1
|
Yan L, Li J, Yang Y, Zhang X, Zhang C. Old drug, new use: Recent advances for G-CSF. Cytokine 2024; 184:156759. [PMID: 39293182 DOI: 10.1016/j.cyto.2024.156759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3 (CSF3), is a proinflammatory cytokine that primarily stimulates the survival, proliferation, differentiation and function of neutrophil granulocyte progenitor cells and mature neutrophils. Over the past years, G-CSF has mainly been used to cure patients with neutropenia and as a part of chemotherapy to induct the remission for refractory/relapse leukemia. Recent studies showed that C-CSF can been used as condition regimens and as a part of preventive methods after allogeneic transplantation to improve the survival of patients and also has immunoregulation, and has promote or inhibit the proliferation of solid tumors. Therefore, in this review, we firstly describe the structure for G-CSF. Then its functions and mechanism were reviewed including the neutrophil mobilization, differentiation, migration, and inhibiting apoptosis of neutrophils, and its immunoregulation. Finally, the clinical applications were further discussed.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Jing Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Yang Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| |
Collapse
|
2
|
Convection-enhanced delivery of temozolomide and whole cell tumor immunizations in GL261 and KR158 experimental mouse gliomas. BMC Cancer 2020; 20:7. [PMID: 31900109 PMCID: PMC6942363 DOI: 10.1186/s12885-019-6502-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Background Glioblastomas (GBM) are therapy-resistant tumors with a profoundly immunosuppressive tumor microenvironment. Chemotherapy has shown limited efficacy against GBM. Systemic delivery of chemotherapeutic drugs is hampered by the difficulty of achieving intratumoral levels as systemic toxicity is a dose-limiting factor. Although some of its effects might be mediated by immune reactivity, systemic chemotherapy can also inhibit induced or spontaneous antitumor immune reactivity. Convection-enhanced delivery of temozolomide (CED-TMZ) can tentatively increase intratumoral drug concentration while reducing systemic side effects. The objective of this study was to evaluate the therapeutic effect of intratumorally delivered temozolomide in combination with immunotherapy and whether such therapy can generate a cellular antitumor immune response. Methods Single bolus intratumoral injection and 3-day mini-osmotic pumps (Alzet®) were used to deliver intratumoral TMZ in C57BL6 mice bearing orthotopic gliomas. Immunotherapy consisted of subcutaneous injections of irradiated GL261 or KR158 glioma cells. Tumor size and intratumoral immune cell populations were analyzed by immunohistochemistry. Results Combined CED-TMZ and immunotherapy had a synergistic antitumor effect in the GL261 model, compared to CED-TMZ or immunotherapy as monotherapies. In the KR158 model, immunization cured a small proportion of the mice whereas addition of CED-TMZ did not have a synergistic effect. However, CED-TMZ as monotherapy prolonged the median survival. Moreover, TMZ bolus injection in the GL261 model induced neurotoxicity and lower cure rate than its equivalent dose delivered by CED. In addition, we found that T-cells were the predominant cells responsible for the TMZ antitumor effect in the GL261 model. Finally, CED-TMZ combined with immunotherapy significantly reduced tumor volume and increased the intratumoral influx of T-cells in both models. Conclusions We show that immunotherapy synergized with CED-TMZ in the GL261 model and cured animals in the KR158 model. Single bolus administration of TMZ was effective with a narrower therapeutic window than CED-TMZ. Combined CED-TMZ and immunotherapy led to an increase in the intratumoral influx of T-cells. These results form part of the basis for the translation of the therapy to patients with GBM but the dosing and timing of delivery will have to be explored in depth both experimentally and clinically.
Collapse
|
3
|
Enríquez Pérez J, Fritzell S, Kopecky J, Visse E, Darabi A, Siesjö P. The effect of locally delivered cisplatin is dependent on an intact immune function in an experimental glioma model. Sci Rep 2019; 9:5632. [PMID: 30948731 PMCID: PMC6449367 DOI: 10.1038/s41598-019-42001-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Several chemotherapeutic drugs are now considered to exert anti-tumour effects, by inducing an immune-promoting inflammatory response. Cisplatin is a potent chemotherapeutic agent used in standard medulloblastoma but not glioblastoma protocols. There is no clear explanation for the differences in clinical efficacy of cisplatin between medulloblastomas and glioblastomas, despite the fact that cisplatin is effective in vitro against the latter. Systemic toxicity is often dose limiting but could tentatively be reduced by intratumoral administration. We found that intratumoral cisplatin can cure GL261 glioma-bearing C57BL/6 mice and this effect was abolished in GL261-bearing NOD-scid IL2rγnull (NSG) mice. Contrary to previous results with intratumoral temozolomide cisplatin had no additive or synergistic effect with whole cell either GL261 wild-type or GM-CSF-transfected GL261 cells whole cell vaccine-based immunotherapy. While whole tumour cell immunizations increased CD8+ T-cells and decreased F4/80+ macrophages intratumorally, cisplatin had no effect on these cell populations. Taken together, our results demonstrate that intratumoral cisplatin treatment was effective with a narrow therapeutic window and may be an efficient approach for glioma or other brain tumour treatment.
