methylation status of four tumor suppressor genes (SLC5A8, RASSF1, MGMT, and DNMT1) and compared the results of 55 PTC cases with 40 goiter patients. For methylation, we used the methylation-sensitive high resolution melting (MS-HRM) assay technique. The resulting graphs of each run were compared with those of 0%, 50%, and 100% methylated controls. RESULTS Our data showed that the promoter methylation of SLC5A8, Ras association domain family member 1(RASSF1), and MGMT were significantly different between PTC tissue and goiter with P-value less than 0.05. The most significant differences were observed in RASSF1; 77.2% of hyper-methylated PTC patients versus 15.6% hyper-methylated goiter samples (P<0.001). CONCLUSION RASSF1 promoter methylation can be a PTC genetic marker. RASSF1 promoter methylation is under the impact of the methyltransferase genes (DNMT1 and MGMT), protein expression, and promoter methylation.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Mossafa
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
BRAF Inhibitors in Thyroid Cancer: Clinical Impact, Mechanisms of Resistance and Future Perspectives. Cancers (Basel) 2019; 11:cancers11091388. [PMID: 31540406 PMCID: PMC6770736 DOI: 10.3390/cancers11091388] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (RAS)/v-raf-1 murine leukemia viral oncogene homolog 1 (RAF)/mitogen-activated protein kinase 1 (MAPK) signaling cascade is the most important oncogenic pathway in human cancers. Tumors leading mutations in the gene encoding for v-raf murine sarcoma viral oncogene homolog B (BRAF) serine-threonine kinase are reliant on the MAPK signaling pathway for their growth and survival. Indeed, the constitutive activation of MAPK pathway results in continuous stimulation of cell proliferation, enhancement of the apoptotic threshold and induction of a migratory and metastatic phenotype. In a clinical perspective, this scenario opens to the possibility of targeting BRAF pathway for therapy. Thyroid carcinomas (TCs) bearing BRAF mutations represent approximately 29–83% of human thyroid malignancies and, differently from melanomas, are less sensitive to BRAF inhibitors and develop primary or acquired resistance due to mutational events or activation of alternative signaling pathways able to reactivate ERK signaling. In this review, we provide an overview on the current knowledge concerning the mechanisms leading to resistance to BRAF inhibitors in human thyroid carcinomas and discuss the potential therapeutic strategies, including combinations of BRAF inhibitors with other targeted agents, which might be employed to overcome drug resistance and potentiate the activity of single agent BRAF inhibitors.
Collapse
|
28
|
Liu J, Liu Y, Lin Y, Liang J. Radioactive Iodine-Refractory Differentiated Thyroid Cancer and Redifferentiation Therapy. Endocrinol Metab (Seoul) 2019; 34:215-225. [PMID: 31565873 PMCID: PMC6769341 DOI: 10.3803/enm.2019.34.3.215] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023] Open
Abstract
The retained functionality of the sodium iodide symporter (NIS) expressed in differentiated thyroid cancer (DTC) cells allows the further utilization of post-surgical radioactive iodine (RAI) therapy, which is an effective treatment for reducing the risk of recurrence, and even the mortality, of DTC. Whereas, the dedifferentiation of DTC could influence the expression of functional NIS, thereby reducing the efficacy of RAI therapy in advanced DTC. Genetic alternations (such as BRAF and the rearranged during transfection [RET]/papillary thyroid cancer [PTC] rearrangement) have been widely reported to be prominently responsible for the onset, progression, and dedifferentiation of PTC, mainly through activating the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling cascades. These genetic alternations have been suggested to associate with the reduced expression of iodide-handling genes in thyroid cancer, especially the NIS gene, disabling iodine uptake and causing resistance to RAI therapy. Recently, novel and promising approaches aiming at various targets have been attempted to restore the expression of these iodine-metabolizing genes and enhance iodine uptake through in vitro studies and studies of RAI-refractory (RAIR)-DTC patients. In this review, we discuss the regulation of NIS, known mechanisms of dedifferentiation including the MAPK and PI3K pathways, and the current status of redifferentiation therapy for RAIR-DTC patients.
Collapse
Affiliation(s)
- Jierui Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanqing Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Yansong Lin
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Beijing, China.
| |
Collapse
|
29
|
Shakiba E, Movahedi M, Majd A, Hedayati M. Investigating the expression and promoter methylation of RET gene in patients with medullary thyroid cancer with unmutated RET. J Cell Physiol 2019; 234:16304-16311. [PMID: 30873628 DOI: 10.1002/jcp.28295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Thyroid cancer is one of the most common endocrine malignancies. Mutations in the rearranged during transfection (RET) gene, especially in exon 10, 11, and 16, as well as epigenetic modifications, constitute the major underlying molecular events leading to medullary thyroid cancer (MTC). There are few studies on the mutations and epigenetic changes of RET gene in Iranian patients with MTC. In the present study, we aimed to address this question and explore the clinical relevance of such genetic alternations in an Iranian population. METHODS Thirty-three patients with confirmed MTC who underwent thyroidectomy surgery in Imam Khomeini Hospital (Tehran, Iran) were enrolled. DNA extracted from cancerous tissues was amplified by polymerase chain reaction (PCR) and then was sequenced for identification of RET mutations. In patients with no identified mutations, the methylation status of RET promoter and its expression were further investigated using methylation-specific PCR and real-time PCR methods, respectively. RESULTS In MTC patients with no RET mutations, the promoter of the proto-oncogene was hypomethylated. Furthermore, RET gene expression was elevated in patients who revealed no mutations in neither of exon 10, 11, or 16 of the RET gene. CONCLUSION Hypomethylation of RET promoter may contribute to MTC pathogenesis. The methylation status of RET promoter could be a new potential prognostic, diagnostic and therapeutic marker in MTC.
