1
|
Minisini M, Mascaro M, Brancolini C. HDAC-driven mechanisms in anticancer resistance: epigenetics and beyond. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:46. [PMID: 39624079 PMCID: PMC11609180 DOI: 10.20517/cdr.2024.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025]
Abstract
The emergence of drug resistance leading to cancer recurrence is one of the challenges in the treatment of cancer patients. Several mechanisms can lead to drug resistance, including epigenetic changes. Histone deacetylases (HDACs) play a key role in chromatin regulation through epigenetic mechanisms and are also involved in drug resistance. The control of histone acetylation and the accessibility of regulatory DNA sequences such as promoters, enhancers, and super-enhancers are known mechanisms by which HDACs influence gene expression. Other targets of HDACs that are not histones can also contribute to resistance. This review describes the contribution of HDACs to the mechanisms that, in some cases, may determine resistance to chemotherapy or other cancer treatments.
Collapse
Affiliation(s)
| | | | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine 33100, Italy
| |
Collapse
|
2
|
Long Q, Tao H, Wang P, Wu B, Zhu Q, Chen H, Lao G, Yang Y, Liu G, Liu S, Wu Y. Fludarabine Enhances Radiosensitivity by Promoting Ferroptosis in B-Cell Lymphoma. Radiat Res 2024; 201:224-239. [PMID: 38235545 DOI: 10.1667/rade-23-00018.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
The objective of this study is to investigate the impact of fludarabine, a signal transducer and activator of transcription-1 (STAT1) inhibitor, on the radiosensitivity of B-cell lymphoma (BCL) and to explore the underlying mechanisms. Radiotherapy is one of the primary treatments for BCL, and STAT1 plays a critical role in the transcription of cell proliferation-related genes, which are associated with radiotherapy and ferroptosis. This study aims to determine whether fludarabine can enhance the radiosensitivity of BCL and to elucidate the molecular pathways involved. Various in vitro methodologies, including CCK-8 assays, clonogenic formation assays, immunohistochemistry, immunofluorescence, flow cytometry, qRT-PCR, and Western blot analyses, were employed in B-cell lymphoma cell models to thoroughly investigate the effects of fludarabine on radiosensitivity. Subsequently, the obtained results were further validated through in vivo animal models and by examining human diffuse large B-cell lymphoma (DLBCL) cancer samples. Our findings demonstrate that the combination of fludarabine and irradiation synergistically inhibits cell viability and colony formation, while inducing apoptosis and ferroptosis in B-cell lymphoma cell lines Raji and Su-DHL-10. Moreover, fludarabine was found to enhance the ferroptosis induced by radiation, thereby synergistically impeding the growth of BCL. In vivo experiments confirmed these findings, revealing that the intraperitoneal injection of fludarabine significantly enhanced the inhibitory effects of radiation on Raji cell xenograft models, leading to an increased percentage of ferroptosis compared to models without fludarabine. Additionally, the administration of liproxstatin-1, a ferroptosis inhibitor, attenuated the inhibition of xenograft growth caused by the combination of fludarabine and irradiation. Furthermore, our analysis of clinical data revealed that increased co-expression of STAT1 and GPX4 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. These results highlight the potential of fludarabine to enhance radiosensitivity and ferroptosis induction as a promising therapeutic strategy for BCL. Our results demonstrated that fludarabine promoted radiation-induced BCL death through the ferroptosis pathway. We have identified a previously unrecognized mechanism in the fludarabine and radiation combination, indicating that it is necessary to conduct prospective clinical trials to verify this new treatment regimen in BCL.
Collapse
Affiliation(s)
- Qingqin Long
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| | - Huimin Tao
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| | - Peipei Wang
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| | - Biwen Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| | - Qinghong Zhu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| | - Hongwen Chen
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| | - Gang Lao
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| | - Yu Yang
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| | - Guolong Liu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| | - Sihong Liu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, PR China
- Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, PR China
| |
Collapse
|
3
|
Sanwlani R, Kang T, Gummadi S, Nedeva C, Ang CS, Mathivanan S. Bovine milk-derived extracellular vesicles enhance doxorubicin sensitivity in triple negative breast cancer cells by targeting metabolism and STAT signalling. Proteomics 2023; 23:e2200482. [PMID: 37376799 DOI: 10.1002/pmic.202200482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Metastatic triple-negative breast cancer (TNBC) has a low 5-year survival rate of below 30% with systemic chemotherapy being the most widely used treatment. Bovine milk-derived extracellular vesicles (MEVs) have been previously demonstrated to have anti-cancer attributes. In this study, we isolated bovine MEVs from commercial milk and characterised them according to MISEV guidelines. Bovine MEVs sensitised TNBC cells to doxorubicin, resulting in reduced metabolic potential and cell-viability. Label-free quantitative proteomics of cells treated with MEVs and/or doxorubicin suggested that combinatorial treatment depleted various pro-tumorigenic interferon-inducible gene products and proteins with metabolic function, previously identified as therapeutic targets in TNBC. Combinatorial treatment also led to reduced abundance of various STAT proteins and their downstream oncogenic targets with roles in cell-cycle and apoptosis. Taken together, this study highlights the ability of bovine MEVs to sensitise TNBC cells to standard-of-care therapeutic drug doxorubicin, paving the way for novel treatment regimens.
Collapse
Affiliation(s)
- Rahul Sanwlani
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Taeyoung Kang
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sriram Gummadi
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Christina Nedeva
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ching-Seng Ang
- The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Li S, Feng J, Weng H, Zhao F, Cui G, Fu W, Lin X, Hu H. Identification of Key Genes and FUNCTIONAL Pathway in Radioresistance of Non-Small Cell Lung Cancer. Cancer Manag Res 2022; 14:2871-2884. [PMID: 36171861 PMCID: PMC9512540 DOI: 10.2147/cmar.s382079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose For better understanding of radiotherapy resistance and its potential mechanism. Methods We established radioresistance cell lines of non-small cell lung cancer (NSCLC) followed by microarray analysis. 529 differentially expressed genes (DEGs) were then screened between radiation resistant cell lines compared with the sensitive cell lines. The biological functions and enrichment pathways of the above DEGs were identified using Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses. Gene Set Enrichment Analysis (GSEA) revealed that the radiation resistance group had the most gene sets enriched in altered immune response, such as TNF signaling pathway, when compared to the radiation sensitive group. Protein-protein interaction (PPI) network was carried out through the STRING database, and then five hub genes (CXCL10, IFIH1, DDX58, CXCL11, RSAD2) were screened by Cytoscape software. RT-PCR confirmed the expression of the above hub genes. ChIP-X Enrichment Analysis showed that STAT1 might be the transcription factor of the above hub genes. Considering that PD-L1 could be activated by STAT1 in a variety of tumors and ultimately lead to immune exhaustion, RT-PCR and Western blot verified the expression level of PD-L1. Results Five hub genes (CXCL10, IFIH1, DDX58, CXCL11, RSAD2) were screened and verified to be highly expressed in radioresistance group, STAT1 might be the transcription factor of the above hub genes. Our study found that the expression level of PD-L1 was increased after radiotherapy resistance. Conclusion Although immune system activation occurs followed by radiation resistance, we hypothesized that the upregulation of PD-L1 expression caused by STAT1 activation might be one of the mechanisms of radiotherapy resistance.
Collapse
Affiliation(s)
- Shouying Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jiaxin Feng
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Haiyan Weng
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Feng Zhao
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, People's Republic of China
| | - Guohui Cui
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenkui Fu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaorong Lin
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, People's Republic of China
| | - Hai Hu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Kaewpiboon C, Boonnak N, Kaowinn S, Yawut N, Chung YH. Formoxanthone C Inhibits Malignant Tumor Phenotypes of Human A549 Multidrug Resistant-cancer Cells through Signal Transducer and Activator of Transcription 1-Histone Deacetylase 4 Signaling. J Cancer Prev 2022; 27:112-121. [PMID: 35864853 PMCID: PMC9271403 DOI: 10.15430/jcp.2022.27.2.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
Considering that presence of cancer stem cell (CSC) subpopulation in tumor tissues confers anticancer drug resistance, we investigated whether human A549 lung cancer cells resistant to etoposide possess CSC-like phenotypes. Furthermore, it is known that these malignant tumor features are the leading cause of treatment failure in cancer. We have thus attempted to explore new therapeutic agents from natural products targeting these malignancies. We found that formoxanthone C (XanX), a 1,3,5,6-tetraoxygenated xanthone from Cratoxylum formosum ssp. pruniflorum, at a non-cytotoxic concentration reduced the expression of the signal transducer and activator of transcription 1 (STAT1) and histone deacetylase 4 (HDAC4) proteins, leading to inhibition of CSC-like phenotypes such as cell migration, invasion, and sphere-forming ability. Moreover, we found that treatment with STAT1 or HDAC4 small interfering RNAs significantly hindered these CSC-like phenotypes, indicating that STAT1 and HDAC4 play a role in the malignant tumor features. Taken together, our findings suggest that XanX may be a potential new therapeutic agent targeting malignant lung tumors.
Collapse
Affiliation(s)
- Chutima Kaewpiboon
- Department of Biology, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - Nawong Boonnak
- Department of Basic Science and Mathematics, Faculty of Science, Thaksin University, Songkhla, Thailand
| | - Sirichat Kaowinn
- Department of General Science and Liberal Arts, King Mongkut’s Institute of Technology Ladkrabang Prince of Chumphon Campus, Chumphon, Thailand
| | - Natpaphan Yawut
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Korea
| | - Young-Hwa Chung
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Korea
| |
Collapse
|
6
|
Detilleux D, Raynaud P, Pradet-Balade B, Helmlinger D. The TRRAP transcription cofactor represses interferon-stimulated genes in colorectal cancer cells. eLife 2022; 11:69705. [PMID: 35244540 PMCID: PMC8926402 DOI: 10.7554/elife.69705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription is essential for cells to respond to signaling cues and involves factors with multiple distinct activities. One such factor, TRRAP, functions as part of two large complexes, SAGA and TIP60, which have crucial roles during transcription activation. Structurally, TRRAP belongs to the phosphoinositide 3 kinase-related kinases (PIKK) family but is the only member classified as a pseudokinase. Recent studies established that a dedicated HSP90 co-chaperone, the triple T (TTT) complex, is essential for PIKK stabilization and activity. Here, using endogenous auxin-inducible degron alleles, we show that the TTT subunit TELO2 promotes TRRAP assembly into SAGA and TIP60 in human colorectal cancer cells (CRCs). Transcriptomic analysis revealed that TELO2 contributes to TRRAP regulatory roles in CRC cells, most notably of MYC target genes. Surprisingly, TELO2 and TRRAP depletion also induced the expression of type I interferon genes. Using a combination of nascent RNA, antibody-targeted chromatin profiling (CUT&RUN), ChIP, and kinetic analyses, we propose a model by which TRRAP directly represses the transcription of IRF9, which encodes a master regulator of interferon-stimulated genes. We have therefore uncovered an unexpected transcriptional repressor role for TRRAP, which we propose contributes to its tumorigenic activity.