Collapse
Affiliation(s)
- Julio Enríquez Pérez
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Sara Fritzell
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jan Kopecky
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Edward Visse
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Division of Neurosurgery, Department of Clinical Sciences, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
4
|
Skelton RA, Javed A, Zheng L, He J. Overcoming the resistance of pancreatic cancer to immune checkpoint inhibitors. J Surg Oncol 2017. [PMID: 28628715 DOI: 10.1002/jso.24642] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunotherapy has become a new modality of cancer treatment, but has had a limited success in treating PDAC. A combination approach to immunotherapy, using both immune checkpoint inhibitors and immune activating agonists, is needed, as PDAC does not respond to single-agent checkpoint inhibitors. Studies have also supported using vaccine-based therapies to prime the tumor microenvironment of PDAC with effector T-cells. Other therapeutic strategies including epigenetic agents, stroma modulators, radiotherapy, and T-cell transfer therapies may also prime the tumor microenvironment to overcome resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Richard A Skelton
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ammar Javed
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jin He
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
A standardized and reproducible protocol for serum-free monolayer culturing of primary paediatric brain tumours to be utilized for therapeutic assays. Sci Rep 2015; 5:12218. [PMID: 26183281 PMCID: PMC4505308 DOI: 10.1038/srep12218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/17/2015] [Indexed: 01/28/2023] Open
Abstract
In vitro cultured brain tumour cells are indispensable tools for drug screening and therapeutic development. Serum-free culture conditions tentatively preserve the features of the original tumour, but commonly comprise neurosphere propagation, which is a technically challenging procedure. Here, we define a simple, non-expensive and reproducible serum-free cell culture protocol for establishment and propagation of primary paediatric brain tumour cultures as adherent monolayers. The success rates for establishment of primary cultures (including medulloblastomas, atypical rhabdoid tumour, ependymomas and astrocytomas) were 65% (11/17) and 78% (14/18) for sphere cultures and monolayers respectively. Monolayer culturing was particularly feasible for less aggressive tumour subsets, where neurosphere cultures could not be generated. We show by immunofluorescent labelling that monolayers display phenotypic similarities with corresponding sphere cultures and primary tumours, and secrete clinically relevant inflammatory factors, including PGE2, VEGF, IL-6, IL-8 and IL-15. Moreover, secretion of PGE2 was considerably reduced by treatment with the COX-2 inhibitor Valdecoxib, demonstrating the functional utility of our newly established monolayer for preclinical therapeutic assays. Our findings suggest that this culture method could increase the availability and comparability of clinically representative in vitro models of paediatric brain tumours, and encourages further molecular evaluation of serum-free monolayer cultures.