Collapse
Affiliation(s)
- Elham Shakiba
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Monireh Movahedi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Majd
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Potential of epigenetic events in human thyroid cancer. Cancer Genet 2019; 239:13-21. [PMID: 31472323 DOI: 10.1016/j.cancergen.2019.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Thyroid cancer remains the highest prevailing endocrine malignancy, and its incidence rate has progressively increased in the previous years. Above 95% of thyroid tumor are follicular cells types of carcinoma in which are considered invasive type of tumor. The pathogenesis and molecular mechanism of thyroid tumors are yet remains elucidated, in spite of activating RET, RAS and BRAF carcinogenesis have been well introduced. Nemours molecular alterations have been defined and have revealed promise for their diagnostic, prognostic and therapeutic capacity but still need further confirmation. Among different types of mechanisms, the current article reviews the importance of epigenetic modifications in thyroid cancer. Increasing data from previous reports demonstrate that acquired epigenetic abnormalities together with genetic changes plays an important role in alteration of gene expression patterns. Aberrant DNA methylation has been well known in the CpG regions and profile of microRNAs (mi-RNAs) expression also involved in cancer development. In addition, the gene expression through epigenetic control contribution to thyroid cancer is analyzed and it is semi considered in the clinic. However the epigenetic of the thyroid cancer is yet remains in its early stages, and it carries encouraging potential thyroid cancer detections in its early stages, assessment of prognosis and targeted cancer treatment.
Collapse
|
31
|
Han S, Ehrhardt J, Shukla S, Elkbuli A, Nikiforov YE, Gulec SA. A Case of Papillary Thyroid Carcinoma and Kostmann Syndrome: A Genomic Theranostic Approach for Comprehensive Treatment. AMERICAN JOURNAL OF CASE REPORTS 2019; 20:1027-1034. [PMID: 31308356 PMCID: PMC6647623 DOI: 10.12659/ajcr.916143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Theranostics is a combined diagnostic and treatment approach to individualized patient care. Kostmann syndrome, or severe congenital neutropenia, is an autosomal recessive disease that affects the production of neutrophils. Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy associated with gene alterations, including in the mitogen-activated protein kinase (MAPK) signaling pathway gene. Translocation of the ETS variant 6/neurotrophic receptor tyrosine kinase 3 (ETV6/NTRK3) gene has been implicated in radiation-induced and pediatric forms of thyroid carcinoma but has rarely been described in sporadic PTC. This report is of a case of PTC in a patient with Kostmann syndrome associated with ETV6/NTRK3 gene translocation. CASE REPORT A 32-year-old woman with a history of Kostmann syndrome, acute myeloid leukemia (AML), and chronic graft versus host disease (GVHD) was diagnosed with PTC with cervical lymph node metastases and soft tissue invasion following total thyroidectomy and bilateral modified radical neck dissection. Her postoperative radioactive iodine (RAI) scan confirmed lymph node metastasis. Gene expression studies identified increased expression of iodine-handling genes and ETV6/NTRK3 gene fusion. Because of the bone marrow compromise due to Kostmann syndrome and AML, a careful genomic and molecular analysis was performed to guide therapy. CONCLUSIONS This is the first reported case of the association between PTC, Kostmann syndrome, and ETV6/NTRK3 gene translocation in which multimodality treatment planning was optimized by genomic profiling.
Collapse
Affiliation(s)
- Soo Han
- Department of Surgery, Kendall Regional Medical Center, Miami, FL, U.S.A
| | - John Ehrhardt
- Department of Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, U.S.A
| | - Savya Shukla
- Department of Radiology, Aventura Hospital and Medical Center, Aventura, FL, U.S.A
| | - Adel Elkbuli
- Department of Surgery, Kendall Regional Medical Center, Miami, FL, U.S.A
| | - Yuri E. Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, U.S.A
- Miami Cancer Research Center, Miami, FL, USA
| | - Seza A. Gulec
- Department of Surgery, Kendall Regional Medical Center, Miami, FL, U.S.A
- Department of Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, U.S.A
- Miami Cancer Research Center, Miami, FL, USA
- Department of Surgery, Aventura Hospital and Medical Center, Miami, FL, U.S.A
| |
Collapse
|
32
|
Zafon C, Gil J, Pérez-González B, Jordà M. DNA methylation in thyroid cancer. Endocr Relat Cancer 2019; 26:R415-R439. [PMID: 31035251 DOI: 10.1530/erc-19-0093] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
In recent years, cancer genomics has provided new insights into genetic alterations and signaling pathways involved in thyroid cancer. However, the picture of the molecular landscape is not yet complete. DNA methylation, the most widely studied epigenetic mechanism, is altered in thyroid cancer. Recent technological advances have allowed the identification of novel differentially methylated regions, methylation signatures and potential biomarkers. However, despite recent progress in cataloging methylation alterations in thyroid cancer, many questions remain unanswered. The aim of this review is to comprehensively examine the current knowledge on DNA methylation in thyroid cancer and discuss its potential clinical applications. After providing a general overview of DNA methylation and its dysregulation in cancer, we carefully describe the aberrant methylation changes in thyroid cancer and relate them to methylation patterns, global hypomethylation and gene-specific alterations. We hope this review helps to accelerate the use of the diagnostic, prognostic and therapeutic potential of DNA methylation for the benefit of thyroid cancer patients.