Collapse
Affiliation(s)
| | - Peggy Raynaud
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | | | | |
Collapse
|
7
|
Transcription Factors Leading to High Expression of Neuropeptide L1CAM in Brain Metastases from Lung Adenocarcinoma and Clinical Prognostic Analysis. DISEASE MARKERS 2022; 2021:8585633. [PMID: 35003395 PMCID: PMC8739529 DOI: 10.1155/2021/8585633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
Background There is a lack of understanding of the development of metastasis in lung adenocarcinoma (LUAD). This study is aimed at exploring the upstream regulatory transcription factors of L1 cell adhesion molecule (L1CAM) and to construct a prognostic model to predict the risk of brain metastasis in LUAD. Methods Differences in gene expression between LUAD and brain metastatic LUAD were analyzed using the Wilcoxon rank-sum test. The GRNdb (http://www.grndb.com) was used to reveal the upstream regulatory transcription factors of L1CAM in LUAD. Single-cell expression profile data (GSE131907) were obtained from the transcriptome data of 10 metastatic brain tissue samples. LUAD prognostic nomogram prediction models were constructed based on the identified significant transcription factors and L1CAM. Results Survival analysis suggested that high L1CAM expression was negatively significantly associated with overall survival, disease-specific survival, and prognosis in the progression-free interval (p < 0.05). The box plot indicates that high expression of L1CAM was associated with distant metastases in LUAD, while ROC curves suggested that high expression of L1CAM was associated with poor prognosis. FOSL2, HOXA9, IRF4, IKZF1, STAT1, FLI1, ETS1, E2F7, and ADARB1 are potential upstream transcriptional regulators of L1CAM. Single-cell data analysis revealed that the expression of L1CAM was found significantly and positively correlated with the expression of ETS1, FOSL2, and STAT1 in brain metastases. L1CAM, ETS1, FOSL2, and STAT1 were used to construct the LUAD prognostic nomogram prediction model, and the ROC curves suggest that the constructed nomogram possesses good predictive power. Conclusion By bioinformatics methods, ETS1, FOSL2, and STAT1 were identified as potential transcriptional regulators of L1CAM in this study. This will help to facilitate the early identification of patients at high risk of metastasis.
Collapse
|
8
|
Vandsemb EN, Rye MB, Steiro IJ, Elsaadi S, Rø TB, Slørdahl TS, Sponaas AM, Børset M, Abdollahi P. PRL-3 induces a positive signaling circuit between glycolysis and activation of STAT1/2. FEBS J 2021; 288:6700-6715. [PMID: 34092011 DOI: 10.1111/febs.16058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy resulting from the clonal expansion of plasma cells. MM cells are interacting with components of the bone marrow microenvironment such as cytokines to survive and proliferate. Phosphatase of regenerating liver (PRL)-3, a cytokine-induced oncogenic phosphatase, is highly expressed in myeloma patients and is a mediator of metabolic reprogramming of cancer cells. To find novel pathways and genes regulated by PRL-3, we characterized the global transcriptional response to PRL-3 overexpression in two MM cell lines. We used pathway enrichment analysis to identify pathways regulated by PRL-3. We further confirmed the hits from the enrichment analysis with in vitro experiments and investigated their function. We found that PRL-3 induced expression of genes belonging to the type 1 interferon (IFN-I) signaling pathway due to activation of signal transducer and activator of transcription (STAT) 1 and STAT2. This activation was independent of autocrine IFN-I secretion. The increase in STAT1 and STAT2 did not result in any of the common consequences of increased IFN-I or STAT1 signaling in cancer. Knockdown of STAT1/2 did not affect the viability of the cells, but decreased PRL-3-induced glycolysis. Interestingly, glucose metabolism contributed to the activation of STAT1 and STAT2 and expression of IFN-I-stimulated genes in PRL-3-overexpressing cells. In summary, we describe a novel signaling circuit where the key IFN-I-activated transcription factors STAT1 and STAT2 are important drivers of the increase in glycolysis induced by PRL-3. Subsequently, increased glycolysis regulates the IFN-I-stimulated genes by augmenting the activation of STAT1/2.
Collapse
Affiliation(s)
- Esten Nymoen Vandsemb
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Surgery, St. Olavs University Hospital, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway.,Biocore - Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ida Johnsen Steiro
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Samah Elsaadi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Torstein Bade Rø
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Children's Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Tobias Schmidt Slørdahl
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs University Hospital, Norway
| | - Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway.,Clinic of Medicine, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
9
|
Han J, Chen X, Xu J, Chu L, Li R, Sun N, Jiang Z, Liu H, Ge X, Zheng J, Yang J, Ikezoe T. Simultaneous silencing Aurora-A and UHRF1 inhibits colorectal cancer cell growth through regulating expression of DNMT1 and STAT1. Int J Med Sci 2021; 18:3437-3451. [PMID: 34522170 PMCID: PMC8436113 DOI: 10.7150/ijms.61969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Aurora-A has attracted a great deal of interest as a potential therapeutic target for patients with CRC. However, the outcomes of inhibitors targeting Aurora-A are not as favorable as expected, and the basis behind the ineffectiveness remains unknown. Here, we found that signal transducer and activator of transcription 1 (STAT1) was highly expressed in colorectal cancer (CRC) xenograft mouse models that were resistant to alisertib, an Aurora-A inhibitor. Unexpectedly, we found that alisertib disrupted Aurora-A binding with ubiquitin-like with plant homeodomain and ring finger domain 1 (UHRF1), leading to UHRF1 mediated ubiquitination and degradation of DNA methyltransferase 1 (DNMT1), which in turn resulted in demethylation of CpG islands of STAT1 promoter and STAT1 overexpression. Simultaneous silencing Aurora-A and UHRF1 prevented STAT1 overexpression and effectively inhibited CRC growth. Hence, concomitant targeting Aurora-A and UHRF1 can be a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Jing Han
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xin Chen
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jiawei Xu
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Laili Chu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Rongqing Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Na Sun
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zhen Jiang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hongyang Liu
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xing Ge
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Oncology, the first affiliated hospital, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jing Yang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Takayuki Ikezoe
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
10
|
Liu S, Imani S, Deng Y, Pathak JL, Wen Q, Chen Y, Wu J. Targeting IFN/STAT1 Pathway as a Promising Strategy to Overcome Radioresistance. Onco Targets Ther 2020; 13:6037-6050. [PMID: 32606809 PMCID: PMC7321691 DOI: 10.2147/ott.s256708] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
The interferon (IFN)-mediated activation of the Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signaling is crucial for cell sensitivity to ionizing radiation. Several preclinical studies have reported that the IFN/STAT1 pathway mediates radioresistance in the tumor microenvironment by shielding the immune responses and activating survival signaling pathways. This review focuses on the oncogenic function of the IFN/STAT1 pathway, emphasizing the major signaling pathway in radiation sensitization. Furthermore, it highlights the possibility of mediatory roles of the IFN/STAT1 pathway as a prognostic therapeutic target in the modulation of resistance to radiotherapy and chemotherapy. MicroRNA involved in the regulation of the IFN/STAT1 pathway is also discussed. A better understanding of radiation-induced IFN/STAT1 signaling will open new opportunities for the development of novel therapeutic strategies, as well as define new approaches to enhance radio-immunotherapy efficacy in the treatment of various types of cancers.
Collapse
Affiliation(s)
- Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, People's Republic of China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
11
|
Okamoto K, Seimiya H. Revisiting Telomere Shortening in Cancer. Cells 2019; 8:cells8020107. [PMID: 30709063 PMCID: PMC6406355 DOI: 10.3390/cells8020107] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Telomeres, the protective structures of chromosome ends are gradually shortened by each cell division, eventually leading to senescence or apoptosis. Cancer cells maintain the telomere length for unlimited growth by telomerase reactivation or a recombination-based mechanism. Recent genome-wide analyses have unveiled genetic and epigenetic alterations of the telomere maintenance machinery in cancer. While telomerase inhibition reveals that longer telomeres are more advantageous for cell survival, cancer cells often have paradoxically shorter telomeres compared with those found in the normal tissues. In this review, we summarize the latest knowledge about telomere length alterations in cancer and revisit its rationality. Finally, we discuss the potential utility of telomere length as a prognostic biomarker.
Collapse
Affiliation(s)
- Keiji Okamoto
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
12
|
STAT3 is activated in multicellular spheroids of colon carcinoma cells and mediates expression of IRF9 and interferon stimulated genes. Sci Rep 2019; 9:536. [PMID: 30679726 PMCID: PMC6345781 DOI: 10.1038/s41598-018-37294-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/30/2018] [Indexed: 01/27/2023] Open
Abstract
Three-dimensional cell cultures, such as multicellular spheroids (MCS), reflect the in vivo architecture of solid tumours and multicellular drug resistance. We previously identified interferon regulatory factor 9 (IRF9) to be responsible for the up-regulation of a subset of interferon (IFN)-stimulated genes (ISGs) in MCS of colon carcinoma cells. This set of ISGs closely resembled a previously identified IFN-related DNA-damage resistance signature (IRDS) that was correlated to resistance to chemo- and radiotherapy. In this study we found that transcription factor STAT3 is activated upstream of IRF9 and binds to the IRF9 promoter in MCS of HCT116 colorectal carcinoma cells. Transferring conditioned media (CM) from high cell density conditions to non-confluent cells resulted in STAT3 activation and increased expression of IRF9 and a panel of IRDS genes, also observed in MCS, suggesting the involvement of a soluble factor. Furthermore, we identified gp130/JAK signalling to be responsible for STAT3 activation, IRF9, and IRDS gene expression in MCS and by CM. Our data suggests a novel mechanism where STAT3 is activated in high cell density conditions resulting in increased expression of IRF9 and, in turn, IRDS genes, underlining a mechanism by which drug resistance is regulated.