Collapse
|
6
|
Zhou W, Jiang Z, Li X, Xu Y, Shao Z. Cytokines: shifting the balance between glioma cells and tumor microenvironment after irradiation. J Cancer Res Clin Oncol 2014; 141:575-89. [PMID: 25005789 DOI: 10.1007/s00432-014-1772-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Abstract
Malignant gliomas invariably recur after irradiation, showing radioresistance. Meanwhile, cranial irradiation can bring some risk for developing cognitive dysfunction. There is increasing evidence that cytokines play their peculiar roles in these processes. On the one hand, cytokines directly influence the progression of malignant glioma, promoting or suppressing tumor progression. On the other hand, cytokines indirectly contribute to the immunologic response against gliomas, exhibiting pro-inflammatory or immunosuppressive activities. We propose that cytokines are not simply unregulated products from tumor cells or immune cells, but mediators finely adjust the balance between glioma cells and tumor microenvironment after irradiation. The paper, therefore, focuses on the changes of cytokines after irradiation, analyzing how these mediate the response of tumor cells and normal cells to irradiation. In addition, cytokine-based immunotherapeutic strategies, accompanied with irradiation, for the treatment of gliomas are also discussed.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Radiation Oncology, Cancer Centre, Qilu Hospital, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | | | | | | | | |
Collapse
|
7
|
Eberstål S, Fritzell S, Sandén E, Visse E, Darabi A, Siesjö P. Immunizations with unmodified tumor cells and simultaneous COX-2 inhibition eradicate malignant rat brain tumors and induce a long-lasting CD8(+) T cell memory. J Neuroimmunol 2014; 274:161-7. [PMID: 25022336 DOI: 10.1016/j.jneuroim.2014.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/28/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Malignant brain tumors induce pronounced immunosuppression, which diminishes immune responses generated by immunotherapy. Here we report that peripheral immunotherapy, using irradiated unmodified whole tumor cells, and systemic cyclooxygenase-2 inhibition induce cure in glioma-bearing rats (60% cure rate), whereas neither monotherapy was sufficient to cure any animal. Moreover, the combined therapy protected against secondary tumor challenges (89% cure rate) and the secondary immune response was correlated with increased plasma interferon-gamma levels and CD8(+) T cells systemically and intratumorally. In conclusion, we demonstrate that cyclooxygenase-2 inhibition is sufficient to render unmodified tumor cells immunogenic in immunotherapy of experimental brain tumors.
Collapse
Affiliation(s)
- Sofia Eberstål
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden; Lund Stem Cell Center, BMC B10, Lund University, SE-221 84 Lund, Sweden.
| | - Sara Fritzell
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden
| | - Emma Sandén
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden
| | - Edward Visse
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Barngatan 2B, SE-221 85 Lund, Sweden
| |
Collapse
|
8
|
Abstract
Conventional therapy for malignant glioma (MG) fails to specifically eliminate tumor cells, resulting in toxicity that limits therapeutic efficacy. In contrast, antibody-based immunotherapy uses the immune system to eliminate tumor cells with exquisite specificity. Increased understanding of the pathobiology of MG and the profound immunosuppression present among patients with MG has revealed several biologic targets amenable to antibody-based immunotherapy. Novel antibody engineering techniques allow for the production of fully human antibodies or antibody fragments with vastly reduced antigen-binding dissociation constants, increasing safety when used clinically as therapeutics. In this report, we summarize the use of antibody-based immunotherapy for MG. Approaches currently under investigation include the use of antibodies or antibody fragments to: (1) redirect immune effector cells to target tumor mutations, (2) inhibit immunosuppressive signals and thereby stimulate an immunological response against tumor cells, and (3) provide costimulatory signals to evoke immunologic targeting of tumor cells. These approaches demonstrate highly compelling safety and efficacy for the treatment of MG, providing a viable adjunct to current standard-of-care therapy for MG.
Collapse
Affiliation(s)
- Patrick C Gedeon
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC; Department of Biomedical Engineering, Duke University, Durham, NC; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC.
| | - Katherine A Riccione
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC; Department of Biomedical Engineering, Duke University, Durham, NC; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC
| | - Peter E Fecci
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC; Department of Biomedical Engineering, Duke University, Durham, NC; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC
| |
Collapse
|
9
|
Aliper AM, Frieden-Korovkina VP, Buzdin A, Roumiantsev SA, Zhavoronkov A. A role for G-CSF and GM-CSF in nonmyeloid cancers. Cancer Med 2014; 3:737-46. [PMID: 24692240 PMCID: PMC4303143 DOI: 10.1002/cam4.239] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/08/2014] [Accepted: 03/04/2014] [Indexed: 12/17/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) modulate progression of certain solid tumors. The G-CSF- or GM-CSF-secreting cancers, albeit not very common are, however, among the most rapidly advancing ones due to a cytokine-mediated immune suppression and angiogenesis. Similarly, de novo angiogenesis and vasculogenesis may complicate adjuvant use of recombinant G-CSF or GM-CSF thus possibly contributing to a cancer relapse. Rapid diagnostic tools to differentiate G-CSF- or GM-CSF-secreting cancers are not well developed therefore hindering efforts to individualize treatments for these patients. Given an increasing utilization of adjuvant G-/GM-CSF in cancer therapy, we aimed to summarize recent studies exploring their roles in pathophysiology of solid tumors and to provide insights into some complexities of their therapeutic applications.