Collapse
Affiliation(s)
- Carles Zafon
- Diabetes and Metabolism Research Unit (VHIR) and Department of Endocrinology, University Hospital Vall d'Hebron and Autonomous University of Barcelona, Barcelona, Spain
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
| | - Joan Gil
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Beatriz Pérez-González
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Mireia Jordà
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
33
|
Khatami F, Teimoori-Toolabi L, Heshmat R, Nasiri S, Saffar H, Mohammadamoli M, Aghdam MH, Larijani B, Tavangar SM. Circulating ctDNA methylation quantification of two DNA methyl transferases in papillary thyroid carcinoma. J Cell Biochem 2019; 120:17422-17437. [PMID: 31127647 DOI: 10.1002/jcb.29007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Papillary thyroid cancer (PTC) is the most common type of cancer among thyroid malignancies. Tumor-related methylation of circulating tumor DNA (ctDNA) in plasma could represent tumor specific alterations can be considered as good biomarkers in circulating tumor cells. In this study, we studied the methylation status of seven promoter regions of two DNA methyl Transferases (MGMT and DNMT1) genes as the methylated ctDNA in plasma and tissue samples of patients with PTC and goiter patients as noncancerous controls. METHODS Both ctDNA and tissue genomic DNA of 57 PTC and 45 Goiter samples were isolated. After bisulfite modification, the methylation status was studied by Methylation-Sensitive High Resolution Melting (MS-HRM) assay technique. Four promoter regions of O6-methylguanine-DNA methyltransferase (MGMT) and three promoter regions of DNA methyltransferase 1 (DNMT1) were assessed. RESULTS From seven candidate promoter regions of two methyltrasferase coding genes, the methylation status of ctDNA within MGMT (a), MGMT (c), MGMT (d), and DNMT1 (b) were meaningfully different between PTC cases and controls. However, the most significant differences were seen in circulating ctDNA MGMT (c) which was hypermethylated in 25 (43.9 %) of patients with PTC vs 2 (4. 4 %) of goiter samples. Between two selected DNA methyl transferase, the methylation of MGMT as the maintenance methyltransferase was significantly higher in PTC cases than goiter controls (P-value < .001). The resulting areas under the receiver operating characteristic (ROC) curve were 0.78 for MGMT (d) for PTC versus goiter samples that can represent the overall ability of MGMT (d) methylation status to discriminate between PTC and goiter patients. CONCLUSION Among seven candidate regions of ctDNA the MGMT (c) and MGMT (d) showed higher sensitivity and specificity for PTC as a suitable candidates as biomarkers of PTC.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammadamoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Falcone R, Conte F, Fiscon G, Pecce V, Sponziello M, Durante C, Farina L, Filetti S, Paci P, Verrienti A. BRAF V600E-mutant cancers display a variety of networks by SWIM analysis: prediction of vemurafenib clinical response. Endocrine 2019; 64:406-413. [PMID: 30850937 DOI: 10.1007/s12020-019-01890-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Several studies have shown that different tumour types sharing a driver gene mutation do not respond uniformly to the same targeted agent. Our aim was to use an unbiased network-based approach to investigate this fundamental issue using BRAFV600E mutant tumours and the BRAF inhibitor vemurafenib. METHODS We applied SWIM, a software able to identify putative regulatory (switch) genes involved in drastic changes to the cell phenotype, to gene expression profiles of different BRAFV600E mutant cancers and their normal counterparts in order to identify the switch genes that could potentially explain the heterogeneity of these tumours' responses to vemurafenib. RESULTS We identified lung adenocarcinoma as the tumour with the highest number of switch genes (298) compared to its normal counterpart. By looking for switch genes encoding for kinases with homology sequences similar to known vemurafenib targets, we found that thyroid cancer and lung adenocarcinoma have a similar number of putative targetable switch gene kinases (5 and 6, respectively) whereas colorectal cancer has just one. CONCLUSIONS We are persuaded that our network analysis may aid in the comprehension of molecular mechanisms underlying the different responses to vemurafenib in BRAFV600E mutant tumours.