Collapse
|
13
|
Tang W, Wallace TA, Yi M, Magi-Galluzzi C, Dorsey TH, Onabajo OO, Obajemu A, Jordan SV, Loffredo CA, Stephens RM, Silverman RH, Stark GR, Klein EA, Prokunina-Olsson L, Ambs S. IFNL4-ΔG Allele Is Associated with an Interferon Signature in Tumors and Survival of African-American Men with Prostate Cancer. Clin Cancer Res 2018; 24:5471-5481. [PMID: 30012562 PMCID: PMC6214748 DOI: 10.1158/1078-0432.ccr-18-1060] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
Purpose: Men of African ancestry experience an excessive prostate cancer mortality that could be related to an aggressive tumor biology. We previously described an immune-inflammation signature in prostate tumors of African-American (AA) patients. Here, we further deconstructed this signature and investigated its relationships with tumor biology, survival, and a common germline variant in the IFNλ4 (IFNL4) gene.Experimental Design: We analyzed gene expression in prostate tissue datasets and performed genotype and survival analyses. We also overexpressed IFNL4 in human prostate cancer cells.Results: We found that a distinct interferon (IFN) signature that is analogous to the previously described "IFN-related DNA damage resistance signature" (IRDS) occurs in prostate tumors. Evaluation of two independent patient cohorts revealed that IRDS is detected about twice as often in prostate tumors of AA than European-American men. Furthermore, analysis in TCGA showed an association of increased IRDS in prostate tumors with decreased disease-free survival. To explain these observations, we assessed whether IRDS is associated with an IFNL4 germline variant (rs368234815-ΔG) that controls production of IFNλ4, a type III IFN, and is most common in individuals of African ancestry. We show that the IFNL4 rs368234815-ΔG allele was significantly associated with IRDS in prostate tumors and overall survival of AA patients. Moreover, IFNL4 overexpression induced IRDS in three human prostate cancer cell lines.Conclusions: Our study links a germline variant that controls production of IFNλ4 to the occurrence of a clinically relevant IFN signature in prostate tumors that may predominantly affect men of African ancestry. Clin Cancer Res; 24(21); 5471-81. ©2018 AACR.
Collapse
Affiliation(s)
- Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Tiffany A Wallace
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Ming Yi
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Adeola Obajemu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Symone V Jordan
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Christopher A Loffredo
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Robert M Stephens
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
14
|
Kaowinn S, Kaewpiboon C, Koh SS, Krämer OH, Chung YH. STAT1‑HDAC4 signaling induces epithelial‑mesenchymal transition and sphere formation of cancer cells overexpressing the oncogene, CUG2. Oncol Rep 2018; 40:2619-2627. [PMID: 30226605 PMCID: PMC6151883 DOI: 10.3892/or.2018.6701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/03/2018] [Indexed: 11/19/2022] Open
Abstract
Our previous studies have shown that the novel oncogene, cancer upregulated gene 2 (CUG2), activates STAT1, which is linked to anticancer drug resistance, induces epithelial-mesenchymal transition (EMT) and cancer stem cell-like phenotypes as determined by MTT, migration and sphere formation assays. We thus aimed to ascertain whether the activation of STAT1 by CUG2 is involved in these malignant phenotypes besides drug resistance. Here, we showed that STAT1 suppression decreased the expression of N-cadherin and vimentin, biomarkers of EMT, which led to inhibition of the migration and invasion of human lung A549 cancer cells stably expressing CUG2, but did not recover E-cadherin expression. STAT1 siRNA also diminished CUG2-induced TGF-β signaling, which is critical in EMT, and TGF-β transcriptional activity. Conversely, inhibition of TGF-β signaling reduced phosphorylation of STAT1, indicating a crosstalk between STAT1 and TGF-β signaling. Furthermore, STAT1 silencing diminished sphere formation, which was supported by downregulation of stemness-related factors such as Sox2, Oct4, and Nanog. Constitutive suppression of STAT1 also inhibited cell migration, invasion and sphere formation. As STAT1 acetylation counteracts STAT1 phosphorylation, acetylation of STAT1 by treatment with trichostatin A, an inhibitor of histone deacetylases (HDACs), reduced cell migration, invasion, and sphere formation. As HDAC4 is known to target STAT1, its role was investigated under CUG2 overexpression. HDAC4 suppression resulted in inhibition of cell migration, invasion, and sphere formation as HDAC4 silencing hindered TGF-β signaling and decreased expression of Sox2 and Nanog. Taken together, we suggest that STAT1-HDAC4 signaling induces malignant tumor features such as EMT and sphere formation in CUG2-overexpressing cancer cells.
Collapse
Affiliation(s)
- Sirichat Kaowinn
- BK21+, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chutima Kaewpiboon
- Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93210, Thailand
| | - Sang Seok Koh
- Department of Biological Sciences, Dong‑A University, Busan 49315, Republic of Korea
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center Mainz, Mainz D‑55131, Germany
| | - Young-Hwa Chung
- BK21+, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Juan TK, Liu KC, Kuo CL, Yang MD, Chu YL, Yang JL, Wu PP, Huang YP, Lai KC, Chung JG. Tetrandrine suppresses adhesion, migration and invasion of human colon cancer SW620 cells via inhibition of nuclear factor-κB, matrix metalloproteinase-2 and matrix metalloproteinase-9 signaling pathways. Oncol Lett 2018; 15:7716-7724. [PMID: 29731901 PMCID: PMC5921181 DOI: 10.3892/ol.2018.8286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
Abstract
Tetrandrine (TET) exhibits biological activities, including anticancer activity. In Chinese medicine, TET has been used to treat hypertensive and arrhythmic conditions and has been demonstrated to induce cytotoxic effects on human cancer cell lines. However, to the best of the author's knowledge, no previous studies have revealed that TET affects cell metastasis in SW620 human colon cancer cells. The present study demonstrated that TET decreased the cell number and inhibited cell adhesion and mobility of SW620 cells. Furthermore, a wound healing assay was performed to demonstrate that TET suppressed cell movement, and Transwell chamber assays were used to reveal that TET suppressed the cell migration and invasion of SW620 cells. Western blotting demonstrated that TET significantly reduced protein expression levels of SOS Ras/Rac guanine nucleotide exchange factor 1, phosphatidylinositol 3-kinase, growth factor receptor bound protein 2, phosphorylated (p)-c Jun N-terminal kinase 1/2, p-p38, p38, 14-3-3, Rho A, β-catenin, nuclear factor-κB p65, signal transducer and activator of transcription-1 and cyclooxygenase-2, in comparison with untreated SW620 cells. Overall, the results of the present study suggested that TET may be used as a novel anti-metastasis agent for the treatment of human colon cancer in the future.
Collapse
Affiliation(s)
- Ta-Kuo Juan
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chao-Lin Kuo
- Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Mei-Due Yang
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, R.O.C
| | - Jiun-Long Yang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Ping-Ping Wu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Kuang-Chi Lai
- School of Medicine, China Medical University, Taichung 404, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan 717, Taiwan, R.O.C.,Department of Surgery, China Medical University Beigang Hospital, Beigang, Yunlin 651, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C.,Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan, R.O.C
| |
Collapse
|
16
|
Increased EGFR expression induced by a novel oncogene, CUG2, confers resistance to doxorubicin through Stat1-HDAC4 signaling. Cell Oncol (Dordr) 2017; 40:549-561. [DOI: 10.1007/s13402-017-0343-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
|
17
|
Qu S, Guo Y, Huang ST, Zhu XD. Inhibition of STAT1 sensitizes radioresistant nasopharyngeal carcinoma cell line CNE-2R to radiotherapy. Oncotarget 2017; 9:8303-8310. [PMID: 29492196 PMCID: PMC5823581 DOI: 10.18632/oncotarget.19690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 07/13/2017] [Indexed: 12/26/2022] Open
Abstract
Radioresistance remains a major obstacle for clinicians in the treatment of nasopharyngeal carcinoma (NPC). Others and we have reported that signal transducer and activator of transcription 1 (STAT1) may be as an important gene for resistance to radiation. However, the relationship between STAT1 and radioresistance is still elusive. In this study, by constitutive silencing STAT1 in human radioresistant nasopharyngeal carcinoma CNE-2R cell line, we showed that inhibition of STAT1 enhanced radiosensitivity of CNE-2R. Furthermore, knockdown of STAT1 led to growth suppression and apoptosis promotion in vitro and in vivo. Moreover, cells with low STAT1 expression increased G2/M phase and decreased S phase at 2Gy. These result revealed that knockdown of stat1 expression could sensitizes the CNE-2R to radiotherapy, But the exact mechanism needs to be further clarified.
Collapse
Affiliation(s)
- Song Qu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Key Laboratory of High Incidence Tumor Prevention and Treatment Guangxi Medical University, Ministry of Education, Nanning, 530021, PR China
| | - Ya Guo
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Key Laboratory of High Incidence Tumor Prevention and Treatment Guangxi Medical University, Ministry of Education, Nanning, 530021, PR China.,Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiao Tong University, Xi'an, Shanxi Province, 710004, PR China
| | - Shi-Ting Huang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Key Laboratory of High Incidence Tumor Prevention and Treatment Guangxi Medical University, Ministry of Education, Nanning, 530021, PR China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Key Laboratory of High Incidence Tumor Prevention and Treatment Guangxi Medical University, Ministry of Education, Nanning, 530021, PR China
| |
Collapse
|
18
|
Ramachandran J, Santo L, Siu KT, Panaroni C, Raje N. Pim2 is important for regulating DNA damage response in multiple myeloma cells. Blood Cancer J 2016; 6:e462. [PMID: 27564460 PMCID: PMC5022183 DOI: 10.1038/bcj.2016.73] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
Pan proviral integrations of Moloney virus (PIM) inhibition in multiple myeloma (MM) results in reduced cell viability in tested human-derived MM cell lines and reduces tumor burden in xenograft mouse models, making PIMs important therapeutic targets for the disease. PIM kinase inhibitors are currently being tested clinically in MM. We sought to elucidate the role of the various PIMs in MM. Our data demonstrate that Pim2 has a significant role in MM cell cytotoxicity. Our data provide evidence for a novel role for Pim2 in the regulation of the DNA damage response (DDR). Knockdown of Pim2 upregulates several downstream DDR markers, mimicking the effects of doxorubicin (Dox) treatment of MM cells, and suggesting a role for the kinase as a negative regulator of this pathway. Dox-induced DNA damage results in a decrease in Pim2 levels, placing the kinase directly downstream of the site of Dox-DNA binding. Overexpression of Pim2 confers a slight survival advantage against Dox through antiapoptotic activity, further underscoring its relevance in the DDR pathway. These data provide insights into a novel mechanism of PIM kinase activity and provide the framework for designing therapeutic approaches in MM.