Collapse
Affiliation(s)
- Alexander M Aliper
- Federal Clinical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow, 117198, Russia
| | | | | | | | | |
Collapse
|
10
|
Eberstål S, Sandén E, Fritzell S, Darabi A, Visse E, Siesjö P. Intratumoral COX-2 inhibition enhances GM-CSF immunotherapy against established mouse GL261 brain tumors. Int J Cancer 2013; 134:2748-53. [DOI: 10.1002/ijc.28607] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/18/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Sofia Eberstål
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| | - Emma Sandén
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| | - Sara Fritzell
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| | - Edward Visse
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| |
Collapse
|
11
|
Fritzell S, Sandén E, Eberstål S, Visse E, Darabi A, Siesjö P. Intratumoral temozolomide synergizes with immunotherapy in a T cell-dependent fashion. Cancer Immunol Immunother 2013; 62:1463-74. [PMID: 23775421 PMCID: PMC11029176 DOI: 10.1007/s00262-013-1449-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/30/2013] [Indexed: 01/09/2023]
Abstract
Despite temozolomide (TMZ) treatment, the prognosis for patients with glioblastoma multiforme is still dismal. As dose escalation of TMZ is limited by systemic toxicity, intratumoral delivery emerges as an attractive treatment modality, which may sustain cytotoxic drug concentrations intratumorally and induce immunogenic cell death. Both clinical and experimental gliomas have responded to immunotherapy, but the benefit of simultaneous chemo- and immunotherapy is inadequately studied. Here, we monitored survival of GL261-bearing C57BL/6 mice following a 3-day treatment with either intratumoral TMZ (micro-osmotic pump, 4.2 mg/kg/day) or systemic TMZ (i.p. injections, 50 mg/kg/day) alone, or combined with immunization using GM-CSF secreting GL261 cells. Peripheral and intratumoral leukocytes were analyzed by flow cytometry and immunohistochemistry. Intratumoral TMZ induced higher survival rate than systemic TMZ (45 vs. 8%). When T cells were depleted following intratumoral TMZ, the therapeutic effect was completely abrogated (0 % survival). Intratumoral TMZ synergistically increased survival rate of immunized mice (from 25 to 83%), while systemic TMZ failed (0%). While systemic TMZ induced a transient leukopenia, intratumoral TMZ and immunotherapy sustained the proliferation of CD8+ T cells and decreased the number of intratumoral immunosuppressive cells. In conclusion, intratumoral TMZ alone or in combination with immunotherapy could cure glioma-bearing mice, due to attenuation of local immunosuppression and increase in potential effector immune cells.
Collapse
Affiliation(s)
- Sara Fritzell
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences in Lund, BMC D14, Lund University, 221 84, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Thakur A, Norkina O, Lum LG. In vitro synthesis of primary specific anti-breast cancer antibodies by normal human peripheral blood mononuclear cells. Cancer Immunol Immunother 2011; 60:1707-20. [PMID: 21713642 PMCID: PMC3792712 DOI: 10.1007/s00262-011-1056-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/27/2011] [Indexed: 11/30/2022]
Abstract
In this study, we developed a unique in vitro model to mimic the endogenous tumor microenvironment to understand the effect of immunotherapy with activated T-cells (ATC) armed with anti-CD3 × anti-Her2 bispecific antibody (aATC) on antibody response by naive immune cells. This model contained a co-culture of naïve peripheral blood mononuclear cells (PBMC), breast cancer cells (SK-BR-3), ATC or aATC and CpG ODNs. Culture supernatants were tested at various time points for anti-SK-BR-3 antibodies by ELISA, Western blot and flow cytometry. PBMC cocultured with non-irradiated aATC or irradiated (*) aATC showed significant increases in anti-tumor antibody production at day 14 (P < 0.0001) in the presence of CpG-ODN compared to unstimulated PBMC cultures (n = 9). Antibody specificity was confirmed by ELISA, Western blot and flow cytometry. Co-cultures containing *aATC and CpG showed significantly enhanced levels of IgG(2) (P < 0.001) and cytokines that promote IgG(2) synthesis including IL-13 (P < 0.02), IFNγ (P < 0.01) and GM-CSF (P < 0.05) compared to unstimulated PBMC control (n = 3). We show that aATC targeting and lysis of tumor cells induces an anti-tumor antibody response in our in vitro model. This model provides a unique opportunity to evaluate the interactions of T-cells, B-cells, and antigen-presenting cells leading to specific anti-tumor antibody responses.