Collapse
Affiliation(s)
- Rosa Falcone
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
- ACT Operations Research, Research & Development, Roma, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
- ACT Operations Research, Research & Development, Roma, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Sebastiano Filetti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Zhang K, Li C, Liu J, Tang X, Li Z. DNA methylation alterations as therapeutic prospects in thyroid cancer. J Endocrinol Invest 2019; 42:363-370. [PMID: 29992502 DOI: 10.1007/s40618-018-0922-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Thyroid cancer is one of the most common endocrine malignancies. Although the 10-year survival rate of differentiated thyroid cancer (DTC) is about 90% after conventional treatments, a small proportion of patients still suffer from tumor recurrence or drug resistance. OBJECTIVE This review article summarizes recent researches and clinical trials related to target drugs that reduce mortality in thyroid cancer. METHODS This is a review of the recent literature and clinical trials on the three main aspects including methylation genes in thyroid cancers, the relationship between BRAF mutation and gene methylation, target and dehypermethylation drugs in clinical trials. RESULTS We propose new approaches to treating malignant thyroid cancer, based on advances in understanding the relationship between genetic and epigenetic changes in thyroid cancer. Although the effect of traditional treatment for thyroid cancer is relatively good, a small proportion of patients still suffer from tumor recurrence or drug resistance. Molecular targeted drugs and dehypermethylation drugs have more promising outcomes in aggressive thyroid cancer compared with conventional treatments. CONCLUSION Based on what was discussed in this review, we suggest that integration of epigenetic and targeted therapies into conventional treatments will reduce the occurrence of refractory radioiodine differentiated thyroid cancer and improve the outcomes in aggressive thyroid cancer patients.
Collapse
Affiliation(s)
- K Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
| | - C Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
- Department of Pharmacy, ZhuZhou Central Hospital, ZhuZhou, 410078, People's Republic of China
| | - J Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
| | - X Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
- Department of Center for ADR monitoring of Hubei, Wuhan, 430071, People's Republic of China
| | - Z Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China.
| |
Collapse
|
36
|
Zhao Y, Zhong L, Yi H. A review on the mechanism of iodide metabolic dysfunction in differentiated thyroid cancer. Mol Cell Endocrinol 2019; 479:71-77. [PMID: 30287400 DOI: 10.1016/j.mce.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022]
Abstract
The incidence of differentiated thyroid cancer (DTC) has been increasing rapidly worldwide, and the risk factors remain unclear. With the growing number of patients with DTC, the related issues have been gradually highlighted. 131Iodide (131I) is an important treatment for DTC and has the potential to reduce the risk of recurrence. 131I is also an effective treatment for distant metastases of thyroid carcinoma. However, iodide metabolism dysfunction in metastatic foci causes patients to lose the opportunity of 131I treatment. This article reviews the related mechanisms of iodide metabolism dysfunction in DTC cells and summarizes the clinical transformation progression.
Collapse
Affiliation(s)
- Yinlong Zhao
- Department of Nuclear Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, 130041, PR China.
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
| | - Heqing Yi
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang, 310021, PR China.
| |
Collapse
|
37
|
Zarkesh M, Zadeh-Vakili A, Azizi F, Foroughi F, Akhavan MM, Hedayati M. Altered Epigenetic Mechanisms in Thyroid Cancer Subtypes. Mol Diagn Ther 2018; 22:41-56. [PMID: 28986854 DOI: 10.1007/s40291-017-0303-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thyroid carcinoma (TC) is the most frequent malignant neoplasm of the endocrine system. Molecular methods for diagnosis of invasive thyroid disease can be effectively adopted. Epigenetic factors play an important role in the diversity patterns of gene expression and the phenotypic and biological characteristics of TC subtypes. We aimed to review epigenetic changes in the main subtypes of TC, along with a presentation of the methods that have examined these changes, and active clinical trials for the treatment of advanced TCs targeting epigenetic changes. A literature analysis was performed in MEDLINE using PubMed, Elsevier, and Google Scholar for studies published up to 2016, using the keywords: "Epigenetic alterations" OR "Epigenetic changes", "thyroid cancers", "papillary thyroid cancer", "medullary thyroid cancer", "follicular thyroid cancer", and "anaplastic thyroid cancer", which resulted in 310 articles in English. All related abstracts were reviewed and studies were included that were published in English, had available full text, and determined the details of the methods and materials associated with the epigenetic patterns of TC and its subtypes (100 articles). Analysis of epigenetic alterations in TC subtypes helps to identify pathogenesis and can play an important role in the classification and diagnosis of tumors. Epigenetic mechanisms, especially aberrant methylation of DNA and microRNAs (miRs), are likely to play an important role in thyroid tumorigenesis. Further studies are required to elucidate the role of histone modification mechanisms in TC development.
Collapse
Affiliation(s)
- Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Foroughi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maziar Mohammad Akhavan
- Skin Research Center School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran.
| |
Collapse
|
38
|
Li R, Chen H, Jiang S, Li W, Li H, Zhang Z, Hong H, Huang X, Zhao C, Lu Y, Bo X. CMTCN: a web tool for investigating cancer-specific microRNA and transcription factor co-regulatory networks. PeerJ 2018; 6:e5951. [PMID: 30473937 PMCID: PMC6237116 DOI: 10.7717/peerj.5951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/14/2018] [Indexed: 01/03/2023] Open
Abstract
Transcription factors (TFs) and microRNAs (miRNAs) are well-characterized trans-acting essential players in gene expression regulation. Growing evidence indicates that TFs and miRNAs can work cooperatively, and their dysregulation has been associated with many diseases including cancer. A unified picture of regulatory interactions of these regulators and their joint target genes would shed light on cancer studies. Although online resources developed to support probing of TF-gene and miRNA-gene interactions are available, online applications for miRNA-TF co-regulatory analysis, especially with a focus on cancers, are lacking. In light of this, we developed a web tool, namely CMTCN (freely available at http://www.cbportal.org/CMTCN), which constructs miRNA-TF co-regulatory networks and conducts comprehensive analyses within the context of particular cancer types. With its user-friendly provision of topological and functional analyses, CMTCN promises to be a reliable and indispensable web tool for biomedical studies.