Collapse
Affiliation(s)
- J Ramachandran
- Massachusetts General Hospital Cancer Center, MGH Cancer Center, Harvard Medical School, Boston, MA, USA
| | - L Santo
- Massachusetts General Hospital Cancer Center, MGH Cancer Center, Harvard Medical School, Boston, MA, USA
| | - K T Siu
- Massachusetts General Hospital Cancer Center, MGH Cancer Center, Harvard Medical School, Boston, MA, USA
| | - C Panaroni
- Massachusetts General Hospital Cancer Center, MGH Cancer Center, Harvard Medical School, Boston, MA, USA
| | - N Raje
- Massachusetts General Hospital Cancer Center, MGH Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Lin YM, Yu BC, Chiu WT, Sun HY, Chien YC, Su HC, Yen SY, Lai HW, Bai CH, Young KC, Tsao CW. Fluoxetine regulates cell growth inhibition of interferon-α. Int J Oncol 2016; 49:1746-54. [DOI: 10.3892/ijo.2016.3650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/25/2016] [Indexed: 11/05/2022] Open
|
20
|
Sun Y, Han Y, Wang X, Wang W, Wang X, Wen M, Xia J, Xing H, Li X, Zhang Z. Correlation of EGFR Del 19 with Fn14/JAK/STAT signaling molecules in non-small cell lung cancer. Oncol Rep 2016; 36:1030-40. [PMID: 27350337 DOI: 10.3892/or.2016.4905] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/30/2016] [Indexed: 11/06/2022] Open
Abstract
Previous research has shown that p-EGFR (particularly mutated EGFR) may activate fibroblast growth factor-inducible 14 (Fn14) expression in non-small cell lung cancer (NSCLC), and the JAK/STAT signaling pathway may participate in this process. Thus, in order to verify this hypothesis, correlations among the expression levels of EGFR Del 19, Fn14 and JAK/STAT were detected and analyzed. The expression and location of these molecules were assessed using IHC, immunohistofluorescence, RT-qPCR and western blotting. The differences and correlations in the expression of these molecules and clinical pathological characteristics were statistically analyzed using Mann-Whitney U, Kruskal‑Wallis H and cross-table tests. Kaplan-Meier survival analysis and Cox proportional hazards models were used to estimate the effect of EGFR Del 19 and Fn14 expression on survival. Data showed that EGFR Del 19, Fn14 and JAK1/STAT1 expression was significantly related with differentiation, pTNM stage and lymphatic metastasis (P<0.01) and there was a marked correlation of EGFR Del 19, Fn14 and JAK1/STAT1 expression with histological type, differentiation, pTNM stage of NSCLC (P<0.05; rs>0.3). Immunohistofluorescence showed that there was a co-localization phenomenon between EGFR Del 19 and Fn14 expression. NSCLC patients with higher EGFR Del 19/Fn14 expression had a significantly worse prognosis than those with lower EGFR Del 19/Fn14 expression (P=0.0155/P=0.001; log-rank test). The multivariate analysis indicated that Fn14 expression may be an independent prognostic factor in NSCLC with EGFR Del 19 [hazard ratio (HR), 0.326; P=0.042]. Therefore, our results indicate that EGFR Del 19 may promote Fn14 and JAK1/STAT1 expression in NSCLC and Fn14 may serve as a prognostic biomarker in NSCLC with EGFR Del 19.
Collapse
Affiliation(s)
- Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaoping Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Wuping Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xuejiao Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Miaomiao Wen
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jinghua Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hao Xing
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
21
|
Jackson JD, Markert JM, Li L, Carroll SL, Cassady KA. STAT1 and NF-κB Inhibitors Diminish Basal Interferon-Stimulated Gene Expression and Improve the Productive Infection of Oncolytic HSV in MPNST Cells. Mol Cancer Res 2016; 14:482-92. [PMID: 26883073 DOI: 10.1158/1541-7786.mcr-15-0427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/04/2016] [Indexed: 01/20/2023]
Abstract
UNLABELLED Interferon-stimulated genes (ISG) encode diverse proteins that mediate intrinsic antiviral resistance in infected cells. Here it was hypothesized that malignant peripheral nerve sheath tumor (MPNST) cells resist the productive infection of oncolytic herpes simplex virus (oHSV) through activation of the JAK/STAT1 pathway and resultant upregulation of ISGs. Multiple human and mouse MPNST cells were used to explore the relationship between STAT1 activation and the productive infection of Δγ134.5 oHSVs. STAT1 activation in response to oHSV infection was found to associate with diminished Δγ134.5 oHSVs replication and spread. Multiday pretreatment, but not cotreatment, with a JAK inhibitor significantly improved viral titer and spread. ISG expression was found to be elevated prior to infection and downregulated when treated with the inhibitor, suggesting that the JAK/STAT1 pathway is active prior to infection. Conversely, upregulation of ISG expression in normally permissive cells significantly decreased oHSV productivity. Finally, a possible link between NF-κB pathway activation and ISG expression was established through the expression of inhibitor of kB (IκB) which decreased basal STAT1 transcription and ISG expression. These results demonstrate that basal ISG expression prior to infection contributes to the resistance of Δγ134.5 oHSVs in MPNST cells. IMPLICATIONS Although cancer-associated ISG expression has been previously reported to impart resistance to chemotherapy and radiotherapy, these data show that basal ISG expression also contributes to oncolytic HSV resistance. Mol Cancer Res; 14(5); 482-92. ©2016 AACR.
Collapse
Affiliation(s)
- Joshua D Jackson
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama. Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama. Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Li Li
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kevin A Cassady
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama. Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio.
| |
Collapse
|
22
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
23
|
Benis N, Schokker D, Suarez-Diez M, Martins Dos Santos VAP, Smidt H, Smits MA. Network analysis of temporal functionalities of the gut induced by perturbations in new-born piglets. BMC Genomics 2015; 16:556. [PMID: 26220188 PMCID: PMC4518884 DOI: 10.1186/s12864-015-1733-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Evidence is accumulating that perturbation of early life microbial colonization of the gut induces long-lasting adverse health effects in individuals. Understanding the mechanisms behind these effects will facilitate modulation of intestinal health. The objective of this study was to identify biological processes involved in these long lasting effects and the (molecular) factors that regulate them. We used an antibiotic and the same antibiotic in combination with stress on piglets as an early life perturbation. Then we used host gene expression data from the gut (jejunum) tissue and community-scale analysis of gut microbiota from the same location of the gut, at three different time-points to gauge the reaction to the perturbation. We analysed the data by a new combination of existing tools. First, we analysed the data in two dimensions, treatment and time, with quadratic regression analysis. Then we applied network-based data integration approaches to find correlations between host gene expression and the resident microbial species. RESULTS The use of a new combination of data analysis tools allowed us to identify significant long-lasting differences in jejunal gene expression patterns resulting from the early life perturbations. In addition, we were able to identify potential key gene regulators (hubs) for these long-lasting effects. Furthermore, data integration also showed that there are a handful of bacterial groups that were associated with temporal changes in gene expression. CONCLUSION The applied systems-biology approach allowed us to take the first steps in unravelling biological processes involved in long lasting effects in the gut due to early life perturbations. The observed data are consistent with the hypothesis that these long lasting effects are due to differences in the programming of the gut immune system as induced by the temporary early life changes in the composition and/or diversity of microbiota in the gut.
Collapse
Affiliation(s)
- Nirupama Benis
- Host Microbe Interactomics, Wageningen University, Wageningen, The Netherlands.
| | - Dirkjan Schokker
- Wageningen UR Livestock Research, Wageningen University, Wageningen, The Netherlands.
| | - Maria Suarez-Diez
- Systems and Synthetic biology, Wageningen University, Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Systems and Synthetic biology, Wageningen University, Wageningen, The Netherlands.
- Lifeglimmer GmbH, Berlin, Germany.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| | - Mari A Smits
- Host Microbe Interactomics, Wageningen University, Wageningen, The Netherlands.
- Wageningen UR Livestock Research, Wageningen University, Wageningen, The Netherlands.
- Central Veterinary Institute, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
24
|
Srivastava RM, Trivedi S, Concha-Benavente F, Hyun-Bae J, Wang L, Seethala RR, Branstetter BF, Ferrone S, Ferris RL. STAT1-Induced HLA Class I Upregulation Enhances Immunogenicity and Clinical Response to Anti-EGFR mAb Cetuximab Therapy in HNC Patients. Cancer Immunol Res 2015; 3:936-45. [PMID: 25972070 DOI: 10.1158/2326-6066.cir-15-0053] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022]
Abstract
The goal of this study was to characterize the molecular mechanisms underlying cetuximab-mediated upregulation of HLA class I antigen-processing machinery components in head and neck cancer (HNC) cells and to determine the clinical significance of these changes in cetuximab-treated HNC patients. Flow cytometry, signaling studies, and chromatin immunoprecipitation (ChIP) assays were performed using HNC cells treated with cetuximab alone or with Fcγ receptor (FcγR)-bearing lymphocytes to establish the mechanism of EGFR-dependent regulation of HLA APM expression. A prospective phase II clinical trial of neoadjuvant cetuximab was used to correlate HLA class I expression with clinical response in HNC patients. EGFR blockade triggered STAT1 activation and HLA upregulation, in a src homology-containing protein (SHP)-2-dependent fashion, more prominently in HLA-B/C than in HLA-A alleles. EGFR signaling blockade also enhanced IFNγ receptor 1 (IFNAR) expression, augmenting induction of HLA class I and TAP1/2 expression by IFNγ, which was abrogated in STAT1(-/-) cells. Cetuximab enhanced HNC cell recognition by EGFR853-861-specific CTLs, and notably enhanced surface presentation of a non-EGFR peptide (MAGE-3271-279). HLA class I upregulation was significantly associated with clinical response in cetuximab-treated HNC patients. EGFR induces HLA downregulation through SHP-2/STAT1 suppression. Reversal of HLA class I downregulation was more prominent in clinical responders to cetuximab therapy, supporting an important role for adaptive immunity in cetuximab antitumor activity. Abrogating EGFR-induced immune escape mechanisms and restoring STAT1 signaling to reverse HLA downregulation using cetuximab should be combined with strategies to enhance adaptive cellular immunity.