Collapse
Affiliation(s)
- Archana Thakur
- Departments of Oncology, Medicine, Immunology and Microbiology, Wayne State University School of Medicine, 731 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA.
| | | | | |
Collapse
|
13
|
Maes W, Van Gool SW. Experimental immunotherapy for malignant glioma: lessons from two decades of research in the GL261 model. Cancer Immunol Immunother 2011; 60:153-60. [PMID: 21120655 PMCID: PMC11028904 DOI: 10.1007/s00262-010-0946-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/05/2010] [Indexed: 02/04/2023]
Abstract
Nearly twenty years of experimental immunotherapy for malignant glioma yielded important insights in the mechanisms governing glioma immunology. Still considered promising, it is clear that immunotherapy does not on its own represent the magic bullet in glioma therapy. In this review, we summarize the major immunotherapeutic achievements in the mouse GL261 glioma model, which has emerged as the gold standard syngeneic model for experimental glioma therapy. Gene therapy, monoclonal antibody treatment, cytokine therapy, cell transfer strategies and dendritic cell therapy were hereby considered. Apart from the considerable progress made in understanding glioma immunology in this model, we also addressed its most pertinent issues and shortcomings. Despite these, the GL261 model will remain indispensable in glioma research since it is a fast, highly reproducible and easy-to-establish model system.
Collapse
Affiliation(s)
- Wim Maes
- Laboratory of Experimental Immunology (WM and SWVG), Pediatric Hemato-oncology (SWVG), University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Stefaan W. Van Gool
- Laboratory of Experimental Immunology (WM and SWVG), Pediatric Hemato-oncology (SWVG), University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Li D, Wang Y, Wu H, Lu L, Zhang H, Chang J, Zhai Z, Zhang J, Wang Y, Zhou D, Meng A. Mitigation of ionizing radiation-induced bone marrow suppression by p38 inhibition and G-CSF administration. JOURNAL OF RADIATION RESEARCH 2011; 52:712-6. [PMID: 21971035 PMCID: PMC3390190 DOI: 10.1269/jrr.11007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
p38 mitogen-activated protein kinases (p38) has been shown to be activated in hematopoietic stem and progenitors cells after exposure to ionizing radiation (IR) and its activation has been implicated in bone marrow (BM) suppression under various pathological conditions. Therefore, in the present study we investigated whether inhibition of p38 activity alone with SB203580 (SB, a specific p38 inhibitor) or in combination with granulocyte colony-stimulating factor (G-CSF) can mitigate total body irradiation (TBI)-induced BM damage and lethality. Our results showed that p38 inhibition with SB had no significant effect on the 30-day survival rates of the mice exposed to 7.2 Gy TBI when it was used alone but increased the survival of the mice when it was combined with G-CSF. This combined effect may be attributable to a better preservation or stimulation of hematopoietic stem and progenitor cells, because BM cells from SB and G-CSF-treated mice produced more colony forming units-granulocyte-macrophage (CFU-GM) and 4-week cobblestone area forming cells (CAFCs) than the cells from either SB or G-CSF-treated mice after TBI in a colony forming cell assay and a CAFC assay, respectively. These findings suggest that the combined therapy with SB and G-GSF is more effective in mitigating TBI-induced acute BM injury than either agent alone.