Collapse
Affiliation(s)
- Ruijiang Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hebing Chen
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuai Jiang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wanying Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hao Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuo Zhang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hao Hong
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xin Huang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chenghui Zhao
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiming Lu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
39
|
Thyroid cancers of follicular origin in a genomic light: in-depth overview of common and unique molecular marker candidates. Mol Cancer 2018; 17:116. [PMID: 30089490 PMCID: PMC6081953 DOI: 10.1186/s12943-018-0866-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
In recent years, thyroid malignances have become more prevalent, especially among women. The most common sporadic types of thyroid tumors of follicular origin include papillary, follicular and anaplastic thyroid carcinomas. Although modern diagnosis methods enable the identification of tumors of small diameter, tumor subtype differentiation, which is imperative for the correct choice of treatment, is still troublesome. This review discusses the recent advances in the field of molecular marker identification via next-generation sequencing and microarrays. The potential use of these biomarkers to distinguish among the most commonly occurring sporadic thyroid cancers is presented and compared. Geographical heterogeneity might be a differentiator, although not necessarily a limiting factor, in biomarker selection. The available data advocate for a subset of mutations common for the three subtypes as well as mutations that are unique for a particular tumor subtype. Tumor heterogeneity, a known issue occurring within solid malignancies, is also discussed where applicable. Public databases with datasets derived from high-throughput experiments are a valuable source of information that aid biomarker research in general, including the identification of molecular hallmarks of thyroid cancer.
Collapse
|
40
|
Asa SL, Ezzat S. The epigenetic landscape of differentiated thyroid cancer. Mol Cell Endocrinol 2018; 469:3-10. [PMID: 28711609 DOI: 10.1016/j.mce.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
Differentiated thyroid carcinoma of follicular cell-derivation is the most common endocrine neoplasm with a rapidly increasing incidence. The majority represent papillary carcinomas; more rarely, they are follicular carcinomas. The vast majority have indolent behavior, however a significant proportion progress to develop lymph node metastases and a smaller proportion disseminate systemically. While common and frequent genetic events have been described to underlie the development of these neoplasms, the factors contributing to differing behaviors among tumors with similar genetic alterations remain unclear. This review focuses on epigenetic mechanisms targeting major signaling pathways that underlie the spectrum of biological behaviors and that may have potential diagnostic, prognostic and therapeutic value.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Shereen Ezzat
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Sasanakietkul T, Murtha TD, Javid M, Korah R, Carling T. Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer. Mol Cell Endocrinol 2018; 469:23-37. [PMID: 28552796 DOI: 10.1016/j.mce.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/12/2017] [Accepted: 05/21/2017] [Indexed: 12/25/2022]
Abstract
Well-differentiated thyroid cancer accounts for the majority of endocrine malignancies and, in general, has an excellent prognosis. In contrast, the less common poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) are two of the most aggressive human malignancies. Recently, there has been an increased focus on the epigenetic alterations underlying thyroid carcinogenesis, including those that drive PDTC and ATC. Dysregulated epigenetic candidates identified include the Aurora group, KMT2D, PTEN, RASSF1A, multiple non-coding RNAs (ncRNA), and the SWI/SNF chromatin-remodeling complex. A deeper understanding of the signaling pathways affected by epigenetic dysregulation may improve prognostic testing and support the advancement of thyroid-specific epigenetic therapies. This review outlines the current understanding of epigenetic alterations observed in PDTC and ATC and explores the potential for exploiting this understanding in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Thanyawat Sasanakietkul
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Timothy D Murtha
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mahsa Javid
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Reju Korah
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tobias Carling
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Zarkesh M, Zadeh-Vakili A, Azizi F, Fanaei SA, Foroughi F, Hedayati M. The Association of BRAF V600E Mutation With Tissue Inhibitor of Metalloproteinase-3 Expression and Clinicopathological Features in Papillary Thyroid Cancer. Int J Endocrinol Metab 2018; 16:e56120. [PMID: 29868127 PMCID: PMC5972213 DOI: 10.5812/ijem.56120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/18/2017] [Accepted: 01/07/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most common endocrine malignancy. The aim of this study was to investigate the association of tissue inhibitor metalloproteinase-3 (TIMP3) mRNA and protein levels in thyroid tissues, based on BRAF V600E status with the clinicopathologic characteristics of PTC. METHODS A total of 60 fresh frozen tissue samples of PTC patients (15 male and 45 female) were collected during thyroidectomy. All clinicopathological information was obtained and samples were reviewed as well as confirmed by a pathologist; exon 15 of the BRAF gene was genotyped by sequencing, TIMP3 mRNA level was assessed using SYBR-Green Real-Time PCR, and TIMP3 protein level was measured using ELISA. RESULTS Of 60 cases, BRAF mutation was found in 24 (40%). Larger tumor size and higher lymph node metastasis frequency were observed, significant in BRAF (+), compared to the BRAF (-) PTC group (P = 0.039 and P = 0.03, respectively). No significant difference was seen in the tumoral tissues of the TIMP3 mRNA level in BRAF (+), compared to BRAF (-) PTC samples. However, the mean TIMP3 protein level was significantly lower in tumoral tissues, compared to matched non-tumoral tissues in BRAF (+) PTC (P=0.003); TIMP3 protein level was significantly lower in tumoral tissues compared to matched non-tumoral tissues in BRAF (+), in subjects who had no lymph node metastasis and also in subjects with lymph node metastasis in both BRAF positive and negative PTC cases. CONCLUSION Our results showed that BRAF mutation was associated with a larger tumor size, higher frequency of lymph node metastasis, and lower TIMP3 protein levels. Lower TIMP3 protein level was associated with the lymph node metastasis in PTC patients.