Collapse
Affiliation(s)
| | - Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jie Hyun-Bae
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lin Wang
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Raja R Seethala
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania. Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
25
|
Kaowinn S, Cho IR, Moon J, Jun SW, Kim CS, Kang HY, Kim M, Koh SS, Chung YH. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling. Biochem Biophys Res Commun 2015; 459:313-318. [DOI: 10.1016/j.bbrc.2015.02.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
|
26
|
Kaewpiboon C, Srisuttee R, Malilas W, Moon J, Oh S, Jeong HG, Johnston RN, Assavalapsakul W, Chung YH. Upregulation of Stat1-HDAC4 confers resistance to etoposide through enhanced multidrug resistance 1 expression in human A549 lung cancer cells. Mol Med Rep 2015; 11:2315-21. [PMID: 25395162 DOI: 10.3892/mmr.2014.2949] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
Despite efforts to develop efficient chemotherapeutic drug strategies to treat cancer, acquired drug resistance is a commonly encountered problem. In the present study, to investigate this phenomenon, human A549 lung cancer cells resistant to the topoisomerase inhibitor etoposide (A549RT‑eto) were used and compared with A549 parental cells. A549RT‑eto cells demonstrated increased resistance to etoposide‑induced apoptosis when compared with A549 parental cells. Notably, A549RT‑eto cells were observed to exhibit greater levels of histone deacetylase 4 (HDAC4), phospho‑Stat1 and P‑glycoprotein [P‑gp; encoded by the multidrug resistance 1 (MDR1) gene], compared with A549 cells. To address whether HDAC4 protein is involved in etoposide resistance in A549 cells, A549RT‑eto cells were treated with trichostatin A (TSA; an HDAC inhibitor) during etoposide treatment. The combined treatment was demonstrated to enhance etoposide‑induced apoptosis and reduce expression levels of HDAC4, P‑gp and phospho‑Stat1. In addition, the suppression of Stat1 with siRNA enhanced etoposide‑induced apoptosis and reduced the expression levels of HDAC4 and P‑gp, suggesting that Stat1 is essential in the regulation of resistance to etoposide, and in the upregulation of P‑gp. Notably, TSA treatment reduced P‑gp transcript levels but Stat1 siRNA treatment did not, suggesting that P‑gp is regulated by HDAC at the transcriptional level and by Stat1 at the post‑transcriptional level. These results suggest that the upregulation of Stat1 and HDAC4 determines etoposide resistance through P‑gp expression in human A549 lung cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Cells, Cultured
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Etoposide/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Lung Neoplasms/genetics
- Phosphorylation
- RNA Interference
- RNA, Small Interfering/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Chutima Kaewpiboon
- Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93110, Thailand
| | - Ratakorn Srisuttee
- BK21+, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 609‑735, Republic of Korea
| | - Waraporn Malilas
- BK21+, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 609‑735, Republic of Korea
| | - Jeong Moon
- BK21+, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 609‑735, Republic of Korea
| | - Sangtaek Oh
- Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136‑702, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305‑764, Republic of Korea
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Young-Hwa Chung
- BK21+, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 609‑735, Republic of Korea
| |
Collapse
|
27
|
Kolosenko I, Fryknäs M, Forsberg S, Johnsson P, Cheon H, Holvey-Bates EG, Edsbäcker E, Pellegrini P, Rassoolzadeh H, Brnjic S, Larsson R, Stark GR, Grandér D, Linder S, Tamm KP, De Milito A. Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. Int J Cancer 2015; 136:E51-61. [PMID: 25156627 DOI: 10.1002/ijc.29161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/25/2014] [Accepted: 08/14/2014] [Indexed: 11/07/2022]
Abstract
The mechanism of multicellular drug resistance, defined as the reduced efficacy of chemotherapeutic drugs in solid tumors is incompletely understood. Here we report that colon carcinoma cells cultured as 3D microtissues (spheroids) display dramatic increases in the expression of a subset of type I interferon-(IFN)-stimulated genes (ISGs). A similar gene signature was associated previously with resistance to radiation and chemotherapy, prompting us to examine the underlying biological mechanisms. Analysis of spheroids formed by different tumor cell lines and studies using knock-down of gene expression showed that cell crowding leads to the induction of IFN regulatory factor-9 (IRF9) which together with STAT2 and independently of IFNs, is necessary for ISG upregulation. Increased expression of IRF9 alone was sufficient to induce the ISG subset in monolayer cells and to confer increased resistance to clinically used cytotoxic drugs. Our data reveal a novel mechanism of regulation of a subset of ISGs, leading to drug resistance in solid tumors.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 17176, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Davuluri G, Schiemann WP, Plow EF, Sossey-Alaoui K. Loss of WAVE3 sensitizes triple-negative breast cancers to chemotherapeutics by inhibiting the STAT-HIF-1α-mediated angiogenesis. JAKSTAT 2015; 3:e1009276. [PMID: 26413422 DOI: 10.1080/21623996.2015.1009276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/10/2023] Open
Abstract
Chemoresistance allows for disease to recur and ultimately causes the death of most breast cancer patients. This scenario is particularly relevant in patients harboring triple-negative breast cancer (TNBC) tumors for which there are no effective FDA-approved drugs. However, a recent study determined that TNBCs can be segregated into 6 genetically distinct subtypes that do in fact exhibit differential rates of pathological complete response (pCR) to standard-of-care chemotherapies. Of these, the mesenchymal and mesenchymal stem-like subtypes of TNBCs exhibit the lowest rates of pCR when treated with standard-of-care chemotherapies. WAVE3 is an actin-cytoskeleton remodeling protein, and recent studies have highlighted a potential role for WAVE3 in promoting tumor progression and metastasis in TNBC. However, whether WAVE3 activity is involved in the development of chemoresistance in TNBCs remains unclear. Here we show that loss of WAVE3 expression resensitizes human TNBC cells to doxorubicin and docetaxel, as measured by increased apoptosis and cell death. We also show that WAVE3 knockdown in the chemotherapy-treated TNBC cells results in inhibition of STAT1 phosphorylation, as well as a significant decrease in expression levels of its downstream effector HIF-1α. Since HIF-1α is a major activator of VEGF-A production, and therefore a stimulator of tumor angiogenesis, loss of HIF-1α in the WAVE3-knockdown cells resulted in the inhibition the chemotherapy-mediated VEGF-A secretion and the downstream activation of angiogenesis, a phenomenon that often accompanies chemoresistance. Our data identify a critical role of WAVE3 in sensitizing TNBC to chemotherapy by inhibiting the STAT1→HIF-1α→VEGF-A signaling axis, and support the possibility that WAVE3 inhibition may be a promising target for TNBC cancer therapy.
Collapse
Affiliation(s)
- Gangarao Davuluri
- Department of Molecular Cardiology; Cleveland Clinic Lerner Institute ; Cleveland, OH USA
| | - William P Schiemann
- Case Comprehensive Cancer Center; Case Western Reserve University ; Cleveland, OH USA
| | - Edward F Plow
- Department of Molecular Cardiology; Cleveland Clinic Lerner Institute ; Cleveland, OH USA
| | - Khalid Sossey-Alaoui
- Department of Molecular Cardiology; Cleveland Clinic Lerner Institute ; Cleveland, OH USA
| |
Collapse
|
29
|
Wang H, Gutierrez-Uzquiza A, Garg R, Barrio-Real L, Abera MB, Lopez-Haber C, Rosemblit C, Lu H, Abba M, Kazanietz MG. Transcriptional regulation of oncogenic protein kinase Cϵ (PKCϵ) by STAT1 and Sp1 proteins. J Biol Chem 2014; 289:19823-38. [PMID: 24825907 DOI: 10.1074/jbc.m114.548446] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Overexpression of PKCϵ, a kinase associated with tumor aggressiveness and widely implicated in malignant transformation and metastasis, is a hallmark of multiple cancers, including mammary, prostate, and lung cancer. To characterize the mechanisms that control PKCϵ expression and its up-regulation in cancer, we cloned an ∼ 1.6-kb promoter segment of the human PKCϵ gene (PRKCE) that displays elevated transcriptional activity in cancer cells. A comprehensive deletional analysis established two regions rich in Sp1 and STAT1 sites located between -777 and -105 bp (region A) and -921 and -796 bp (region B), respectively, as responsible for the high transcriptional activity observed in cancer cells. A more detailed mutagenesis analysis followed by EMSA and ChIP identified Sp1 sites in positions -668/-659 and -269/-247 as well as STAT1 sites in positions -880/-869 and -793/-782 as the elements responsible for elevated promoter activity in breast cancer cells relative to normal mammary epithelial cells. RNAi silencing of Sp1 and STAT1 in breast cancer cells reduced PKCϵ mRNA and protein expression, as well as PRKCE promoter activity. Moreover, a strong correlation was found between PKCϵ and phospho-Ser-727 (active) STAT1 levels in breast cancer cells. Our results may have significant implications for the development of approaches to target PKCϵ and its effectors in cancer therapeutics.
Collapse
Affiliation(s)
- HongBin Wang
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Alvaro Gutierrez-Uzquiza
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Rachana Garg
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Laura Barrio-Real
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Mahlet B Abera
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Cynthia Lopez-Haber
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Cinthia Rosemblit
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Huaisheng Lu
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Martin Abba
- the Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Universidad Nacional de La Plata, CP1900 La Plata, Argentina
| | - Marcelo G Kazanietz
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
30
|
Thota B, Arimappamagan A, Kandavel T, Shastry AH, Pandey P, Chandramouli BA, Hegde AS, Kondaiah P, Santosh V. STAT-1 expression is regulated by IGFBP-3 in malignant glioma cells and is a strong predictor of poor survival in patients with glioblastoma. J Neurosurg 2014; 121:374-83. [PMID: 24878287 DOI: 10.3171/2014.4.jns131198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECT Insulin-like growth factor binding proteins (IGFBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. METHODS The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. RESULTS IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. CONCLUSIONS IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Collapse
|
31
|
Cao Y, Eble JM, Moon E, Yuan H, Weitzel DH, Landon CD, Nien CYC, Hanna G, Rich JN, Provenzale JM, Dewhirst MW. Tumor cells upregulate normoxic HIF-1α in response to doxorubicin. Cancer Res 2013; 73:6230-42. [PMID: 23959856 DOI: 10.1158/0008-5472.can-12-1345] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a master transcription factor that controls cellular homeostasis. Although its activation benefits normal tissue, HIF-1 activation in tumors is a major risk factor for angiogenesis, therapeutic resistance, and poor prognosis. HIF-1 activity is usually suppressed under normoxic conditions because of rapid oxygen-dependent degradation of HIF-1α. Here, we show that, under normoxic conditions, HIF-1α is upregulated in tumor cells in response to doxorubicin, a chemotherapeutic agent used to treat many cancers. In addition, doxorubicin enhanced VEGF secretion by normoxic tumor cells and stimulated tumor angiogenesis. Doxorubicin-induced accumulation of HIF-1α in normoxic cells was caused by increased expression and activation of STAT1, the activation of which stimulated expression of iNOS and its synthesis of nitric oxide (NO) in tumor cells. Mechanistic investigations established that blocking NO synthesis or STAT1 activation was sufficient to attenuate the HIF-1α accumulation induced by doxorubicin in normoxic cancer cells. To our knowledge, this is the first report that a chemotherapeutic drug can induce HIF-1α accumulation in normoxic cells, an efficacy-limiting activity. Our results argue that HIF-1α-targeting strategies may enhance doxorubicin efficacy. More generally, they suggest a broader perspective on the design of combination chemotherapy approaches with immediate clinical impact.