Collapse
Affiliation(s)
- Deguan Li
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Yueying Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Hongying Wu
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Lu Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Heng Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Jianhui Chang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Zhibin Zhai
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Junling Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Yong Wang
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aimin Meng
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
- Corresponding author: Phone: + 86-022-85682353, Fax: + 86-022-85683033,
| |
Collapse
|
15
|
Grandi P, Fernandez J, Szentirmai O, Carter R, Gianni D, Sena-Esteves M, Breakefield XO. Targeting HSV-1 virions for specific binding to epidermal growth factor receptor-vIII-bearing tumor cells. Cancer Gene Ther 2010; 17:655-63. [PMID: 20508670 PMCID: PMC2923688 DOI: 10.1038/cgt.2010.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oncolytic herpes simplex virus (HSV) vectors have been used in early phase human clinical trials as a therapy for recurrent malignant glioblastoma. This treatment proved safe but limited improvements in patient survival were observed. The potency of these vectors might be enhanced by targeting vector infectivity to tumor cells. Glioma tumors often express a mutant form (vIII) of the epidermal growth factor receptor (EGFR) resulting in the presence of a novel epitope on the cell surface. This epitope is specifically recognized by a single chain antibody designated MR1-1. HSV-1 infection involves initial binding to heparan sulfate (HS) on the cell surface mediated primarily by the viral envelope, glycoprotein C (gC). Here we joined the MR1-1 single chain antibody (scFv) to the gC sequence deleted for the HS binding domain (HSBD) as a means of targeting viral attachment to EGFRvIII on glial tumor cells. Virions bearing MR1-1-modified-gC had 5-fold increased infectivity for EGFRvIII-bearing human glioma U87 cells compared to mutant receptor-deficient cells. Further, MR1-1/EGFRvIII mediated infection was more efficient for EGFRvIII-positive cells than was wild-type virus for either positive or negative cells. Sustained infection of EGFRvIII+ glioma cells by MR1-1-modified-gC bearing oncolytic virus, as compared to wild-type gC oncolytic virus, was also shown in subcutaneous tumors in vivo using firefly luciferase as a reporter of infection. These data demonstrate that HSV tropism can be manipulated so that virions recognize a cell specific binding site with increased infectivity for the target cell. The retargeting of HSV infection to tumor cells should enhance vector specificity, tumor cell killing and vector safety.
Collapse
Affiliation(s)
- P Grandi
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNgamma-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 2009; 218:140-4. [PMID: 19914721 DOI: 10.1016/j.jneuroim.2009.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/23/2009] [Accepted: 10/23/2009] [Indexed: 12/24/2022]
Abstract
The present study reports regression of pre-established experimental rat gliomas as a result of combining peripheral immunization using interferon gamma (IFNgamma) transduced autologous tumor cells with local intratumoral delivery of interleukin 7 (IL-7) by mesenchymal stromal cells. IL-7 alone significantly decreased the tumor area and this effect was enhanced with IFNgamma immunization. A higher density of intratumoral T-cells was observed in animals receiving combined therapies compared to rats receiving either cytokine alone suggesting that the therapeutic effect is dependent on a T-cell response.
Collapse
|
18
|
Human glioma cell culture: two FCS-free media could be recommended for clinical use in immunotherapy. In Vitro Cell Dev Biol Anim 2009; 45:500-11. [DOI: 10.1007/s11626-009-9215-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 04/29/2009] [Indexed: 01/26/2023]
|
19
|
Smith KE, Fritzell S, Badn W, Eberstål S, Janelidze S, Visse E, Darabi A, Siesjö P. Cure of established GL261 mouse gliomas after combined immunotherapy with GM-CSF and IFNgamma is mediated by both CD8+ and CD4+ T-cells. Int J Cancer 2008; 124:630-7. [PMID: 18972433 DOI: 10.1002/ijc.23986] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We were the first to demonstrate that combined immunotherapy with GM-CSF producing GL261 cells and recombinant IFNgamma of preestablished GL261 gliomas could cure 90% of immunized mice. To extend these findings and to uncover the underlying mechanisms, the ensuing experiments were undertaken. We hypothesized that immunizations combining both GM-CSF and IFNgamma systemically would increase the number of immature myeloid cells, which then would mature and differentiate into dendritic cells (DCs) and macrophages, thereby augmenting tumor antigen presentation and T-cell activation. Indeed, the combined therapy induced a systemic increase of both immature and mature myeloid cells but also an increase in T regulatory cells (T-regs). Cytotoxic anti-tumor responses, mirrored by an increase in Granzyme B-positive cells as well as IFNgamma-producing T-cells, were augmented after immunizations with GM-CSF and IFNgamma. We also show that the combined therapy induced a long-term memory with rejection of intracerebral (i.c.) rechallenges. Depletion of T-cells showed that both CD4+ and CD8+ T-cells were essential for the combined GM-CSF and IFNgamma effect. Finally, when immunizations were delayed until day 5 after tumor inoculation, only mice receiving immunotherapy with both GM-CSF and IFNgamma survived. We conclude that the addition of recombinant IFNgamma to immunizations with GM-CSF producing tumor cells increased the number of activated tumoricidal T-cells, which could eradicate established intracerebral tumors. These results clearly demonstrate that the combination of cytokines in immunotherapy of brain tumors have synergistic effects that have implications for clinical immunotherapy of human malignant brain tumors.
Collapse
Affiliation(s)
- Karin Enell Smith
- Department of Clinical Sciences, Glioma Immunotherapy Group, The Rausing Laboratory, Division of Neurosurgery, BMC D14, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|