Collapse
Affiliation(s)
- Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - S Ahmad Fanaei
- Association Professor of General Surgery, Erfan Hospital, Tehran, IR Iran
| | - Forough Foroughi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Mehdi Hedayati, Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel: +98-2122432500, Fax: +98-2122416264, E-mail:
| |
Collapse
|
43
|
He J, Jin Y, Zhou M, Li X, Chen W, Wang Y, Gu S, Cao Y, Chu C, Liu X, Zou Q. Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor-β type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis. Cancer Sci 2018; 109:642-655. [PMID: 29274137 PMCID: PMC5834798 DOI: 10.1111/cas.13478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 02/05/2023] Open
Abstract
Solute carrier family members control essential physiological functions and are tightly linked to human diseases. Solute carrier family 35 member F2 (SLC35F2) is aberrantly activated in several malignancies. However, the biological function and molecular mechanism of SLC35F2 in papillary thyroid carcinoma (PTC) are yet to be fully explored. Here, we showed that SLC35F2 was prominently upregulated in PTC tissues at both protein and mRNA expression level compared with matched adjacent normal tissues. Besides, the high expression of SLC35F2 was significantly associated with lymph node metastasis in patients with PTC. CRISPR/Cas9-mediated knockout of SLC35F2 attenuated the tumorigenic properties of PTC, including cell proliferation, migration and invasion and induced G1 phase arrest. In contrast, ectopic expression of SLC35F2 brought about aggressive malignant phenotypes of PTC cells. Moreover, SLC35F2 expedited the proliferation and migration of PTC cells by targeting transforming growth factor-β type I receptor (TGFBR1) and phosphorylation of apoptosis signal-regulating kinase 1 (p-ASK-1), thereby activating the mitogen-activated protein kinase signaling pathway. The malignant behaviors induced by overexpression of SLC35F2 could be abrogated by silencing of TGFBR1 using a specific inhibitor. We conducted the first study on SLC35F2 in thyroid cancer with the aim of elucidating the functional significance and molecular mechanism of SLC35F2. Our findings suggest that SLC35F2 exerts its oncogenic effect on PTC progression through the mitogen-activated protein kinase pathway, with dependence on activation of TGFBR-1 and apoptosis signal-regulating kinase 1.
Collapse
Affiliation(s)
- Jing He
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Yiting Jin
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Mingxia Zhou
- Department of GastroenterologyXinhua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoyan Li
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Wanna Chen
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Yiwei Wang
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Siwen Gu
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Yun Cao
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Chengyu Chu
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Xiuping Liu
- Department of PathologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of PathologyThe Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Qiang Zou
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
44
|
Stephen JK, Chen KM, Merritt J, Chitale D, Divine G, Worsham MJ. Methylation markers differentiate thyroid cancer from benign nodules. J Endocrinol Invest 2018; 41:163-170. [PMID: 28612287 DOI: 10.1007/s40618-017-0702-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The incidence of thyroid cancer (TC) is increasing. Cytology by itself cannot distinguish TC from some benign nodules especially in certain subtypes of TC. Our immediate goal is to identify DNA methylation markers for early detection of TC and to molecularly differentiate TC subtypes from benign nodules. METHODS Promoter methylation status of 21 candidate genes was examined on formalin-fixed paraffin-embedded tissue (FFPE) utilizing quantitative methylation-specific polymerase chain reaction (QMSP) in a retrospective cohort of 329 patients (56% white, 29% African American, 61% female) comprising 71 normal thyroid, 83 benign nodules [follicular adenomas (FA)], 90 follicular TC (FTC) and 85 papillary TC (PTC). All genes were analyzed individually (Kruskal-Wallis and Wilcoxon rank sum tests) and in combination (logistic regression models) to identify genes whose methylation levels might best separate groups. RESULTS Combination gene panels TPO and UCHL1 (ROC = 0.607, sensitivity 78%) discriminated FTC from FA, and RASSF1 and TPO (ROC = 0.881, sensitivity 78%) discriminated FTC from normal. Methylation of TSHR distinguished PTC from FTC (ROC = 0.701, sensitivity 84%) and PTC from FA (ROC = 0.685, sensitivity 70%). The six gene panel of TIMP3, RARB2, SERPINB5, RASSF1, TPO and TSHR, which differentiates PTC from normal thyroid, had the best combination sensitivity (91%) and specificity (81%) of the panels addressing discrimination of cancer tissue. CONCLUSIONS Aberrant gene methylation used in combination panels may be useful clinically in differentiating FTC and PTC from benign nodules. If confirmed in additional studies, these findings could help reduce the over diagnosis of thyroid cancer and surgeries related to over diagnosis.