Collapse
Affiliation(s)
- Yiting Cao
- Authors' Affiliations: Departments of Radiation Oncology,Surgery, Pathology, and Radiology, Duke University Medical Center, Durham; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Radiology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, Stanford University, Stanford, California; and Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fryknäs M, Gullbo J, Wang X, Rickardson L, Jarvius M, Wickström M, Hassan S, Andersson C, Gustafsson M, Westman G, Nygren P, Linder S, Larsson R. Screening for phenotype selective activity in multidrug resistant cells identifies a novel tubulin active agent insensitive to common forms of cancer drug resistance. BMC Cancer 2013; 13:374. [PMID: 23919498 PMCID: PMC3751689 DOI: 10.1186/1471-2407-13-374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Drug resistance is a common cause of treatment failure in cancer patients and encompasses a multitude of different mechanisms. The aim of the present study was to identify drugs effective on multidrug resistant cells. METHODS The RPMI 8226 myeloma cell line and its multidrug resistant subline 8226/Dox40 was screened for cytotoxicity in response to 3,000 chemically diverse compounds using a fluorometric cytotoxicity assay (FMCA). Follow-up profiling was subsequently performed using various cellular and biochemical assays. RESULTS One compound, designated VLX40, demonstrated a higher activity against 8226/Dox40 cells compared to its parental counterpart. VLX40 induced delayed cell death with apoptotic features. Mechanistic exploration was performed using gene expression analysis of drug exposed tumor cells to generate a drug-specific signature. Strong connections to tubulin inhibitors and microtubule cytoskeleton were retrieved. The mechanistic hypothesis of VLX40 acting as a tubulin inhibitor was confirmed by direct measurements of interaction with tubulin polymerization using a biochemical assay and supported by demonstration of G2/M cell cycle arrest. When tested against a broad panel of primary cultures of patient tumor cells (PCPTC) representing different forms of leukemia and solid tumors, VLX40 displayed high activity against both myeloid and lymphoid leukemias in contrast to the reference compound vincristine to which myeloid blast cells are often insensitive. Significant in vivo activity was confirmed in myeloid U-937 cells implanted subcutaneously in mice using the hollow fiber model. CONCLUSIONS The results indicate that VLX40 may be a useful prototype for development of novel tubulin active agents that are insensitive to common mechanisms of cancer drug resistance.
Collapse
Affiliation(s)
- Mårten Fryknäs
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
MALILAS WARAPORN, KOH SANGSEOK, KIM SEOKHO, SRISUTTEE RATAKORN, CHO ILRAE, MOON JEONG, YOO HWASEUNG, OH SANGTAEK, JOHNSTON RANDALN, CHUNG YOUNGHWA. Cancer upregulated gene 2, a novel oncogene, enhances migration and drug resistance of colon cancer cells via STAT1 activation. Int J Oncol 2013; 43:1111-6. [DOI: 10.3892/ijo.2013.2049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/28/2013] [Indexed: 11/06/2022] Open
|
34
|
Bai J, Guo XG, Bai XP. Epidermal growth factor receptor-related DNA repair and radiation-resistance regulatory mechanisms: a mini-review. Asian Pac J Cancer Prev 2013; 13:4879-81. [PMID: 23244074 DOI: 10.7314/apjcp.2012.13.10.4879] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) overexpression is associated with resistance to chemotherapy and radiotherapy. The EGFR modulates DNA repair after radiation-induced damage through an association with the catalytic subunit of DNA protein kinase. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage induced by ionizing radiation, and non-homologous end joining is the predominant pathway for repair of radiation-induced DSBs. Some cell signaling pathways that respond to normal growth factors are abnormally activated in human cancer. These pathways also invoke the cell survival mechanisms that lead to resistance to radiation. The molecular connection between the EGFR and its control over DNA repair capacity appears to be mediated by one or more signaling pathways downstream of this receptor. The purpose of this mini-review was not only to highlight the relation of the EGFR signal as a regulatory mechanism to DNA repair and radiation resistance, but also to provide clues to improving existing radiation resistance through novel therapies based on the above-mentioned mechanism.
Collapse
Affiliation(s)
- Jing Bai
- Department of Radiotherapy, Bao Tou Tumor Hospital, Bao Tou, Inner Mongolia, China
| | | | | |
Collapse
|
35
|
Franci C, Zhou J, Jiang Z, Modrusan Z, Good Z, Jackson E, Kouros-Mehr H. Biomarkers of residual disease, disseminated tumor cells, and metastases in the MMTV-PyMT breast cancer model. PLoS One 2013; 8:e58183. [PMID: 23520493 PMCID: PMC3592916 DOI: 10.1371/journal.pone.0058183] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/31/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer metastases arise in part from disseminated tumor cells originating from the primary tumor and from residual disease persisting after therapy. The identification of biomarkers on micro-metastases, disseminated tumors, and residual disease may yield novel tools for early detection and treatment of these disease states prior to their development into metastases and recurrent tumors. Here we describe the molecular profiling of disseminated tumor cells in lungs, lung metastases, and residual tumor cells in the MMTV-PyMT breast cancer model. MMTV-PyMT mice were bred with actin-GFP mice, and focal hyperplastic lesions from pubertal MMTV-PyMT;actin-GFP mice were orthotopically transplanted into FVB/n mice to track single tumor foci. Tumor-bearing mice were treated with TAC chemotherapy (docetaxel, doxorubicin, cyclophosphamide), and residual and relapsed tumor cells were sorted and profiled by mRNA microarray analysis. Data analysis revealed enrichment of the Jak/Stat pathway, Notch pathway, and epigenetic regulators in residual tumors. Stat1 was significantly up-regulated in a DNA-damage-resistant population of residual tumor cells, and a pre-existing Stat1 sub-population was identified in untreated tumors. Tumor cells from adenomas, carcinomas, lung disseminated tumor cells, and lung metastases were also sorted from MMTV-PyMT transplant mice and profiled by mRNA microarray. Whereas disseminated tumors cells appeared similar to carcinoma cells at the mRNA level, lung metastases were genotypically very different from disseminated cells and primary tumors. Lung metastases were enriched for a number of chromatin-modifying genes and stem cell-associated genes. Histone analysis of H3K4 and H3K9 suggested that lung metastases had been reprogrammed during malignant progression. These data identify novel biomarkers of residual tumor cells and disseminated tumor cells and implicate pathways that may mediate metastasis formation and tumor relapse after therapy.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Male
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mammary Tumor Virus, Mouse
- Mice
- Mice, Transgenic
- Neoplasm Metastasis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm, Residual
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- STAT Transcription Factors/metabolism
Collapse
Affiliation(s)
- Christian Franci
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Jenny Zhou
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Zhaoshi Jiang
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Zora Modrusan
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Zinaida Good
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Erica Jackson
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| | - Hosein Kouros-Mehr
- Research Oncology Department, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
36
|
Ni IBP, Ching NC, Meng CK, Zakaria Z. Translocation t(11;14) (q13;q32) and genomic imbalances in multi-ethnic multiple myeloma patients: a Malaysian study. Hematol Rep 2012; 4:e19. [PMID: 23087808 PMCID: PMC3475941 DOI: 10.4081/hr.2012.e19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/20/2012] [Accepted: 09/10/2012] [Indexed: 01/22/2023] Open
Abstract
More than 50% of myeloma cases have normal karyotypes under conventional cytogenetic analysis due to low mitotic activity and content of plasma cells in the bone marrow. We used a polymerase chain reaction (PCR)-based translocation detection assay to detect BCL1/JH t(11;14) (q13;q32) in 105 myeloma patients, and randomly selected 8 translocation positive samples for array comparative genomic hybridization (aCGH) analysis. Our findings revealed 14.3% of myeloma samples were positive for BCL1/JH t(11;14) (q13;q32) translocation (n=15 of 105). We found no significant correlation between this translocation with age (P=0.420), gender (P=0.317), ethnicity (P=0.066) or new/relapsed status of multiple myeloma (P=0.412) at 95% confidence interval level by χ2test. In addition, aCGH results showed genomic imbalances in all samples analyzed. Frequent chromosomal gains were identified at regions 1q, 2q, 3p, 3q, 4p, 4q, 5q, 7q, 9q, 11q, 13q, 15q, 21q, 22q and Xq, while chromosomal losses were detected at 4q and 14q. Copy number variations at genetic loci that contain NAMPT, IVNS1ABP and STK17B genes are new findings that have not previously been reported in myeloma patients. Besides fluorescence in situ hybridization, PCR is another rapid, sensitive and simple technique that can be used for detecting BCL1/JH t(11;14)(q13;q32) translocation in multiple myeloma patients. Genes located in the chromosomal aberration regions in our study, such as NAMPT, IVNS1ABP, IRF2BP2, PICALM, STAT1, STK17B, FBXL5, ACSL1, LAMP2, SAMSN1 and ATP8B4 might be potential prognostic markers and therapeutic targets in the treatment and management of multiple myeloma patients positive for BCL1/JH t(11;14) (q13;q32) translocation.
Collapse
Affiliation(s)
- Ivyna Bong Pau Ni
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur
| | | | | | | |
Collapse
|
37
|
Dimberg LY, Dimberg A, Ivarsson K, Fryknäs M, Rickardson L, Tobin G, Ekman S, Larsson R, Gullberg U, Nilsson K, Öberg F, Wiklund HJ. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma. BMC Cancer 2012; 12:318. [PMID: 22838736 PMCID: PMC3488543 DOI: 10.1186/1471-2407-12-318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/12/2012] [Indexed: 03/20/2023] Open
Abstract
Background Multiple myeloma (MM) is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN) treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat)1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. Methods To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS). Results To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA), geldanamycin (17-AAG), doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. Conclusion We conclude that Stat1 alters IL-6 induced Stat3 activity and the expression of pro-apoptotic genes. However, this shift alone is not sufficient to alter apoptosis sensitivity in MM cells, suggesting that Stat1 independent pathways are operative in IFN mediated apoptosis sensitization.
Collapse
Affiliation(s)
- Lina Y Dimberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, S- 751 85, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zimmerman MA, Rahman NT, Yang D, Lahat G, Lazar AJ, Pollock RE, Lev D, Liu K. Unphosphorylated STAT1 promotes sarcoma development through repressing expression of Fas and bad and conferring apoptotic resistance. Cancer Res 2012; 72:4724-32. [PMID: 22805310 DOI: 10.1158/0008-5472.can-12-1347] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STAT1 exists in phosphorylated (pSTAT1) and unphosphorylated (uSTAT1) forms each regulated by IFN-γ. Although STAT1 is a key mediator of the IFN-γ signaling pathway, an essential component of the host cancer immunosurveillance system, STAT1 is also overexpressed in certain human cancers where the functions of pSTAT1 and uSTAT1 are ill defined. Using a murine model of soft tissue sarcoma (STS), we show that disruption of the IFN effector molecule IRF8 decreases pSTAT1 and increases uSTAT1 in STS cells, thereby increasing their metastatic potential. We determined that the IRF8 gene promoter was hypermethylated frequently in human STS. An analysis of 123 human STS specimens revealed that high uSTAT1 levels in tumor cells was correlated with a reduction in disease-specific survival (DSS), whereas high pSTAT1 levels in tumor cells were correlated with an increase in DSS. In addition, uSTAT1 levels were negatively correlated with pSTAT1 levels in these STS specimens. Mechanistic investigations revealed that IRF8 suppressed STAT1 transcription by binding the STAT1 promoter. RNAi-mediated silencing of STAT1 in STS cells was sufficient to increase expression of the apoptotic mediators Fas and Bad and to elevate the sensitivity of STS cells to Fas-mediated apoptosis. Together, our findings show how the phosphorylation status of pSTAT1 determines its function as a tumor suppressor, with uSTAT1 acting as a tumor promoter that acts by elevating resistance to Fas-mediated apoptosis to promote immune escape.
Collapse
Affiliation(s)
- Mary A Zimmerman
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Torres-Roca JF. A molecular assay of tumor radiosensitivity: a roadmap towards biology-based personalized radiation therapy. Per Med 2012; 9:547-557. [PMID: 23105945 DOI: 10.2217/pme.12.55] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The last two decades have seen technological developments that have led to more accurate delivery of radiation therapy (RT), which has resulted in clinical gains in many solid tumors. However, a fundamental question and perhaps the next major hurdle is whether biological strategies can be developed to further enhance the effectiveness and efficiency of RT. This article addresses the development of a novel genomics-based molecular assay to predict tumor radiosensitivity, and proposes that this assay may prove pivotal in the development of biologically guided RT.
Collapse
Affiliation(s)
- Javier F Torres-Roca
- Department of Experimental Therapeutics & Radiation Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA, Tel.: +1 813 745 1824
| |
Collapse
|
40
|
Khodarev NN, Roizman B, Weichselbaum RR. Molecular Pathways: Interferon/Stat1 Pathway: Role in the Tumor Resistance to Genotoxic Stress and Aggressive Growth. Clin Cancer Res 2012; 18:3015-21. [DOI: 10.1158/1078-0432.ccr-11-3225] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Hu M, Liu Y, Deng C, Han R, Jia Y, Liu S, Jiang Z, Cao X, He L, Zhang Q. Enhanced invasiveness in multidrug resistant leukemic cells is associated with overexpression of P-glycoprotein and cellular inhibitor of apoptosis protein. Leuk Lymphoma 2011; 52:1302-11. [PMID: 21599575 DOI: 10.3109/10428194.2011.572323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multidrug resistance (MDR) and multi-organ infiltration are the major obstacles to the successful treatment of leukemia. It is known that the drug efflux protein, P-glycoprotein (P-gp), and inhibitors of apoptosis proteins (IAPs) are involved in the MDR of leukemic cells, but their roles in leukemia infiltration have not been clearly elucidated. In this study, leukemic cell lines K562 and HL60 and their MDR variants K562R and HL60R have been used to analyze their infiltrative ability. MDR variants display enhanced invasion compared with parental cells. Results from xenografts in SCID (severe combined immunodeficiancy) mice are consistent with these in vitro observations. Furthermore, P-gp and cIAP are overexpressed and co-localize with protein kinase C-ε (PKC-ε) in MDR variants. Our study shows that overexpression of P-gp and cIAP may enhance the infiltration of leukemic cells.
Collapse
Affiliation(s)
- Meng Hu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen HHW, Chou CY, Wu YH, Hsueh WT, Hsu CH, Guo HR, Lee WY, Su WC. Constitutive STAT5 activation correlates with better survival in cervical cancer patients treated with radiation therapy. Int J Radiat Oncol Biol Phys 2011; 82:658-66. [PMID: 21300446 DOI: 10.1016/j.ijrobp.2010.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/19/2010] [Accepted: 11/18/2010] [Indexed: 12/16/2022]
Abstract
PURPOSE Constitutively activated signal transducers and activators of transcription (STAT) factors, in particular STAT1, STAT3, and STAT5, have been detected in a wide variety of human primary tumors and have been demonstrated to directly contribute to oncogenesis. However, the expression pattern of these STATs in cervical carcinoma is still unknown, as is whether or not they have prognostic significance. This study investigated the expression patterns of STAT1, STAT3, and STAT5 in cervical cancer and their associations with clinical outcomes in patients treated with radical radiation therapy. METHODS AND MATERIALS A total of 165 consecutive patients with International Federation of Gynecology and Obstetrics (FIGO) Stages IB to IVA cervical cancer underwent radical radiation therapy, including external beam and/or high-dose-rate brachytherapy between 1989 and 2002. Immunohistochemical studies of their formalin-fixed, paraffin-embedded tissues were performed. Univariate and multivariate analyses were performed to identify and to evaluate the effects of these factors affecting patient survival. RESULTS Constitutive activations of STAT1, STAT3, and STAT5 were observed in 11%, 22%, and 61% of the participants, respectively. While STAT5 activation was associated with significantly better metastasis-free survival (p < 0.01) and overall survival (p = 0.04), STAT1 and STAT3 activation were not. Multivariate analyses showed that STAT5 activation, bulky tumor (≥ 4 cm), advanced stage (FIGO Stages III and IV), and brachytherapy (yes vs. no) were independent prognostic factors for cause-specific overall survival. None of the STATs was associated with local relapse. STAT5 activation (odds ratio = 0.29, 95% confidence interval = 0.13-0.63) and advanced stage (odds ratio = 2.54; 95% confidence interval = 1.03-6.26) were independent predictors of distant metastasis. CONCLUSIONS This is the first report to provide the overall expression patterns and prognostic significance of specific STATs in cervical carcinoma. Our results indicate that constitutive STAT5 activation correlates with better metastasis-free survival and overall survival in cervical cancer patients who have received radiation therapy.
Collapse
Affiliation(s)
- Helen H W Chen
- Department of Radiation Oncology, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Englert NA, Spink BC, Spink DC. Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 2011; 123:140-50. [PMID: 21185374 DOI: 10.1016/j.jsbmb.2010.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 12/19/2022]
Abstract
Life-long estrogen exposure is recognized as a major risk factor for the development of breast cancer. While the initial events in the regulation of gene expression by estrogen have been described in detail, far less is known of the role of estrogen in the long-term regulation of gene expression. In this study, we investigated the effects of long-term exposure of MCF-7 breast cancer cells to 1nM 17β-estradiol on gene expression with the goal of distinguishing between gene expression that is continually reliant on estrogen receptor (ER) function as opposed to secondary and persistent effects that are downstream of ER. To assess the direct involvement of ER in the differential gene expression of long-term estrogen exposed (LTEE) cells in comparison with that of control cells, we exposed cultures to the selective estrogen receptor modulator raloxifene (RAL). cDNA microarray analysis showed that exposure to RAL inhibited expression of numerous characterized estrogen-regulated genes, including PGR, GREB1, and PDZK1. Genes that were increased in expression in LTEE cells yet were unaffected by RAL exposure included the aryl hydrocarbon receptor (AHR) and numerous other genes that were not previously reported to be regulated by estrogen. Epigenetic regulation was evident for the AHR gene; AhR transcript levels remained elevated for several cell passages after the removal of estrogen. Signal transducer and activator of transcription 1 (STAT1); STAT1-regulated genes including ISG15, IFI27, and IFIT1; and MHC class I genes were also up-regulated in LTEE cells and were unaffected by RAL exposure. STAT1 is commonly overexpressed in breast and other cancers, and is associated with increased resistance to radiation and chemotherapy. This is the first study to relate estrogen exposure to increased STAT1 expression in breast cancer cells, an effect that may represent an additional role of estrogen in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Neal A Englert
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | |
Collapse
|
44
|
Characterization of the cytotoxic properties of the benzimidazole fungicides, benomyl and carbendazim, in human tumour cell lines and primary cultures of patient tumour cells. Anticancer Drugs 2010; 21:33-42. [PMID: 19786863 DOI: 10.1097/cad.0b013e328330e74e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Pitroda SP, Wakim BT, Sood RF, Beveridge MG, Beckett MA, MacDermed DM, Weichselbaum RR, Khodarev NN. STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect. BMC Med 2009; 7:68. [PMID: 19891767 PMCID: PMC2780454 DOI: 10.1186/1741-7015-7-68] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/05/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The Signal Transducer and Activator of Transcription 1 (STAT1) has traditionally been regarded as a transmitter of interferon signaling and a pro-apoptotic tumour suppressor. Recent data have identified new functions of STAT1 associated with tumourigenesis and resistance to genotoxic stress, including ionizing radiation (IR) and chemotherapy. To investigate the mechanisms contributing to the tumourigenic functions of STAT1, we performed a combined transcriptomic-proteomic expressional analysis and found that STAT1 is associated with regulation of energy metabolism with potential implication in the Warburg effect. METHODS We generated a stable knockdown of STAT1 in the SCC61 human squamous cell carcinoma cell line, established tumour xenografts in athymic mice, and compared transcriptomic and proteomic profiles of STAT1 wild-type (WT) and knockdown (KD) untreated or irradiated (IR) tumours. Transcriptional profiling was based on Affymetrix Human GeneChip(R) Gene 1.0 ST microarrays. Proteomes were determined from the tandem mass spectrometry (MS/MS) data by searching against the human subset of the UniProt database. Data were analysed using Significance Analysis of Microarrays for ribonucleic acid and Visualize software for proteins. Functional analysis was performed with Ingenuity Pathway Analysis with statistical significance measured by Fisher's exact test. RESULTS Knockdown of STAT1 led to significant growth suppression in untreated tumours and radio sensitization of irradiated tumours. These changes were accompanied by alterations in the expression of genes and proteins of glycolysis/gluconeogenesis (GG), the citrate cycle (CC) and oxidative phosphorylation (OP). Of these pathways, GG had the most concordant changes in gene and protein expression and demonstrated a STAT1-dependent expression of genes and proteins consistent with tumour-specific glycolysis. In addition, IR drastically suppressed the GG pathway in STAT1 KD tumours without significant change in STAT1 WT tumours. CONCLUSION Our results identify a previously uncharacterized function of STAT1 in tumours: expressional regulation of genes encoding proteins involved in glycolysis, the citrate cycle and mitochondrial oxidative phosphorylation, with predominant regulation of glycolytic genes. STAT1-dependent expressional regulation of glycolysis suggests a potential role for STAT1 as a transcriptional modulator of genes responsible for the Warburg effect.