Collapse
Affiliation(s)
- J K Stephen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA.
| | - K M Chen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA
| | - J Merritt
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA
| | - D Chitale
- Department of Pathology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - G Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - M J Worsham
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA
| |
Collapse
|
45
|
Xue S, Wang P, Hurst ZA, Chang YS, Chen G. Active Surveillance for Papillary Thyroid Microcarcinoma: Challenges and Prospects. Front Endocrinol (Lausanne) 2018; 9:736. [PMID: 30619082 PMCID: PMC6302022 DOI: 10.3389/fendo.2018.00736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Active surveillance (AS) can be considered as an alternative to immediate surgery in low-risk papillary thyroid microcarcinoma (PTMC) without clinically apparent lymph nodes, gross extrathyroidal extension (ETE), and/or distant metastasis according to American Thyroid Association. However, in the past AS has been controversial, as evidence supporting AS in the management of PTMC was scarce. The most prominent of these controversies included, the limited accuracy and utility of ultrasound (US) in the detection of ETE, malignant lymph node involvement or the advent of novel lymph node malignancy during AS, and disease progression. We summarized publications and indicated: (1) US, performer-dependent, could not accurately diagnose gross ETE or malignant lymph node involvement in PTMC. However, the combination of computed tomography and US provided more accurate diagnostic performance, especially in terms of selection sensitivity. (2) Compared to immediate surgery patients, low-risk PTMC patients had a slightly higher rate of lymph node metastases (LNM), although the overall rate for both groups remained low. (3) Recent advances in the sensitivity and specificity of imaging and incorporation of diagnostic biomarkers have significantly improved confidence in the ability to differentiate indolent vs. aggressive PTMCs. Our paper reviewed current imagings and biomarkers with initial promise to help select AS candidates more safely and effectively. These challenges and prospects are important areas for future research to promote AS in PTMC.
Collapse
Affiliation(s)
- Shuai Xue
- Thyroid Surgery Department, The First Hospital of Jilin University, Changchun, China
| | - Peisong Wang
- Thyroid Surgery Department, The First Hospital of Jilin University, Changchun, China
| | - Zachary A. Hurst
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Yi Seok Chang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Guang Chen
- Thyroid Surgery Department, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Guang Chen
| |
Collapse
|
46
|
Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol 2017; 235:R43-R61. [PMID: 28838947 DOI: 10.1530/joe-17-0266] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Whole genome sequencing approaches have provided unprecedented insights into the genetic lesions responsible for the onset, progression and dedifferentiation of various types of thyroid carcinomas. Through these efforts, the MAPK and PI3K signaling cascades have emerged as the main activation pathways implicated in thyroid tumorigenesis. The nature of these essential pathways is highly complex, with hundreds of components, multiple points of crosstalk, different subcellular localizations and with the ability to potentially regulate many cellular processes. Small-molecule inhibitors targeting key kinases of these pathways hold great promise as novel therapeutics and several have reached clinical trials. However, while some remarkable responses have been reported, the development of resistance remains a matter of concern and limits the benefit for patients. In this review, we discuss the latest findings on the major components of the MAPK and PI3K pathways, including their mechanisms of activation in physiological and pathological contexts, their genetic alterations with respect to the different types of thyroid carcinomas and the more relevant drugs designed to block their activity.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
47
|
Tesselaar MH, Smit JW, Nagarajah J, Netea-Maier RT, Plantinga TS. Pathological processes and therapeutic advances in radioiodide refractory thyroid cancer. J Mol Endocrinol 2017; 59:R141-R154. [PMID: 28931558 DOI: 10.1530/jme-17-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Abstract
While in most patients with non-medullary thyroid cancer (TC), disease remission is achieved by thyroidectomy and ablation of tumor remnants by radioactive iodide (RAI), a substantial subgroup of patients with metastatic disease present tumor lesions that have acquired RAI resistance as a result of dedifferentiation. Although oncogenic mutations in BRAF, TERT promoter and TP53 are associated with an increased propensity for induction of dedifferentiation, the role of genetic and epigenetic aberrations and their effects on important intracellular signaling pathways is not yet fully elucidated. Also immune, metabolic, stemness and microRNA pathways have emerged as important determinants of TC dedifferentiation and RAI resistance. These signaling pathways have major clinical implications since their targeting could inhibit TC progression and could enable redifferentiation to restore RAI sensitivity. In this review, we discuss the current insights into the pathological processes conferring dedifferentiation and RAI resistance in TC and elaborate on novel advances in diagnostics and therapy to improve the clinical outcome of RAI-refractory TC patients.
Collapse
Affiliation(s)
- Marika H Tesselaar
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W Smit
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Nagarajah
- Radiology & Nuclear MedicineRadboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Bisarro dos Reis M, Barros-Filho MC, Marchi FA, Beltrami CM, Kuasne H, Pinto CAL, Ambatipudi S, Herceg Z, Kowalski LP, Rogatto SR. Prognostic Classifier Based on Genome-Wide DNA Methylation Profiling in Well-Differentiated Thyroid Tumors. J Clin Endocrinol Metab 2017; 102:4089-4099. [PMID: 28938489 PMCID: PMC5673278 DOI: 10.1210/jc.2017-00881] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022]
Abstract
Context Even though the majority of well-differentiated thyroid carcinoma (WDTC) is indolent, a number of cases display an aggressive behavior. Cumulative evidence suggests that the deregulation of DNA methylation has the potential to point out molecular markers associated with worse prognosis. Objective To identify a prognostic epigenetic signature in thyroid cancer. Design Genome-wide DNA methylation assays (450k platform, Illumina) were performed in a cohort of 50 nonneoplastic thyroid tissues (NTs), 17 benign thyroid lesions (BTLs), and 74 thyroid carcinomas (60 papillary, 8 follicular, 2 Hürthle cell, 1 poorly differentiated, and 3 anaplastic). A prognostic classifier for WDTC was developed via diagonal linear discriminant analysis. The results were compared with The Cancer Genome Atlas (TCGA) database. Results A specific epigenetic profile was detected according to each histological subtype. BTLs and follicular carcinomas showed a greater number of methylated CpG in comparison with NTs, whereas hypomethylation was predominant in papillary and undifferentiated carcinomas. A prognostic classifier based on 21 DNA methylation probes was able to predict poor outcome in patients with WDTC (sensitivity 63%, specificity 92% for internal data; sensitivity 64%, specificity 88% for TCGA data). High-risk score based on the classifier was considered an independent factor of poor outcome (Cox regression, P < 0.001). Conclusions The methylation profile of thyroid lesions exhibited a specific signature according to the histological subtype. A meaningful algorithm composed of 21 probes was capable of predicting the recurrence in WDTC.
Collapse
Affiliation(s)
- Mariana Bisarro dos Reis
- International Research Center, CIPE, A.C. Camargo Cancer Center and National Institute of Science and Technology in Oncogenomics, São Paulo 01509-010, SP, Brazil
- Department of Urology, Faculty of Medicine, UNESP, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Mateus Camargo Barros-Filho
- International Research Center, CIPE, A.C. Camargo Cancer Center and National Institute of Science and Technology in Oncogenomics, São Paulo 01509-010, SP, Brazil
| | - Fábio Albuquerque Marchi
- International Research Center, CIPE, A.C. Camargo Cancer Center and National Institute of Science and Technology in Oncogenomics, São Paulo 01509-010, SP, Brazil
| | - Caroline Moraes Beltrami
- International Research Center, CIPE, A.C. Camargo Cancer Center and National Institute of Science and Technology in Oncogenomics, São Paulo 01509-010, SP, Brazil
| | - Hellen Kuasne
- International Research Center, CIPE, A.C. Camargo Cancer Center and National Institute of Science and Technology in Oncogenomics, São Paulo 01509-010, SP, Brazil
| | | | - Srikant Ambatipudi
- Epigenetics Group; International Agency for Research on Cancer (IARC), Lyon 69372, France
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, United Kingdom
| | - Zdenko Herceg
- Epigenetics Group; International Agency for Research on Cancer (IARC), Lyon 69372, France
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo 01509-010, SP, Brazil
| | - Silvia Regina Rogatto
- Department of Urology, Faculty of Medicine, UNESP, São Paulo State University, Botucatu 18618-970, SP, Brazil
- Department of Clinical Genetics, Vejle Hospital and Institute of Regional Health Research, University of Southern Denmark, Vejle, 7100, Denmark
| |
Collapse
|
49
|
Khatami F, Larijani B, Heshmat R, Keshtkar A, Mohammadamoli M, Teimoori-Toolabi L, Nasiri S, Tavangar SM. Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. PLoS One 2017; 12:e0184892. [PMID: 28926589 PMCID: PMC5605048 DOI: 10.1371/journal.pone.0184892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/03/2017] [Indexed: 01/11/2023] Open
Abstract
Promoter methylation in a number of tumor-suppressor genes (TSGs) can play crucial roles in the development of thyroid carcinogenesis. The focus of the current meta-analysis was to determine the impact of promoter methylation of eight selected candidate TSGs on thyroid cancer and to identify the most important molecules in this carcinogenesis pathway. A comprehensive search was performed using Pub Med, Scopus, and ISI Web of Knowledge databases, and eligible studies were included. The methodological quality of the included studies was evaluated according to the Newcastle Ottawa scale table and pooled odds ratios (ORs); 95% confidence intervals (CIs) were used to estimate the strength of the associations with Stata 12.0 software. Egger's and Begg's tests were applied to detect publication bias, in addition to the "Metatrim" method. A total of 55 articles were selected, and 135 genes with altered promoter methylation were found. Finally, we included eight TSGs that were found in more than four studies (RASSF1, TSHR, PTEN, SLC5A, DAPK, P16, RARβ2, and CDH1). The order of the pooled ORs for these eight TSGs from more to less significant was CDH1 (OR = 6.73), SLC5 (OR = 6.15), RASSF1 (OR = 4.16), PTEN (OR = 3.61), DAPK (OR = 3.51), P16 (OR = 3.31), TSHR (OR = 2.93), and RARβ2 (OR = 1.50). Analyses of publication bias and sensitivity confirmed that there was very little bias. Thus, our findings showed that CDH1 and SCL5A8 genes were associated with the risk of thyroid tumor genesis.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammadamoli
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shirzad Nasiri
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Intaraphairot T, Chinpaisal C, Apirakaramwong A. Effect of Curcumin on SMCT-1 Expression and Dichloroacetate Toxicity in HCT116 Colon Cancer Cells. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.15171/ps.2017.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|