Collapse
Affiliation(s)
- Sean P Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G, Rocha-Lima C, Kelley S, Calvin DP, Yeatman TJ, Begg AC, Torres-Roca JF. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys 2009; 75:489-96. [PMID: 19735873 DOI: 10.1016/j.ijrobp.2009.06.014] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/25/2009] [Accepted: 06/08/2009] [Indexed: 02/07/2023]
Abstract
PURPOSE Development of a radiosensitivity predictive assay is a central goal of radiation oncology. We reasoned a gene expression model could be developed to predict intrinsic radiosensitivity and treatment response in patients. METHODS AND MATERIALS Radiosensitivity (determined by survival fraction at 2 Gy) was modeled as a function of gene expression, tissue of origin, ras status (mut/wt), and p53 status (mut/wt) in 48 human cancer cell lines. Ten genes were identified and used to build a rank-based linear regression algorithm to predict an intrinsic radiosensitivity index (RSI, high index = radioresistance). This model was applied to three independent cohorts treated with concurrent chemoradiation: head-and-neck cancer (HNC, n = 92); rectal cancer (n = 14); and esophageal cancer (n = 12). RESULTS Predicted RSI was significantly different in responders (R) vs. nonresponders (NR) in the rectal (RSI R vs. NR 0.32 vs. 0.46, p = 0.03), esophageal (RSI R vs. NR 0.37 vs. 0.50, p = 0.05) and combined rectal/esophageal (RSI R vs. NR 0.34 vs. 0.48, p = 0.001511) cohorts. Using a threshold RSI of 0.46, the model has a sensitivity of 80%, specificity of 82%, and positive predictive value of 86%. Finally, we evaluated the model as a prognostic marker in HNC. There was an improved 2-year locoregional control (LRC) in the predicted radiosensitive group (2-year LRC 86% vs. 61%, p = 0.05). CONCLUSIONS We validate a robust multigene expression model of intrinsic tumor radiosensitivity in three independent cohorts totaling 118 patients. To our knowledge, this is the first time that a systems biology-based radiosensitivity model is validated in multiple independent clinical datasets.
Collapse
|
47
|
Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys 2009; 75:497-505. [PMID: 19735874 DOI: 10.1016/j.ijrobp.2009.05.056] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 02/05/2023]
Abstract
PURPOSE The discovery of effective biomarkers is a fundamental goal of molecular medicine. Developing a systems-biology understanding of radiosensitivity can enhance our ability of identifying radiation-specific biomarkers. METHODS AND MATERIALS Radiosensitivity, as represented by the survival fraction at 2 Gy was modeled in 48 human cancer cell lines. We applied a linear regression algorithm that integrates gene expression with biological variables, including ras status (mut/wt), tissue of origin and p53 status (mut/wt). RESULTS The biomarker discovery platform is a network representation of the top 500 genes identified by linear regression analysis. This network was reduced to a 10-hub network that includes c-Jun, HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1, and IRF1. Nine targets associated with radiosensitization drugs are linked to the network, demonstrating clinical relevance. Furthermore, the model identified four significant radiosensitivity clusters of terms and genes. Ras was a dominant variable in the analysis, as was the tissue of origin, and their interaction with gene expression but not p53. Overrepresented biological pathways differed between clusters but included DNA repair, cell cycle, apoptosis, and metabolism. The c-Jun network hub was validated using a knockdown approach in 8 human cell lines representing lung, colon, and breast cancers. CONCLUSION We have developed a novel radiation-biomarker discovery platform using a systems biology modeling approach. We believe this platform will play a central role in the integration of biology into clinical radiation oncology practice.
Collapse
|
48
|
Efimova EV, Liang H, Pitroda SP, Labay E, Darga TE, Levina V, Lokshin A, Roizman B, Weichselbaum RR, Khodarev NN. Radioresistance of Stat1 over-expressing tumour cells is associated with suppressed apoptotic response to cytotoxic agents and increased IL6-IL8 signalling. Int J Radiat Biol 2009; 85:421-31. [PMID: 19437244 PMCID: PMC2690884 DOI: 10.1080/09553000902838566] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To determine the mechanisms of Signal Transducer and Activator of Transcription 1 (Stat1)-associated radioresistance developed by nu61 tumour selected in vivo by fractionated irradiation of the parental radiosensitive tumour SCC61. MATERIALS AND METHODS Radioresistence of nu61 and SCC61 in vitro was measured by clonogenic assay. Apoptotic response of nu61 and SCC61 cells to genotoxic stress was examined using caspase-based apoptotic assays. Co-cultivation of carboxyfluorescein diacetate, succinimidyl ester (CFDE-SE)-labeled nu61 with un-labeled SCC61 was performed at 1:1 ratio. Production of interleukin-6, interleukin-8 and soluble receptor of interleukin 6 (IL6, IL8 and sIL6R) was measured using Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS Radioresistant nu61 was also resistant to interferon-gamma (IFNgamma) and the death ligands of tumour necrosis factor alpha receptor (TNFR) family when compared to SCC61. This combined resistance is due to an impaired apoptotic response in nu61. Relative to SCC61, nu61 produced more IL6, IL8 and sIL6R. Using Stat1 knock-downs we demonstrated that IL6 and IL8 production is Stat1-dependent. Treatment with neutralising antibodies to IL6 and IL8, but not to either cytokine alone sensitised nu61 to genotoxic stress induced apoptosis. CONCLUSION Nu61, which over-expresses Stat1 pathway, is deficient in apoptotic response to ionising radiation and cytotoxic ligands. This resistance to apoptosis is associated with Stat1-dependent production of IL6 and IL8 and suppression of caspases 8, 9 and 3.
Collapse
Affiliation(s)
- Elena V Efimova
- Department of Radiation and Cellular Oncology, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Khodarev NN, Roach P, Pitroda SP, Golden DW, Bhayani M, Shao MY, Darga TE, Beveridge MG, Sood RF, Sutton HG, Beckett MA, Mauceri HJ, Posner MC, Weichselbaum RR. STAT1 pathway mediates amplification of metastatic potential and resistance to therapy. PLoS One 2009; 4:e5821. [PMID: 19503789 PMCID: PMC2688034 DOI: 10.1371/journal.pone.0005821] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/08/2009] [Indexed: 11/20/2022] Open
Abstract
Background Traditionally IFN/STAT1 signaling is connected with an anti-viral response and pro-apoptotic tumor-suppressor functions. Emerging functions of a constitutively activated IFN/STAT1 pathway suggest an association with an aggressive tumor phenotype. We hypothesized that tumor clones that constitutively overexpress this pathway are preferentially selected by the host microenvironment due to a resistance to STAT1-dependent cytotoxicity and demonstrate increased metastatic ability combined with increased resistance to genotoxic stress. Methodology/Principal Findings Here we report that clones of B16F1 tumors grown in the lungs of syngeneic C57BL/6 mice demonstrate variable transcriptional levels of IFN/STAT1 pathway expression. Tumor cells that constitutively overexpress the IFN/STAT1 pathway (STAT1H genotype) are selected by the lung microenvironment. STAT1H tumor cells also demonstrate resistance to IFN-gamma (IFNγ), ionizing radiation (IR), and doxorubicin relative to parental B16F1 and low expressors of the IFN/STAT1 pathway (STAT1L genotype). Stable knockdown of STAT1 reversed the aggressive phenotype and decreased both lung colonization and resistance to genotoxic stress. Conclusions Our results identify a pathway activated by tumor-stromal interactions thereby selecting for pro-metastatic and therapy-resistant tumor clones. New therapies targeted against the IFN/STAT1 signaling pathway may provide an effective strategy to treat or sensitize aggressive tumor clones to conventional cancer therapies and potentially prevent distant organ colonization.
Collapse
Affiliation(s)
- Nikolai N. Khodarev
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Paul Roach
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Daniel W. Golden
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Mihir Bhayani
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Michael Y. Shao
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Thomas E. Darga
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Mara G. Beveridge
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Ravi F. Sood
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Harold G. Sutton
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Michael A. Beckett
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Helena J. Mauceri
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Mitchell C. Posner
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
50
|
Wang S, Raven JF, Durbin JE, Koromilas AE. Stat1 phosphorylation determines Ras oncogenicity by regulating p27 kip1. PLoS One 2008; 3:e3476. [PMID: 18941537 PMCID: PMC2568943 DOI: 10.1371/journal.pone.0003476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/30/2008] [Indexed: 01/10/2023] Open
Abstract
Inactivation of p27 Kip1 is implicated in tumorigenesis and has both prognostic and treatment-predictive values for many types of human cancer. The transcription factor Stat1 is essential for innate immunity and tumor immunosurveillance through its ability to act downstream of interferons. Herein, we demonstrate that Stat1 functions as a suppressor of Ras transformation independently of an interferon response. Inhibition of Ras transformation and tumorigenesis requires the phosphorylation of Stat1 at tyrosine 701 but is independent of Stat1 phosphorylation at serine 727. Stat1 induces p27 Kip1 expression in Ras transformed cells at the transcriptional level through mechanisms that depend on Stat1 phosphorylation at tyrosine 701 and activation of Stat3. The tumor suppressor properties of Stat1 in Ras transformation are reversed by the inactivation of p27 Kip1. Our work reveals a novel functional link between Stat1 and p27 Kip1, which act in coordination to suppress the oncogenic properties of activated Ras. It also supports the notion that evaluation of Stat1 phosphorylation in human tumors may prove a reliable prognostic factor for patient outcome and a predictor of treatment response to anticancer therapies aimed at activating Stat1 and its downstream effectors.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | - Jennifer F. Raven
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | - Joan E. Durbin
- Columbus Children's Research Institute, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Antonis E. Koromilas
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|